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A method is proposed for investigating the asymptotic behavior of the wave functions of 
polyatomic molecules for the case in which the depth of the tunneling penetration of one of the 
electrons into the sub-barrier region appreciably exceeds the damping radius of the wave 
function but is comparable with the molecular diameter. The results of an actual calculation for 
the C6H6 molecule are given. It is shown that the asymptotic behavior of the wave function 
can be represented in the form of a molecular orbital formed from diffuse atomic orbitals, the 
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1. INTRODUCTION 

The present paper is a continuation of investigations into 
the asymptotic behavior of many-electron wave functions.'-3 
We study the asymptotic behavior of the wave functions 
*(r,, r2 ,  ..., rN) of polyatomic molecules (actual calculations 
are made for benzene) when one of the electrons is outside 
the main electron localization region (MELR) in the classi- 
cally inaccessible part of space, so that the length 1 of tun- 
neling penetration of the electron appreciably exceeds the 
damping radius a of the wave function ( l s a ) .  

Penetration of an electron into the sub-barrier asymptotic 
region is associated with an extensive class of interesting 
physical processes (charge exchange and spin exchange in 
collisions in the gas phase, tunneling electron transport in 
condensed media, in chemical reactions, intel-molecular ex- 
change interaction, etc.). 

When 1 appreciably exceeds the radius an, of the atom 
and molecule, the existing theory makes it possible to deter- 
mine the asymptotic behavior of the wave function up to an 
asymptotic coefficient C that does not depend on the distance 
r .  For the simplest systems (atoms), this problem was solved 
in stages in Refs. 4-9. In Ref. 10, the coefficient C was 
determined by the matching method. A more correct method 
of determining this coefficient is given in Refs. 2 and 3. 

For polyatomic molecules, which are considered in the 
present paper, fundamentally new problems arise, since here 
the depth 1 of tunneling penetration of an electron into the 
asymptotic region (l9a, , , )  can be of the order of or even less 
than the radius a, of the molecule itself ( l s a , ) ,  and the 
asymptotic methods (including the matching method) devel- 
oped for the region l9a,,, fail completely. It should be noted 
that even in the case l s a , ,  the asymptotic values of the 
molecular wave functions cannot be obtained by means of 
any quantum-chemical calculation using a variational prin- 
ciple. The contribution of the asymptotic region to the energy 
of the system is exponentially small, and no modern com- 
puter can guarantee such an accuracy of calculation of a 
many-electron wave function that it corresponds to the con- 
tribution of the asymptotic region. 

In this paper, the posed problem is solved in the frame- 
work of the approach proposed in Ref. I based on use of the 

Lippmann-Schwinger integral equation. This method makes 
it possible to construct the asymptotic behavior of the wave 
function without recourse to matching, using information on 
the many-electron wave function in the main electron local- 
ization region obtained by ordinary quantum-chemical meth- 
ods, and calculation of the single-electron Green's function 
for the asymptotic region (with preliminary determination of 
the effective tunneling potential). Moreover, in our approach 
it is possible when determining the Green's function to avoid 
the typical difficulties associated with a semiclassical treat- 
ment in the multidimensional case. 

2. METHOD OF CALCULATION 

A general method for obtaining the asymptotic values of 
many-electron wave functions was proposed in Ref. 1. For 
completeness of the exposition, we give some general ex- 
pressions from Ref. 1. 

We represent the Hamiltonian H of the N-electron sys- 
tem in the form ( e = f i = p , =  1) 

Here T is kinetic-energy operator, UN- ,({rN- ,}) is the po- 
tential energy of all the electrons except the first ({rN- ,) 
denotes the set of coordinates r2 ,  ..., rN), and 

where Rk is the coordinate of nucleus k ,  and Zk is its charge. 
The single-electron potential V(r,) and the method of its de- 
termination will be given below. 

