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A theoretical description of resonant ionization of an atom by charged particles with allowance 
for interaction in the final and resonant states is developed. The influence of the distortion 
of the continuum states of the scattered particle on the width of autoionization resonances is 
investigated. With allowance for the distortion of the continuum states, an analytic 
expression is obtained for the time-dependent width of an autoionization resonance. The 
characteristic dependences of the width of the perturbed resonance on the charge and velocity of 
the scattered particle and also on the total orbital angular momentum and the magnetic 
quantum number of the autoionization state are established. It is shown that the integrated yield 
of the resonance does not depend on allowance for interaction in the final and resonant 
states. The widths of the lowest autoionization resonances of the helium atom are calculated as 
functions of the velocity and the magnitude and sign of the charge of the scattered 
particle. O 1996 American Institute of Physics. [S 1063-776 1 (96)00201-71 

1. INTRODUCTION 

When a charged particle collides with a many-electron 
atom, autoionization states can be formed that then decay 
nonradiatively with emission of electrons into the continuous 
spectrum. The energy spectra of the electrons ejected as a 
result of autoionization are, as a rule, distorted by the long- 
range Coulomb interaction between outgoing charged par- 
ticles. A typical manifestation of this final-state interaction, 
which in the literature has become known as the post- 
collision interaction, is a distortion of the Lorentz profile of 
the resonance lines. Specifically, the lines are displaced, 
broadened, and acquire a pronounced asymmetry. All these 
effects have been widely studied, both experimentally and 
theoretically (see, for example, the reviews in Refs. 1-3), 
beginning with the first observation of Barker and   err^^ of 
the details of the decay of autoionization states in slow ion- 
atom collisions. 

To explain the effects of post-collision interaction ob- 
served in the threshold region (defined by v 4 v, , where v 
and v, are the velocities of the scattered particle and the 
autoionization electron, respectively), various theoretical 
models have been developed: the classical Barker-Berry 
model? the semic la~s ica l~~~ and quantum-mechanica17 mod- 
els, and also the shake-down model,' the quasimolecular 
adiabatic approach? and more. They are all based on two 
physical assumptions. 

1) The velocity of the autoionization electron is much 
greater than the velocity of the scattered charged particle, 
i.e., the interaction with the autoionization electron can be 
ignored, and the post-collision interaction reduces solely to 
the interaction between the slow charged particle and the 
field of the target atom, which changes during the decay 
process. This has the consequence that the post-collision in- 
teraction does not depend on the emission angle of the 
ejected particles and distorts only the energy distribution of 
the scattered charged particles and autoionization electrons. 

2) The scattered charged particle has no influence on the 

decay probability of the autoionization state, i.e., the decay 
takes place with the same width I', and the ejected electrons 
have the same energy distribution as in the absence of the 
scattered charged particle. The distribution of the ejected 
electrons changes as a result of interaction of the charged 
particles during their subsequent motion after the decay of 
the autoionization state. 

Relaxation of the first simplifying restriction leads to the 
necessity of taking three-particle Coulomb dynamics into ac- 
count in the final state. This is most clearly manifested when 
the velocities of the outgoing particles are comparable in 
magnitude. The key to the solution of this problem is the 
correct description of the final-state wave function. In Refs. 
10-12, three-particle Coulomb dynamics in the final state 
was described by means of a wave function of a system of 
three asymptotically free particles that is an approximate so- 
lution of the Faddeev-Merkur'ev equations, modified for 
Coulomb potentials; an analogous wave function obtained in 
the continuum distorted wave (CDW) approximation was 
used in Refs. 13 and 14. The general analytic expression for 
the autoionization amplitude obtained with such a wave 
function in Ref. 10 simplifies in the case of slow collisions, 
in which the interaction of the autoionization electron with 
the scattered charged particle can be ignored, to the corre- 
sponding expression for the amplitude obtained in the quasi- 
molecular adiabatic approach.9 FOS sufficiently large angles 
between the outgoing charged particles in the final state, 
when the interaction energy of the particles as they move 
apart from each other is less than the kinetic energy of their 
relative motion, the autoionization amplitudelo simplifies to 
the corresponding amplitude obtained earlier in the semiclas- 
sical eikonal appr~ximation. '~~ '~ 

The quantum-mechanical description of resonant 
ioni~ation'~ under conditions of a strong influence of the 
final-state Coulomb interaction exhibits strong changes in the 
shapes of the resonance line with changing electron ejection 
angle that are not present in the semiclassical eikonal 
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t h e ~ r ~ . ' ~ , ' ~  Such a singular kinematic situation arises in the 
case of electron ejection in a direction close to the direction 
of the outgoing scattered particle with a velocity that exceeds 
the projectile velocity. In this case, the ejected electron and 
the scattered particle can interact strongly. Thus in the calcu- 
lations in Ref. 11 of the energy spectra of electrons ejected as 
a result of decay of the ( 2 s 2 ) ' s  resonance of the helium 
atom excited in a collision with protons with velocity u = 1.2 
(in units defined below), qualitatively new effects were ob- 
served, namely, a sharp growth in the resonance intensity at 
small ejection angles as a result of capture of the autoioniz- 
ation electron in the continuum of the scattered particle (this 
is analogous to electron capture in the continuum of a posi- 
tively charged ion in the direct channel), and the appearance 
of an additional maximum in the left-hand wing of the reso- 
nance at ejection angles 0,=1-5" due to rescattering of some 
of the autoionization electrons by a proton. 

