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It is shown in the isotropic case that the transition to a complex representation makes it possible 
to impart a fairly simple and geometrically visualizable form to the Dykhne method [A. M. 
Dykhne, Sov. Phys. JETP 32, 348 (1971)l. Under such an approach Dykhne's symmetry 
transformation [A. M. Dykhne, Sov. Phys. JETP 32, 348 (1971)l corresponds to a piecewise 
linear mapping in the complex conductivity plane. The mappings to which the concrete 
transformations used in several papers [A. M. Dykhne, Sov. Phys. JETP 32, 348 (1971); B. 
I. Shklovskii, Sov. Phys. JETP 45, 152 (1977); B. Ya. Balagurov, Sov. Phys. Solid State 20, 1922 
(1978); B. Ya. Balagurov, Sov. Phys. JETP 54, 355 (1981); A. M. Dykhne and I. M. Ruzin, 
Phys. Rev. B 50, 2369 (1994); B. Ya. Balagurov, Sov. Phys. JETP 55, 774 (1982); B. Ya. 
Balagurov, Sov. Phys. JETP 58, 331 (1983)l correspond are determined. Linear and 
quadratic effective characteristics, viz., the mean values of the electric field strength and its 
square in each of the components, are also considered. General expressions which are valid for an 
arbitrary concentration and in any magnetic field H are found for these parameters. The 
behavior of the quadratic characteristics (as a function of H) in the critical region is investigated 
for systems with a metal-insulator phase transition. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

The galvanomagnetic properties of two-dimensional 
two-component systems have been examined in numerous 
studies, among which we note the following. ~ ~ k h n e '  (see 
also Refs. 2-4) found the effective conductivity tensor 3, in 
an arbitrary magnetic field H in an explicit form for thc 
special case of equal component concentrations (a randomly 
inhomogeneous system with the critical composition). One 
of the important consequences of the results in Ref. 1 is the 
prediction of the existence of an anomalous conductivity. 
Two other effects' are directly related to this phenomenon: 
saturation of the effective Hall parameter and a linear 
( H) increase in the field and current fluctuations as 
H + m .  A general expression relating the diagonal (ohmic) 
component a,, and the Hall component a,, of 6, , which is 
valid for arbitrary concentrations and any H, was also ob- 
tained in Ref. 1. The use of this relation made it possible for 
~ h k l o v s k i ~ ~  (see also Ref. 3) to find the behavior of the ef- 
fective Hall coefficient in a weak magnetic field over the 
entire range of variation of the concentration. Dykhne's gen- 
eral relation has also found application in the theory of the 
quantum Hall effect (see Ref. 5). 

The isomorphism (mutual one-to-one correspondence) 
of the problems of the galvanomagnetic properties (in any 
H) and conductivity (when H=O) of arbitrary two- 
dimensional two-component systems was established in 
Refs. 6 and 7. The relations found in 6 and 7 made it possible 
to express the components of 6, in terms of the galvanomag- 
netic characteristics of the components and in terms of the 
dimensionless effective electrical conductivity of the system 
f (when H=O). If f as a function of two arguments (the 
concentration p and the ratio between the conductivities of 
the components h = a2 / a , )  is known over their entire range 

of variation for a certain isotropic system, the expressions for 
a,, and a,, obtained in Refs. 6 and 7 give a complete solu- 
tion of the problem of the galvanomagnetic properties of 
such a two-dimensional system. For example, the form of the 
function f = f ( p , h )  is known in the context of the similarity 
hypothesis;899 this makes it possible to investigate the galva- 
nomagnetic properties of two-dimensional systems with a 
metal-insulator phase transition over the entire critical re- 
gion (see Refs. 6 and 7). Naturally, all the basic results in 
Refs. 1-4 can be obtained as consequences of the general 
expressions for a,, and a,, found in Refs. 6 and 7. 

It should be noted, however, that the methods employed 
in Refs. 1-7 have a highly formal character. This circum- 
stance together with the fairly cumbersome mathematical op- 
erations make it difficult to understand the transformations 
which can be performed. Therefore, there is an urgent need 
to simplify the presentation of the basic method (the symme- 
try transformation) in Refs. 1-7 and to make it as visualiz- 
able as is possible. In addition, some other effective charac- 
teristics, for example, the mean square of the electric field 
strength (and current) in each of the components, were not 
considered in Refs. 1-7. At the same time, as was shown in 
Refs. 10-12, the study of mean-square values provides use- 
ful information on the properties of a system already when 
H=O. Thus, the investigation of these and some other effec- 
tive characteristics in the presence of a magnetic field would 
certainly be of interest. 