We investigate the many-electron wave function q ( r , ,  
{rN- ,}; E) for the case in which one electron is in the deep 
sub-barrier region and the remainder are in the main region 
of motion. By means of the Lippmann-Schwinger equation, 
we can establish the relationship between the required as- 
ymptotic behavior of the function q ( r l ,  {rN- ,}; E) and its 
value in the main electron localization region: 
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Here G =  (E- H o ) - '  is the Green's function for the Hamil- 
tonian Ha at given energy E. 

Because the interaction between the first electron and the 
remaining electrons of the system has been eliminated from 
Ha, we can use the following representation for the Green's 
function G: 

where cp, and E,  are the eigenfunctions and eigenvalues of 
the (N- 1)-electron Hamiltonian (v is the set of correspond- 
ing quantum numbers), and G I  is the single-particle Green's 
function at energy E-E ,  for the Hamiltonian 
H ,  = -(1/2)v2+v(r1).  

Substitution of (4) into (3) gives 

where 

The wave functions $(rl , {r,- ,); E), cp,({rN- ,}) are as- 
sumed to be symmetrized in the usual manner, since they are 
the eigenfunctions of Hamiltonians that are symmetric with 
respect to the interchange of any two electrons. However, 
since the Hamiltonian H o  is not symmetric with respect to 
interchange of the first electron with any other electron, the 
function q ( r l ,  {rN- E )  on the left-hand side of (3) is not 
symmetric with respect to the interchange r@{rN- ,}. This 
symmetrization procedure must be done additionally. 

In accordance with (9, the asymptotic behavior of the 
wave function of the N-electron system can be expressed in 
terms of a superposition of expressions corresponding to the 
contribution of the different states of the molecular ion (a 
system of N- I electrons). The main contribution to the in- 
tegrals over {rh- ,) in (6) is made by the main electron lo- 
calization region. If the wave functions @({rh}) and 
cp,({rh_ ,)) in this region are calculated to a certain accu- 
racy, it can be assumed that the integrals over {rh- ,) are 
calculated to the same accuracy. By the accuracy of @ in the 
main electron localization region we mean a certain overall 
accuracy, namely, the accuracy of the energy value. As can 
be seen from (6), the asymptotic behavior is determined by 
the integral of the wave function calculated in this region. 
Although the integrals for the determination of the energy 
are not equal to the integral in (6), we do have such a total 
accuracy in mind when we speak of the accuracy with which 
the asymptotic behavior is calculated. 

It is convenient to choose the potential V, in the form 

I O3 
r , E MELR, 

It is readily seen that if the expression (7) for V, is substi- 
tuted into Eq. (6) for cV",, then the integration over r ;  on the 
right-hand side of (6) will also be over the main electron 
localization region. However, since in this region the 
N-electron wave function is assumed to be known from 
quantum-chemical calculations, the choice (7) transforms 
Eq. (6) into an expression for the asymptotic value of the 
wave function. 

3. ITERATIVE PROCEDURE 

It can be seen from the expression (7) that the effective 
tunneling potential V is found in terms of the asymptotic 
coefficients of the wave function, which in turn depend on 
this potential. This means that it is here necessary to use an 
iterative procedure, the essence of which is presented below. 
We note first that the calculated effective tunneling potential 
even at the boundary of the main electron localization region 
is appreciably smaller than the ionization potential I. The 
effective tunneling potential occurs in the definition of the 
exponent x in the Green's function G ,  which can be approxi- 
mately written in the form 

where the integration is over the classical trajectory (see be- 
low). Under the condition V<I, V(r)+O as r+m, the poten- 
tial V(r) determines the preexponential expression in the 
Green's function and, therefore, the preexponential expres- 
sion in the asymptotic behavior I)*. Therefore, the iterative 
procedure actually amounts to calculation of the preexponen- 
tial factor, and it is precisely this that is the main task in 
finding the asymptotic behavior. 