Recent experimental i n v e s t i g a t i o n ~ ' ~ ' ~ ~  have confirmed 
the existence of these effects of the post-collision interaction. 
In Ref. 17, the enhancement of electron intensity in the for- 
ward direction is interpreted as a result of "focusing" of the 
electrons in the Coulomb field of the outgoing ion, and the 
appearance of the additional maximum in the left-hand wing 
of the resonance is attributed in Ref. 18 to the interference of 
the two coherent amplitudes corresponding to the two pos- 
sible different classical trajectories of the autoionization 
electron in the field of the outgoing ion. We note however 
that although the quantum-mechanical description of Refs. 
10-12 does predict a sharp growth in the resonance intensity 
at small ejection angles, the simultaneously obtained en- 
hancement of the electron yields in certain directions is not 
accompanied by a decrease of the yields in others, with the 
integrated resonance yield remaining the same. The theory 
predicts only enhancement of the yield in the forward direc- 
tion without compensation in other directions.'9920 The semi- 
classical model of the post-collision interaction proposed in 
Ref. 17 also does not give a consistent description of the 
"Coulomb focusing" effect, since it contains an unphysical 
singularity in the cross section at zero ejection angle. 

The aim of this paper is to develop a theory of the reso- 
nant ionization of an atom by charged particles with allow- 
ance for interaction in not only the final state but also the 
resonant state. Allowance for the influence of the scattered 
particle on the decay of the quasistationary resonant state 
leads to a modification of the energy and width of the reso- 
nant state, which cease to be atomic parameters and become 
functions of the position of the charged particle. The derived 
quantum-mechanical model, based on the diagonalization ap- 
proximation, makes it possible to reproduce the "Coulomb 
focusing" effect. Moreover, for consistent description of this 
effect, it is necessary to take into account simultaneously the 
interaction in the final state and in the resonant state. 

Attention is primarily focused in this paper on studying 
the effect of the scattered particle on the width of autoioniz- 
ation resonances. This effect can be important for sufficiently 
short-lived autoionization states in the case of high charges 
and low velocities of the scattered particle. In the following 
section of the paper, we present the equations of the 
quantum-mechanical model modified by the interaction of 

the charged particles, and we solve them in the diagonaliza- 
tion approximation. In Sec. 3, we determine the amplitude of 
two-step resonance transitions under the assumption that pro- 
duction and decay of the resonance states are independent. 
We show that the integrated resonance yield does not depend 
on the interaction in the final and resonant states. In Sec. 4, 
we obtain an analytic expression for the time-dependent 
width T ( t )  of the autoionization resonance with allowance 
for the coupling of the resonant states to the continuum dis- 
torted by the field of the scattered charged particle. We show 
that at asymptotically large times, the width of the perturbed 
autoionization resonance tends to the value To determined 
for an isolated atom, and decreases with time in the same 
way as the Coulomb field of the outgoing scattered particle 
in the neighborhood of the excited atom. In Sec. 5, we dis- 
cuss the results of calculation of the widths of the lowest 
autoionization resonances of the helium atom as functions of 
the velocity and of the magnitude and sign of the charge of 
the scattered particle. Throughout the paper, we employ natu- 
ral units. 

2. BASIC EQUATIONS 

We consider the collision of a charged particle that 
has positive or negative charge 2, with an atom A(i), as a 
result of which an atomic electron goes over into the con- 
tinuum: 

Besides direct ionization transitions, there may also be 
resonant transitions of an electron into the continuous spec- 
trum through the autoionization levels la) = In , l  , ,n212 ; L M )  
(ni and l i  are the principal quantum number and the orbital 
angular momentum of electron i ,  and L and M  are the total 
orbital angular momentum and the magnetic quantum num- 
ber of the autoionization state of the atom): 

To construct the total amplitude for ionization of the 
atom by the charged particle with allowance for the direct (1) 
and resonant (2) transitions, it is convenient to represent the 
space of possible states of the system as a sum of orthogonal 
Q and P subspaces, putting in the Q subspace the bound 
states of two-electron excitation of the target atom that are 
energetically close to the observed autoionization reso- 
nances. The subspace P is the complement of Q. We intro- 
duce the projection operators Q and p onto the correspond- 
ing subspaces; then the total amplitude for ionization of the 
atom is determined by the expression'2 

tfi = tdir+ tres 

where 

is the amplitude of the direct transitions of the electron to the 
continuous spectrum, and 

is the amplitude of electron transitions to the continuous 
spectrum via autoionization levels. Here qi is the wave fiinc- 
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tion of the initial state of the colliding particles, and the 
operator T,,, determines the t matrix of transition of the 
atom from the initial state to the resonance states: 

where U is the interaction potential of the incident particle 
with the atom in the entrance channel, H is the total Hamil- 
tonian, and E is the total energy of the system. 