In this paper it is shown (for isotropic systems) that the 
symmetry-transformation methodIw7 takes on a fairly simple 
and geometrically visualizable form when we move over to 
the complex representation. The relationship between the 
complex fields in the original and "primed" systems takes on 
the form of a linear scalar relation. At the same time, the 
corresponding relationship for the conductivity is given by a 
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piecewise linear transfolnlation in the complex plane. Under 
such an approach two points c1 and t2 on the complex plane 
of the conductivity 5 correspond to a two-component system. 
In this case Dykhne's transformation' corresponds to a piece- 
wise linear mapping of 5, and c2 to two other points c; and 
[;, which correspond to the primed system. Selection of the 
mutual or transposed system as the latter (see Sec. 2) leads to 
the relation obtained by ~ ~ k h n e '  (see also Refs. 2-7). If the 
null system (with a scalar conductivity, see Sec. 3) is taken 
as the primed system, we arrive at the isomorphism relations 
found in Refs. 6 and 7. 

Several questions not previously discussed are also con- 
sidered in this paper. For example, the linear effective char- 
acteristics of fields and currents, which are similar to those 
studied in Ref. 10 when H= 0, are investigated. In particular, 
both the absolute values and the directions of some vector 
quantities, viz., the mean values of the electric field strength 
E in each of the components, are found in explicit form for a 
system with the critical composition ( p =  112). However, the 
main emphasis in this paper is placed on the study of the 
effective characteristic y+, i.e., the mean value of the square 
of the field strength E in the ith component. General expres- 
sions, which are valid at arbitrary concentrations in any H, 
are found for $i ( i =  1 ,  2) ,  and their explicit form is deter- 
mined for p = 112. The dependence of cCli on H in the critical 
region is ascertained for systems with a metal-insulator 
phase transition. Such an investigation, together with the re- 
sults of the study of the critical behavior of the conductivity 
(see Ref. 6), makes it possible, in particular, to ascertain the 
region where the effects predicted by ~ ~ k h n e '  exist. One 
more quadratic effective characteristic, which describes the 
distribution of the Joule heat evolved in a sample among the 
components when a current flows through it, is considered in 
this paper. 

2. SYMMETRY TRANSFORMATION 

1. We consider an isotropic inhomogeneous two- 
dimensional system in a transverse magnetic field H. In this 
case Ohm's law has the form 

where ax is the ohmic component and a, is the Hall com- 
ponent of the conductivity tensor &(r) ,  E is the electric field 
strength, and j is the current density. As Dykhne noted,' in 
the two-dimensional case the transformation of the field E 
and the current j to the "primed" system 

with the coordinate-independent coefficients a ,  b, c, and d 
leaves the equations of the constant current unchanged. The 
conductivity tensors in the original [ & ( r ) ]  and primed 
[ b t ( r ) ]  systems are related by the expression 

The effective conductivity tensors &, and 6: are related to 
one another by a similar expression. 

In the isotropic case under consideration it is convenient 
to introduce the complex quantities 

Then the analog of the transformation (2) is 

We write Ohm's law in its complex representation in the 
form 

so that instead of (4) we obtain 

Thus, under the symmetry transformation defined by (2) and 
(6) the complex "conductivities" of the original ( 5 )  and 
primed ( 5 ' )  systems are related to one another by the equal- 
ity (9). This relation can be regarded as a piecewise linear 
mapping of the complex variable 5 with the real coefficients 
b, c, and d. Different values can be assigned to the three real 
parameters (conductivities) of the primed system by appro- 
priately adjusting these coefficients. 

The preceding arguments are valid for two-dimensional 
isotropic systems with an arbitrary dependence of &(r) on 
the coordinates. Let us now consider a two-component me- 
dium, i.e., a system for which the conductivity tensor &(r) 
takes the constant values b1 and G2 in the first and second 
components, respectively. In this case the complex conduc- 
tivity c1 = - aal + i a x l  corresponds to the first component, 
and l2 = - ua2 + iux2 corresponds to the second component. 
Therefore, in the complex 5 plane the isotropic two- 
component system is represented by the two points 5' and 
52. 