We label the states of the ion in order of increasing en- 
ergy E,<E,<E,  ... of the ion. In the first iteration (the it- 
erations are labeled with a superscript) 

and the nth iteration gives 

where @I"(") is given by the expression (6), in which vV- I )  

is taken as V,. 
The iteration procedure converges if in the given asymp- 

totic region we have 

I v ( " ' J < I .  ( 1  1) 

For this it is actually sufficient if the inequality (11) 
holds for n =2. Calculations show that this iterative proce- 
dure converges rapidly (an accuracy -1 % is guaranteed by 
the second iteration). However, in the far asymptotic region 
the inequality (11) can break down. Indeed, the asymptotic 
behaviors cV",(r) are characterized by different exponential 
damping radii of the wave functions: 
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where I ,= I+E, .  Therefore, in the sum on the riglit-hand 
side of (10) the terms with i < v  at sufficiently large r are, in 
general, exponentially growing terms: 

Such growth may lead to the appearance at very large r 
of unphysical regions of classically allowed motion of the 
electron for asymptotic behavior involving excitation of the 
ion. In this case, the iterative procedure must be modified. 

We now turn directly to Eq. (6) and determine the 
asymptotic behavior fl corresponding to the ground state of 
the ion in accordance with the prescription described above, 
i.e., introducing the effective potential V1(,= l )  [in accor- 
dance with the expression (lo)]. Then, using Eq. (6) for the 
first excited state (v=2) and separating out the main electron 
localization region and the asymptotic region (AR), we ob- 
tain 

where 

O9 r E MELR 

i the Green's function of the Hamiltonian 
H =  - ( 1 / 2 ) ~ ~ + c ~ ( r ~ ) .  

In writing down the second term of (13), we have used 
the asymptotic behavior of the function & found from the 
previous relation of the iterative procedure. It must be em- 
phasized that in the second term of (13) the main contribu- 
tion is made by the "observation" region r since when the 
points r ;  and r l  get close to each other the function d2) 
increases more rapidly than the function fl decreases. Thus, 
the contribution to the far asymptotic behavior from the ex- 
cited states of the ion can be represented, in general, by two 
terms, 

*:=a exp(-curI)+b exp( -p r , ) ,  (15) 

where p = \127 < a = isdetermined by the ioniza- 
tion potential of the molecule. At the same time, the second 
term in (15) is of higher order in the small quantity r l  . 
Therefore, at finite (but large in the asymptotic sense) values 
of r l  the two contributions to the asymptotic behavior of I# 
may be comparable. 

The physical meaning of each term in the far asyinptotic 
region is transparent. Indeed, how can tunneling of an elec- 
tron with excitation of the ion core occur? First, because of 
strong interaction within the atom the electron excites the ion 

MELR AR r I 

FIG. 1 .  Schematic representation of the main electron localization region, 
the asymptotic region, and the effective potential V ,  for the benzene mol- 
ecule. The dashed curve shows the smoothed boundary of the regions. 

core (excitation energy E,) and with energy - I -Ei  goes 
over into the sub-barrier region. This contribution is de- 
scribed by the first term in (15). Second, the electron tunnels 
with energy -I without exciting the ion, and when the "ob- 
servation" point r is reached, the ion is excited by the mul- 
tipole interaction (U2J. This contribution corresponds to the 
second term in (15). Such a mechanism using a tunneling 
electron to take energy from the remaining system to realize 
the most favorable tunneling channel was considered in Ref. 
11 for the case of vibronic coupling and in Refs. 12 and 13 
for a multipole interelectron interaction. 