The final-state wave function of the reactions (I)  and (2) 
is determined using the Schrodinger equation 

with boundary conditions that describe the motion of three 
asymptotically free charged particles. 

The resonance Green's operator describing the relative 
motion of the scattered particle and atom in the autoioniza- 
tion state is 

where the effective Hamiltonian describing the system in the 
quasistationary resonant state has the form 

in which the operator 

A * . .  1 
@ . ( z ) = Q H P  - FHQ 

2 - P H P  

is non-Hermitian and depends explicitly on the energy of the 
system. 

We introduce a set of basis state vectors of two-electron 
excitation of the atom that belong to the Q  subspace and 
diagonalize the atomic Hamiltonian: 

Then the resonance Green's function corresponding to 
the Green's operator (8) in the basis representation {Q,} sat- 
isfies the following system of integrodifferential equations: 

where the matrix elements 

determine the direct interaction of the resonant states a and 
(T in the field of the scattered particle. Here r is the set of 
electron coordinates, R are the coordinates of the scattered 
particle relative to the center-of-mass position of the atom, 
and ,u is the reduced mass of the scattered particle and the 
atom. 

The integral operator 

determines the indirect interaction of the resonant states a 
and a via the intermediate states of the P  subspace; here V is 
the interelectron interaction potential. 

Using the spectral representation for the Green's func- 
tion in (13), we write the result of applying @';, to a plane 
wave 

where q E i  and E d  are the wave function and energy of the 
electron subsystem, and 5 is the set of quantum numbers that 
characterize the intermediate state of the electron subsystem. 
The summation over 5 also includes integration over the 
states of the continuous spectrum of the electrons. In (12)- 
(14), we use the notation (...) for matrix elements in which 
integration over the coordinates of the scattered particle is 
not performed; in contrast, in the matrix elements (( ...)) there 
is integration over all coordinates of the configuration space 
of the system. 

We assume that the coupling of the resonant states (D, 
and Q, to the intermediate states of the P  subspace in (14) 
takes place through the "internal" interelectron interaction V 
with neglect of the "external" potential U of the scattered 
particle. At the same time, we take into account the distortion 
of the electron wave functions *E$ by the field of the scat- 
tered particle (the continuum distorted by the scattered par- 
ticle). This assumption is obviously valid if R>1,, , where l,, 
is the characteristic radius of the atom. In addition, in this 
region we can ignore the contribution of the possible inter- 
mediate states in which an atomic electron is bound to the 
scattered particle (in the case of a positive charge 2,). 

With allowance for these approximations, we find that 
the matrix element (( ...)) in (14) has a &function singularity 
at P=Q. Therefore, we can approximately set P=Q in the 
denominator of Eq. (14) and in the electron wave function 
*Ti. Integrating over P  in Eq. (14) and, finally, setting 
Q=K (K is the asymptotic momentum of the scattered par- 
ticle in the final state), we obtain as a result a local approxi- 
mation of the integral operator (13): 
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where E ,  and ef' are the energy of the ejected electron and 
the binding energy of the residual target ion in the final state. 
Note that the matrix elements W , , ( R ) ,  which take into ac- 
count the indirect interaction of the resonant states a and a 
via the intermediate states of the distorted continuum, de- 
pend on the position of the scattered particle. In the limit 
R-w,  the distortion of the continuum by the field of the 
scattered particle becomes weaker, and the matrix elements 
W ,  do not depend on R.  

The decomposition of the matrix elements W,,  in (15)  
into A ,  and r , ,  corresponds to the decomposition of the 
energy denominator into real and imaginary parts. It follows 
from (15)  that the matrices A,, and Taw are Hermitian and 
the matrix W,,  is non-Hermitian, contributions to the non- 
Hermitian part of the matrix being made only by the open 
channels determined by the condition E j<  E,+ E f ,  where E~ 

is the energy of the residual target ion in the jth open decay 
channel (the total energy of the electron subsystem in chan- 
nel j is E5= E ~ +  k 2 / 2 ,  where k is the electron momentum in 
the distorted continuum). 

Ignoring quadratic terms, we linearize the kinetic energy 
operator in ( 1  I ) ,  

this being equivalent to the use of rectilinear trajectories R ( t )  
= p + v t  in the description of the motion of the scattered par- 
ticle. Here p  is the impact parameter, v = K / , u  is the velocity 
of the scattered particle in the final state, and the variable t  is 
the time of motion of the particle. 