4. CALCULATION OF THE GREEN'S FUNCTION 

As can be seen from (6), to calculate the asymptotic 
behavior it is necessary to know the single-electron Green's 
function Gl(r , r r ,E) .  In connection with the special choice of 
the potential V(rl) (see Fig. I), for which E < V ( r l )  every- 
where, the Green's function can be calculated by a fairly 
simple semiclassical method. In Ref. 14, for the case in 
which E>V(r , )  in the region of particle motion, the three- 
dimensional semiclassical Green's function GI(r , r r ,E)  can 
be expressed in terms of the action S(r ,rr ,E) along the clas- 
sical trajectory joining the points r and r'. The same method 
can be employed for the sub-barrier case that we consider if 
the trajectory and action are calculated for an inverted poten- 
tial in accordance with Ref. 14 (V= - V , ,  E = - E l ) .  We 
then obtain 

where 
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(11 is the fourth-order determinant formed from the first and 
sCc.ontl derivatives of S with respect to the coordinates r ,  and 
r;) .  1:or convenience in the numerical calculation, the step 
potential V was smoothed. 

The mathematical details of the calculation of the 
Green's function are given in the Appendix. We merely men- 
tion that comparison of the calculated semiclassical Green's 
function with the known analytic results for the cases (V=O, 
V=Fz, V= - l lr)  in which the semiclassical treatment is 
valid gives differences of a few percent. 

5. PROCEDURE FOR CALCULATING THE ASYMPTOTIC 
BEHAVIOR FOR C6H6 

To calculate the asymptotic behavior, we must have at 
our disposal wave functions of the molecule and ion calcu- 
lated by the quantum-chemical method that are sufficiently 
accurate in the main electron localization region. In the first 
stage of the calculation, these functions are used to deter- 
mine effective potentials in accordance with the expression 
(9). It is then necessary to calculate the Green's function in 
accordance with the expressions (16) and (17) and determine 
the asymptotic behavior from the expression (6). In accor- 
dance with (lo), in the second stage we correct the expres- 
sions for the effective potential and repeat the computational 
procedure described above, etc. In practice, two stages are 
sufficient. 

The main contribution to the asymptotic behavior is 
made by the most weakly bound T-electron molecular orbit- 
als. The strongly bound filled cr orbitals are taken into ac- 
count in the effective charges of the ionic cores. The wave 
functions of the C6H6 molecule and the c ~ H ~ +  ion in the main 
electron localization region were calculated by means of the 
semiempirical CNDOIS and AM1 methods and the nonem- 
pirical STO-3G method. The main electron localization re- 
gion was chosen to be a sphere. The Lippmann-Schwinger 
equation (6) is invariant with respect to the choice of V(r,). 
In accordance with the definition of V(r,), the expression for 
the asymptotic behavior of the wave function (7) must be 
invariant with respect to the choice of the radius of the main 
electron localization region and of the smoothing potential 
introduced for numerical convenience (see below). However, 
this invariance is observed if one uses as f i r , ,  {rN- ,}) in the 
integrand on the right-hand side of (6) the exact eigenfunc- 
tion of the Schrodinger equation and the exact Green's func- 
tion G,(r ,  , ri ; E -  E,).  In reality, these functions are ap- 
proximate. Therefore, one must expect that the results of the 
calculations will depend on the choice of the radius ro of the 
sphere of the main electron localization region. We carried 
out calculations for ro=6.0 and ro=6.5 a.u. The average dif- 
ference of the asymptotic coefficients was found to be about 
4% and the maximum difference 9%. The once-determined 
wave functions of the molecule and ion were constructed on 
the same basis of molecular orbitals, and the positions of the 
nuclei-at the vertices of regular hexagons-were assumed 
to be the same in the molecule and the ion. The effects as- 
sociated with the change in the geometry as a result of tun- 

neling were not taken into account, since it is precisely in 
such a (Frank-Condon) approximation that one considers 
processes associated with fairly rapid removal of the electron 
(photoelectron transitions, tunneling, etc.). 