With allowance for the approximations (15)  and (16) ,  the 
system of integrodifferential equations (11)  is transformed 
into a system of first-order ordinary differential equations: 

- 
where Eo,= E,,- E is the energy of the a th resonant state 
of the isolated atom without allowance for coupling to the 
continuum, relative to the binding energy of the residual tar- 
get ion. 

The resultant system of equations (17)  is, essentially, a 
system of tight-binding equations for the matrix elements of 
the resonance Green's function that describes the evolution 
in time of the system of interacting resonances. The interac- 
tion of the resonances is determined by the non-Hermitian 
complex matrix of potentials [ ~ , , ~ ( p , t )  1, where the complex 
interaction potential of the quasistationary resonant states a 

and a, ~ , , ( p , t ) = U , , ~ ( p , t ) +  W , , ( p , t ) ,  is the sum of the 
potential U ,  of the direct interaction of the resonances with 
each other in the field of the scattered particle and the poten- 
tial of the indirect localized interaction W , , = A , , r  
- ( i /2 )17 , ,  of the resonances via the distorted continuum, 
the latter containing a non-Hermitian part due to the coupling 
of the resonances to the open decay channels. 

In principle, the system of equations ( 1 7 )  can be solved 
numerically on a restricted basis of autoionization states. 
However, such an approach is not convenient because of the 
need for repeated solution of the differential equations (17)  
to determine the position and shape of the resonances and 
find their parameters. In many cases, it is physically more 
advantageous and justified to use the diagonalization 
method, which was first used in atomic physics in the prob- 
lem of resonant photoionization.21 The essence of this 
method consists of separating out diagonal part of the inter- 
action, u,,= S,,u,,, and ignoring the off-diagonal part. The 
effects introduced by the off-diagonal part of the interaction 
can then be investigated in the framework of perturbation 
theory. 

Making the phase transformation 

and separating out the diagonal part of the interaction, we 
represent the system of equations (17)  in the matrix form 

where 

is the total Hamiltonian of the system of interacting reso- 
nances, and is given by the sum of the diagonal matrix of the 
Hamiltonian of the system of noninteracting resonances, 

and the nondiagonal matrix of the interaction operator of the 
resonances with one another: 

F",p(t) =( 1 - G a p ) ~ a p ( t ) .  

Here 

is the time-dependent complex energy of the cvth resonant 
state (a quasistationary electron term), in which 
E , ( t )  = Eoa+ U , , ( t )  + A, , ( [ )  is the real energy of the reso- 
nance with allowance for the energy shift U , , ( t )  in the field 
of the scattered particle and the energy shift A,,(t) due to 
the interaction of the level with the distorted continuum. The 
total width T a ( t ) = X j r 2 h ( t )  of the resonance derives from 
the interaction with the open channels, and .9' is the identity 
matrix. To simplify the expressions, we do not specify the 
dependence on the impact parameter explicitly. 

By virtue of causality, 
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where 

It follows from causality that the operator for the evolution 
of the system in time satisfies the homogeneous equation and 
initial condition 

To zeroth order in the interaction, T'(t)=O, or, in the 
diagonalization approximation, the evolution operator of the 
system can be written in the explicit form 

S/,ap(t , t ' )= Sap exp - i  d rEca( r )  , is: ) 
since for T # #, the commutator [.%f0(r), B 0 ( 6 ) ]  vanishes. 
The diagonal operator (26) describes the independent evolu- 
tion in time of the system of noninteracting autoionization 
states. Allowance for the interaction of the resonance states 
with one another leads to nonvanishing off-diagonal matrix 
elements of the evolution operator Y and, accordingly, to a 
mixing of the different autoionization states during temporal 
evolution. As is shown in Refs. 22 and 23, allowance in the 
dipole approximation for Stark mixing of the two closely 
spaced autoionization states ( 2 ~ 2 ~ ) ' ~  and ( 2 p 2 ) ' ~  of the 
helium atom leads to an initial distortion of the angle and 
energy distributions of the autoionization electrons. In this 
paper, we restrict ourselves to the zeroth approximation in 
the interaction of the resonant states with one another; this 
interaction is negligible for sufficiently distant resonant 
states, for example, for the autoionization state (2s2) ' s  of 
the helium atom. 

3. RESONANT IONIZATION AMPLITUDE 

Let fai(tr)  be the complex amplitude for excitation of 
the a t h  autoionization state at time 1'. The excitation ampli- 
tudefai(tr) is determined by the t matrix of transitions of 
the system from the initial state ( i )  to the autoionization 
states b): 

Then the amplitude of the resonance transitions (5) in the 
diagonalization approximation (26) has the form 

-ij,:drEca(T))fai(t ').  

Here 

is the matrix element of the amplitude for decay of the a th 
autoionization state as a result of transition of the system to 
the final state I f )  at time t; the final-state wave function is 
lq$~) )=exp( -  i,uv2t)lFq$.-)). 

We note that the formation and decay of the autoioniza- 
tion states in (28) are not independent processes but are cor- 
related in time. In the theory of resonance reactions, one 
usually makes the hypothesis that the formation and decay of 
resonant states are independent, it being assumed that the 
mean lifetime rdec=r; ' is much greater than the effective 
interaction time of the colliding particles, during which the 
excitation of the states occurs. To obtain the amplitude (28) 
neglecting temporal correlation, we expand the excitation 
amplitude as a Fourier integral 

Then, with allowance for (30), the point of stationary phase, 
which makes the main contribution to the integral over t', is 
determined by e=Ea( r r ) .  In (30), we approximately set 
fa i (e)  =fai[Ea(tr  )] and obtain 

fai(tr)  =.fa;[Ea(tr)l6(t))r 

i.e., in the limit we have a Sfunction excitation of the auto- 
ionization state at tr=O. With such a Sfunction approxima- 
tion of the real excitation amplitude, the amplitude for the 
resonance transitions factorizes and simplifies to the form 

where 

In (31), we have explicitly separated out the significant de- 
pendence of the amplitude on the energy E, in the neighbor- 
hood of the autoionization resonances and on the scattering 
angle 0, of $he incident particle (Q, = M,u 8, , where M, is 
the mass of the incident particle). With allowance for (13), 
the cross section for resonant ionization can be integrated 
over energy E,  and scattering angle 0,. As a result, we ob- 
tain the following expression for the differential (with re- 
spect to the e l e c t ~ ~  ejection angle) yield of resonances: 

+ I: d ~ ~ a a r ( ~ ) ~ a i (  P ) A ~ / ~ ( P ) ,  
a+ a' 

(32) 

where the factor K,,,, which modifies the differential yield 
of the resonances, depends on the product of the decay am- 
plitudes of the resonant states a and a ' :  
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In deriving (32), we have set the lower limit of integration 
for the variable E, to -m, since the resonance width is much 
less than the resonance energy, and the integral over E ,  con- 
verges rapidly; in addition, in (33) k ,=  (2E,) 'I2, where E, is 
the energy of the unperturbed autoionization state. 

The first sum in (32) takes into account the contribution 
to the differential yield of the individual resonant states with- 
out allowance for their interference. The second sum over a 
and a' includes the interference contribution of the fairly 
closely spaced resonant states a and a'. The interference 
contribution of the isolated resonant states is negligible, 
since in this case 

contains a rapidly oscillating factor. The factor (33) governs 
the angular dependence of the differential yield, and the na- 
ture of this dependence is determined by the form of the 
final-state wave function in the matrix element (29) of the 
decay amplitude. Allowance for final-state interaction modi- 
fies the decay matrix element and leads accordingly to a 
distortion of the angular distributions (32) of the autoioniza- 
tion electrons. On the other hand, allowance for interaction 
in the resonant state changes the resonance width and energy 
and also affects the angular distributions (32). 

Consider the integrated yield of an isolated resonance, 
for example, the (2s2) ' s  resonance of the helium atom. We 
integrate the factor K,, over the electron ejection angle: 

where 

is the partial width of decay of the resonant state a to the 
final state f .  If the resonance can decay through several 
channels, (34) must be summed over all possible decay chan- 
nels of the resonant state. As a result, we find that the total 
width is ~ , . ~ r i = T , t ,  where r, is the total decay width of 
the resonant state a ,  and we have the integrated factor 
~',,(p) = I .  Thus, the integrated yield of the isolated reso- 
nance is equal to the excitation cross section of the resonant 
state a :  

We emphasize that to obtain this result it is important that we 
simultaneously take into account in an appropriate manner 
the interaction in the final state and in the resonant state. 

We now consider the contribution of the interference 
terns in (32) to the integrated yield. We integrate the factor 
K,,! over the electron ejection angle: 

where 

is the matrix element of the indirect interaction of the reso- 
I nant states a and a' via continuum states. Thus, K,,,  is 

proportional to the non-Hermitian part of the interaction po- 
tential resulting from the coupling of the resonant states to 
the open decay channels (15), the part of the interaction that 
we ignored in the diagonalization approximation. Therefore, 
remaining consistently in the framework of the diagonaliza- 
tion approximation, we must ignore the interference terms in 
(32), and the total integrated yield is equal to the total exci- 
tation cross section of the resonant states: 

We investigate in more detail the situation in which 
~Y;,(R) can be neglected. As wave function of the continu- 
ous spectrum, we take the final-state wave function used in 
the calculations of Refs. 10-12: 

Here cpf is the wave function of the residual ion, $LiJ(r2)(121) is 

the Coulomb wave function of the electron in the field of the 
residual ion, A is the operator of (anti)symmetrization with 
respect to the electron coordinates, 

are the distorting factors that take into account the Coulomb 
interaction in the final state between particles i and j, where 

is the Coulomb normalization factor, , F ,(a,c,z) is the con- 
fluent hypergeometric function, 

m i j ,  k i j ,  and r i j  are the reduced mass, relative momentum, 
and position vector for the pair of particles i and j, respec- 
tively, and Zi is the charge of particle i. Subscripts 1, 2, and 
3 denote the 'scattered particle, the ejected electron, and the 
residual ion, respectively. 