In accordance with expressions (7) and (9), we obtain for 
the potential V, in the first iteration the expression 

To high accuracy, this expression can be replaced by the 
simpler 

where Ri are the coordinates of the carbon nuclei i =  I, 
2, ..., 6, and q i v  is the effective charge at the Ci  atoms in the 
ionic state vi . Comparison of V,(r,) calculated in accordance 
with the expressions (18) and (19) gives a maximum differ- 
ence of 4% near the boundary of the main electron localiza- 
tion region. The possibility of using (19) in place of (18) is 
due to the presence of an uncompensated electric charge in 
our system. Compared with its field, the corrections due to 
allowance for the distribution of the electron density in each 
atomic orbital are negligible, and the corrections from the 
nonuniform distribution of the positive charge over the car- 
bon atoms can be taken into account in both expressions. It 
should be noted that for electrically neutral systems, (18) and 
(19) give very different results. The potentials V,(r,) deter- 
mined in accordance with (18) or (19) using these different 
quantum-chemical methods of calculating the wave func- 
tions in the main electron localization region agree to very 
high accuracy. Even near the boundary of this region, the 
differences are less than 1%. This is due to the fact that the 
coefficients in the expansion of the T-electron molecular or- 
bitals of benzene (and, therefore, the charges on the atoms of 
the anion) are determined by the symmetry of the molecule 
and do not depend on the method of calculation. The calcu- 
lations showed that further iterations of the potential Vl(rl) 
in accordance with the expression (10) lead to a slight (less 
than 4%) change in the potential Vl(rl). When the asymp- 
totic behavior is calculated in accordance with (5) and (6), 
there arise expressions of the type Ueffcp,(r,), where Ueff is 
the effective self-consistent potential within the molecule 
that acts on electron 1, and cp,(r,) is the ath molecular re- 
gion. This expression can be conveniently replaced: 

where I ,  is the ionization potential of an electron from the 
ath molecular orbital. The use of (21) greatly simplifies the 
calculations. 

6. RESULTS AND DISCUSSION 

The asymptotic behavior of the C6H6 wave functions 
was calculated in the first iteration for all three T-electron 
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orbitals of benzene, i.e., for the states of the ion that are 
characterized by the absence of an electron in the three filled 
orbitals of the benzene molecule. It was found that the results 
obtained can be well approximated by an analytic function. 
We call it the diffuse orbital: 

Here C,,  are the coefficients in the expansion of the molecu- 
lar orbitals cp, with respect to the basis of Slater atomic 
orbitals, and ,yFf is the diffuse atomic orbital: 

Here I,= I+ E, is the ionization potential of an electron 
from the molecular orbital cp,, and E, is the excitation en- 
ergy of the ion. 

The fitting coefficients a, are found to have the follow- 
ing values: 

a=0.12 for the upper doubly degenerate molecular or- 
bital (le,,), 

a =O. 15 for the lower completely symmetric molecular 
orbital ( 1 e2,). 

The function cptf(r) fits the numerical calculations to an 
accuracy of about 3%. As we have already noted, subsequent 
iterations in the calculation of the asymptotic behavior agree 
with the first iteration to an accuracy of about 4%. Thus, Eqs. 
(21) and (22) give the expressions for the asymptotic behav- 
iors of the wave functions. However, we emphasize that the 
coefficient a ,  in (21) can be obtained only by numerical 
calculation. The calculated molecular orbital (the wave func- 
tion within the main electron localization region) and the 
diffuse molecular orbital (the wave function in the asymp- 
totic region) have the same angular dependence, this being 
due to the high symmetry of the benzene molecule. 

Figure 2 shows I#,(r,cp,O)I in the main electron localiza- 
tion region and in the asymptotic region, where 8 is the angle 
measured from the axis C 6 ,  and the angle cp corresponds to 
the direction to the C atom with the largest coefficient of the 
n orbital. To the accuracy of the calculation, the values of ef and I+%, are the same on the boundary of the main electron 
localization region at the point rO. It can be clearly seen in 
the figure that simple asymptotic continuation of #,, beyond 
the main electron localization region is absolutely incorrect. 