Let aLM and be the wave functions of two ener- 
getically closely spaced resonant states, for example, the 
( 2 ~ 2 ~ ) ' ~  and ( 2 p 2 ) ' ~  states of the helium atom. We take 
into account the fact that the electrons in a autoionization 
state are concentrated near the nucleus of the atom, and 
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therefore in the calculation of the decay matrix elements (29) 
we can in the distorting factors (37) set r23=0, i.e., r I2=-R,  
r13=R,  and rLM,I,rMr(R) takes the form 

r L M , L ' M ' ( R ) = c ~ ~ @ c - ) ( v 1 3  ,613)1' 

where C=elP is a phase factor, and FLO is the width of the 
unperturbed resonant state I L M ) .  Since the velocity of the 
residual ion in the tinal state is low, v3=0, it follows that 

where v: = v, - v is the electron velocity in the frame of the 
scattered particle, and 

t 1 3 = m , 3 ( v ~ + v 2 t ) ,  t12=m12(v~R-v:R).  

It follows from (38) that T L M , L ~ M ~ ( R ) = O  under conditions 
of weak interaction of the electron and the scattered particle, 
when the amplitude of the distorting factor satisfies 
I@(-)(v,,,[,,)l= 1. If we ignore the p dependence of 
r L M , L ' M r ( ~ ,  t) and set p=O, then @ ( - ) ( ~ , ~ , 5 ~ ~ )  does not de- 
pend on the azimuthal ejection angle, and 
rLM,L,M,(O,t)-&M~, i.e., the interaction of resonant states 
with different magnetic quantum numbers, including ones 
that belong to a single term, L=L1 ,  is negligible. 

4. WIDTH OF AUTOIONIZATION RESONANCES 

If the states of the distorted continuum that interacts with 
the discrete resonant states are described by the same wave 
functions as the final state (36), then the instantaneous value 
of the perturbed width of the resonance will be determined 
by the expression (38), in which it is necessary to set L =  L', 
M = M 1 , T L O  = rLrO = r O ,  C = l .  In theamplitude(31), the 
instantaneous width of the resonance is integrated with re- 
spect to the time over the interval (O,t), and therefore it is 
more convenient to work with the width of the resonance 
averaged over the interval (O,t), which is more directly re- 
lated to the physical characteristics of the decay process: 

where we have introduced the width distortion function 

Here cp,.(~,t) = O(T) - O(T- t) is a cutoff function, equal to I 
for ~ ~ ( 0 , t )  and O for ~et(0,t) ;  a13=2m13v2,  a 1 2  = ntI2(v:v 
- v:v). In limiting cases we have: As t+m, the measure of 
the set of directions in which S ( t , f l , ) f  l tends to zero, re- 
flecting the weakening of the distortion of the continuum 
states, and the perturbed width of the resonance tends to its 
unperturbed value To; in the limit t+O, the perturbation of 

the width is determined by the product of the squares of the 
moduli of the Coulomb normalization factors averaged over 
the electron ejection angle: 

Note that when we take into account only the phase distor- 
tions of the continuum states, in particular in the framework 
of the semiclassical eikonal approximation, $(t,Q,)=l, and 
the width of the resonance is unchanged. If we approximate 
the cutoff step function by an exponential function of the 
form cp,(~, t)  =exp(- d t ) ,  then S(t,fl,) can be expressed in 
terms of the Lauricella hypergeometric function of four vari- 
ables FL4) (Ref. 24): 

In the special case when the interaction of a pair of particles 
can be ignored, for example, the interaction of the scattered 
particle and the residual ion ( 7 ~ ~ ~ ~ 0 ) .  Fa4) simplifies to the 
Lauricella hypergeometric function of two variables 
~ ~ ~ ) ( l , i v , , ,  - i v,,; 1,1;iaI2t, - ia12t), which, in turn, can be 
expressed in terms of Gauss's hypergeometric function and 

We use the following two-dimensional integral representa- 
tion for the function Fa4) (Ref. 24): 

- t2) + a '3t) - tan- '[a 12t(t - t2) 

We expand the integrand in (44) in an asymptotic series up to 
terms of first order in ( a  ,,t)-l: 

Bearing in mind that F(v,X) = 1 - 2 vlX to first order in X- ' ,  
we approximately determine the width distortion function for 
all values o f t  in a form factorized in the pairwise interaction 
of particles: 
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Then the distorted width of the resonance is 

Note that for R=O (46) is identical to (41). We consider the 
asymptotic behavior of (46) in the limit RAW in the case of 
an S resonance. Since 

we interpolate F(v,X) with the rational function 

where 

With this interpolation, 

where we have introduced the new variable of integration 
y = 1 -cos(O,), and 0, is the electron ejection angle. Note that 
vI2(y) is a "slow" and XI2(y) = a 12(y)t a "fast" function of 
the variable of integration, since X12(y) contains the large 
parameter R = ut. At the same time, X,,(y) increases rapidly 
over the interval (0,2) fromXI2(0) = rn ,,((v:I - u:)R, where 
u: = u, - u, to Xl2(2)=2ml2(v+u,)R. If 2 ~ v I 2 ( y ) l > l ,  
then the slowly varying function a(v12(y)) can be approxi- 
mately set equal to T - I  for v12<0 and 2vI2 for vI2>0. With 
allowance for this approximation, the remaining integral in 
(47) can be calculated analytically.25 For example, in the case 
v12<0 in the limit R = ut+m we have 

where 

E,=m 12~:/2, E = m  1 3 ~ 2 / 2 .  It follows from (48) that the per- 
turbed part of the resonance width is proportional to the 
charge of the scattered particle, and decreases asymptotically 
with increasing distance as the Coulomb potential of the in- 
teraction of the scattered particle with the autoionization 
electron and the target residual ion. 

By virtue of the decay, the amplitude for occupation of 
the autoionization state decreases with the time as 

FIG. 1. Dependence on the internuclear separation R o f  the relative width 
W ( R )  of the (2s')'~ resonance of the helium atom decaying in the Cou- 
lomb field of scattered ions with different charges 2, and velocity u = 1.0. 
Curves 1-4 correspond to calculations with the charges Z , =  - 1 ,  1, 5, and 
10, respectively. 

Therefore, using Eq. (48), we can assess the effect of the 
distortion of the line width on the integrated yield of the 
autoionization electrons by means of the factor 

for u < u, . Here ~ = ( T o I E O ) ( Z l I ~ )  is the characteristic pa- 
rameter that determines the range in which width distortion 
may be important. 

5. DISCUSSION OF NUMERICAL RESULTS 

In Fig. 1, we present the results of calculations in accor- 
dance with Ref. 46 of the relative width W(R) = I?,,(R)/T, 
of the ( 2 s 2 ) ' s  resonance of the helium atom (E,= 1.222, 
where Eo  is the unperturbed resonance energy, and 
To=0.005) excited in a collision with ions possessing veloc- 
ity u = l and charge Z ,  of both signs and different magni- 
tudes, as a function of the internuclear separation R =  ut. In 
making the calculations, we ignored the interaction of the 
scattered ion with the residual ion. By virtue of Eqs. (41) and 
(48), the influence of the interaction of heavy particles can be 
significant only over a short time interval (O,A), where 
A-m,' (m ,,%I), modifying W(0) by a factor ~> . - , - ) (v~ , ) )~ .  It 
can be seen that with increasing charge 2, the influence of 
distortion of the resonance width by the Coulomb field of the 
scattered ion increases, and can be substantial at large 
Z,- 10. At the same time, W(R) varies monotonically with 
distance from the value (41) at R =O to 1 in accordance with 
(48) as R ~ c o .  The nature of the perturbation of the reso- 
nance width differs qualitatively depending on the sign of the 
charge Z ,  : the width of the resonance increases in the field of 
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FIG. 2. Dependence of the relative width W ( R )  of the autoionization state 
( 2 s ' ) ' ~  of the helium atom on the velocity of the scattered ion. The ion 
charge is Zl=5 .  Curves 1-4 correspond to calculations with the velocities 
u=0.5, 1.0, 1.5, and 2.0, respectively. 

a positive charge but decreases in the field of a negative 
charge. The increase (decrease) of the resonance width in the 
case of positive (negative) charge Z I  leads by virtue of (33) 
and (34) to a decrease (increase) in the differential and inte- 
grated resonance yields, and this compensates the increase 
(decrease) resulting from allowance for the final-state inter- 
action in such a way that the integrated yield of the reso- 
nance is unchanged when simultaneous allowance is made 
for interaction in the final state and in the resonant state. 
Note, however, that exact cancellation does not occur [if we 
take into account the approximation of the cutoff step func- 
tion by an exponential function in the derivation of the ex- 
pression (46)l. 

Figure 2 gives the results of calculations of W(R) for the 
( 2 s ' ) ' ~  resonance of the helium atom for different velocities 
of the scattered ion, v =0.5-2, and charge ZI=5.  It can be 
seen that with increasing collision velocity the effect of 
width distortion decreases monotonically. Moreover, the na- 
ture of this dependence does not change as the velocity u 
approaches v, = ( 2  Eo) ' I 2=  1.563, the velocity of the autoion- 
ization electron in the continuum. As a result of exact aver- 
aging of F(vI2 ,  a , ,  t )  over the electron ejection angle in 
(46), the singularity in the behavior of the integrand at u = u ,  
is completely smoothed. 