APPENDIX: ALGORITHM FOR NUMERICAL CALCULATION 
OF THE GREEN'S FUNCTION 

In the semiclassical approximation, the Green's function 
G(ro , rk)  is given by the expression (16), in which S(rO,rk)  
is the action calculated along the extremal trajectory corre- 
sponding to the given energy level Eo: 

The extremal trajectory [xI( t ) ,  x2(t), x3(t)] along which the 
action (Al) is calculated is determined from the system of 
nonlinear equations 

0 5 10 15 20 
R, rel. units 

FIG. 2. Radial dependence of the wave function of the upper occupied 
molecular orbital of benzene. The continuous curve is calculated with Slater 
orbitals within the main electron localization region in accordance with the 
theory presented in the present paper. Outside this region, the dashed curve 
gives the result of the calculation with Slater orbitals; R is measured from 
the center of the molecule. 

0 0 0  with given (x, ,x2 ,x,) and (x'; ,x: ,x';). This is a problem 
with time as a free parameter, and the extremal trajectory 
belongs to the given energy level E, and ensures a minimum 
of the functional (Al). Thus, to calculate the Green's func- 
tion it is necessary to find the extremal trajectory of the 
variational problem (Al), (A2) belonging to the given energy 
level E 0  and then calculate along the optimum trajectory the 
derivatives of the action with respect to the initial and final 
points; these occur in the preexponential factor of the expres- 
sion (16). 

For our calculations, it proved to be more convenient to 
consider a different variational problem, which is equivalent 
to the one posed above. Namely, consider the functional 

in which the time T is also regarded as a free parameter, and 
the extremum belongs to the given energy level EO. It is 
obvious that in this case the extremal trajectory satisfies the 
same system of equations (A2). It can be shown that the 
action calculated along the extremum in accordance with 
(Al) and (A3) will be the same. 

We assume that the original trajectory is determined over 
the interval [O,T]. We make the change of variables r=t lT,  
r ~ [ 0 , 1 ] .  Then Eqs. (A2), (A3) can be rewritten in the form 
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We specify a certain number T and solve the boundary-value 
problem (A4). The solution we find-if it exists-will cor- 
respond to a certain value E ( T )  of the energy that, in gen- 
eral, is different from E o .  Solving then the equation 

we find the value of To for which the resulting solution will 
belong to the necessary level Eo.  We emphasize that to cal- 
culate one value of the function E ( T )  in (A6) it is necessary 
to solve a boundary-value problem for the system of nonlin- 
ear equations (A4). This boundary-value problem was solved 
by the method of stabilization, i.e., the solution of the sta- 
tionary problem was obtained as the limit with respect to a 
formally introduced time T' of the solution of the nonstation- 
ary problem. In such an approach, the integration step size in 
the artificially introduced time T' can be regarded as a formal 
iteration parameter. The corresponding nonstationary prob- 
lem was solved by the method of finite differences with ap- 
proximation of the spatial derivatives from the upper layer 
and with the use of complete linearization of the nonlinear 
terms. We mention that for sufficiently small value of Eo 
(below the barrier) the iterative process will not converge, 
since in this case the original trajectory does not exist. The 
higher the level Eo (but necessarily above the barrier), the 
more rapidly the iteration process converges. 

To calculate the preexponential factor in the expression 
for the Green's function, it is necessary to vary the problem 
in the neighborhood of the obtained trajectory with respect to 

k k k the boundary conditions (xy  ,x: ,x!)  and ( x ,  ,x2 , x 3 ) .  The 
necessary first and second derivatives of the action with re- 
spect to the initial and final points will be expressed in terms 
of the solution of the resulting linearized system. 

Omitting the calculations, we give the final result: 

Here U i j  is the solution of the linearized system that satisfies 
the boundary conditions Uij(0)=O, U,,( 1 ) = s i j ,  i, j= 1 ,  2, 
3. To calculate d ~ ~ l d x ;  in the expression (AS), we must 
differentiate the identity 

We emphasize that for exact solution of the linearized system 
the potential V must have smooth second derivatives. 
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