We made a similar calculation of the width of the 
( 2 s 2 ) ' s  resonance of the helium atom for a light scattered 
particle (electron) at velocities u =0.25, 0.5, 1.0 (Fig. 3). The 
light projectile particle is interesting in that the nature of the 
distortion of its resonance width is determined by the super- 
position of the interactions of the scattered particle with the 
residual ion and autoionization electron in the continuum, 
since in this case the mass parameters m 13z l and m ,,=0.5 
are comparable in magnitude. In the calculation, we did not 
allow for exchange between the scattered electron and the 
autoionization electron. It can be seen that the superposition 
of the interactions leads to more complicated behavior of the 

FIG. 3. Dependence of the relative width W ( R )  of the autoionization state 
(2s')' of the helium atom on the velocity of the scattered electron. Curves 
1-3 correspond to calculations with velocities u=0.25, 0.5, 1.0, respec- 
tively. 

width of the resonance as a function of the collision velocity. 
One can identify two qualitatively different kinematic veloc- 
ity ranges in which one of the pairs of particles in the con- 
tinuum dominates. At low velocities uC0.5, the attractive 
potential between the scattered electron and the residual ion 
dominates, and this leads to an increase in resonance width. 
At u=0.5, the interactions of the scattered electron with the 
residual ion and the autoionization electron cancel one an- 
other, and distorted the resonance width is weakly distorted. 
In contrast, at high velocities u>0.5 the repulsive potential 
between the scattered electron and the autoionization elec- 
tron dominates, and the resonance width decreases. 

With allowance for the distortion of the continuum state 
by the scattered particle, the width of the autoionization state 
acquires a dependence on the magnetic quantum number M. 
To determine the dependence of the resonance width on M ,  
we calculated WLM(R) for various values of M 
(W,,,=W,,-,) of the ( 2 p 2 ) ' ~  resonance (Eo=1.298, 
r0=0.00263) of the helium atom excited in a collision with 
ions with charge Z1=5 and velocity u = 1.0 (Fig. 4). The 
calculations revealed different dependences of WLM(R) on 
the distance: whereas WLsM=o(R) decreases smoothly with 
increasing R,  W ,,,,,(R) tends more rapidly to 1 the larger 
the value of M. Moreover, for R B I  we have 
IAWL,M=~(R)I%IAWL,M+O(R)I~ where AW,,M(R) 
= WL,,(R) - I .  For a rough estimate of the L,M depen- 
dence of AWL,,(R), we can extract the slowly varying 
spherical harmonic Y L M ( ' R e )  at the point 0,=0 in front of 
the integral in (46). As a result, we obtain 
AW,,,(R)= aM0(2Lf  I)AW,=,(R) for R 9 l .  

6. CONCLUSIONS 

In this paper, we have developed a theory of the resonant 
ionization of an atom by charged particles with allowance for 
interaction in the final and resonant states. We have obtained 
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FIG. 4. Dependence of W ( R )  on the magnetic quantum number M of the 
autoionization state ( 2 p 2 ) 1 ~  of the helium atom. The charge and velocity of 
the scattered ion are 2 , = 5  and u = 1.0. Curves 1-3 correspond to M =0, 1, 
2, respectively. 

a system of equations for the temporal evolution operator of 
the system of interacting resonant states that can be explicitly 
solved in the diagonalization approximation. In the diagonal- 
ization approximation, the amplitudes for occupation of the 
autoionization states evolve in time independently of one 
another. The amplitude of resonant ionization is determined 
with neglect of temporal correlations between the processes 
of formation and decay of the autoionization states. We have 
shown that the total cross section for resonant ionization or 
the integrated yield of autoionization electrons calculated 
with such an amplitude are determined by the total probabil- 
ity for excitation of the resonant states, and do not depend on 
the effects of the interaction in the final state and resonant 
state. 

We have investigated influence of distortion of the con- 
tinuum states by the scattered particle on the width r of a 
quasistationary state. We have shown that T, which has been 
regarded in all previous theories of the post-collision inter- 
action as a free parameter, becomes, when the interaction in 
the resonant state is taken into account, a function of the 
position of the scattered particle that can differ appreciably 
from the width of the autoionization state in the isolated 
atom for small separations between the atom and the scat- 
tered particle. We have obtained a simple analytic expression 
for the time-dependent width rLM(t) of the autoionization 
resonance. We have established the characteristic depen- 
dences of I',,(t) on the velocity and charge of the scattered 

particle and also on the orbital angular momentum L and the 
magnetic quantum number M of the resonance. 

Our theoretical description makes it possible to calculate 
the energy and angular distributions of autoionization elec- 
trons with allowance for interaction in the final and resonant 
states. It is of considerable interest to study the effects of the 
joint influence of interaction in the final and resonant states 
on the angle and energy spectra of the autoionization elec- 
trons. In addition, it is necessary to develop the theory be- 
yond the diagonal approximation. This will make it possible 
to describe consistently the excitation and decay of closely 
spaced interfering autoionization states. 

This work was done with financial support of the Rus- 
sian Foundation for Fundamental Research (Grant No. 93- 
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