2. Let the primed system differ from the original system 
by an interchange of the conductivities of the components: 
&; = G2 and &;= S1. These two tensor equalities lead to 
four conditions (all = a , 2 ,  a: = aa2, mi2 = axl , and 
u;=a,) for the three coefficients b, c, and d in the trans- 
formation (9), so that the system of equations is redefined. 
However, the corresponding system of equations can be 
solved, if the sign of the magnetic field is also reversed in the 
primed system (see Ref. I). Thus, as the mutual system we 
take the primed system for which 

where the superscript T denotes transposition. In the com- 
plex representation the relations (10) correspond to the 
equalities [ ;  = - 4'; and [;= - cr ,  where the asterisk de- 
notes complex conjugation. A geometric interpretation of the 
transformation from the original system to the mutual system 
is given in Fig. 1. 

Using (9), from the correspondence between the points 
of the original and mutual systems we find 
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1 O 
FIG. I .  Transformation to the mutual system: 51 = - 5;. 4';= - 4': 

FIG. 3. Transformation to the null system: 5; = i A ,  , {;= i A 2 .  

d r =  ux2(a:l+u:l)- ux1(u~2+u:2) 
u x l  ua2 - 'Jx2fla 1 

(1 1) 

(We marked the transformation coefficients with a prime; tive characteristics 6, and 6: we find the general Dykhne 
when comparisons are made with Ref. 4, the difference in relation (see Ref. 1, as well as Refs. 3 and 4): 
notation must be taken into account, i.e., b' and d '  must be (u~,+u~,b"-2ux,-d"=0 
interchanged). The substitution of (11)- into the equality re- 

(14) 

lating 6, and 2: [of form (4) or (9)] leads to the reciprocity with the coefficients b" and d" from (13). The results (13) 
relations (see Ref. 1, as well as Refs. 3 and 4). and (14) were also recently published in Ref. 5. 

We now take the system which we call the transposed 
system as the primed system. This system differs from the 
original system only with respect to the sign of the magnetic 3. ISOMORPHISM RELATIONS 

field (see Ref. 1): 
~ I - G T  61 -&T. 

1- 1, 2 - 2  (12) 

In the complex representation the relations (12) correspond 
to the equalities 5; = - ST and [;= - 5;. Thus, as is seen 
from Fig. 2, the transition to the transformed system is not 
(when H # 0)  identical. We note that the system of equations 
for the coefficients can be solved in this case, too. Using (9), 
from the correspondence between the points we find 

c"=l ,  b"=2 u a l -  Ua2 

(~:1+~%,)-(~:2+u:2) '  

dl1= 2 ~ a l ( ~ ~ 2 + ~ ~ 2 > - ~ a ~ ( ~ ~ l + ( + ~ l )  

(a:l+~:l)-(u:2+~:2) 
(13) 

We note that the transition to the so-call null system687 is 
simplest (from the standpoint of solvability of the system of 
equations for the transformation coefficients). The null sys- 
tem is nearly identical to the original system when H= 0, but 
it has the altered conductivities A1  and A, for the compo- 
nents. Therefore, in this case 

where i is a diagonal unit matrix. In the complex represen- 
tation relations (15) correspond to the equalities 51 = iAl and 
5;= iA2. The transition to the null system in the complex 
plane is depicted graphically in Fig. 3. 

Using (9), we find the transformation coefficients from 
the correspondence between the points (compare with Refs. 
6 and 7): 

(In this case the coefficients are marked with a double prime; 
when comparisons are made with Ref. 4, the following dif- b=BIAI, B=(ua l -  u ~ ~ ) ~ ( u ~ ~ - A u , ~ ) ,  

ferences in notation must be taken into account: bl'-+2d, ~ = ( U , ~ + U , ~ B ) I A ~ ,  d = - u a l + u x I B .  
dV+2b.) From the equality like (4) or (9) relating the effec- 

(16) 

The parameter X = X 2  /Al is determined from the quadratic 
equation 

Let the conductivity of the first component ul  in the original 
system for H= O be greater than the conductivity of the sec- 
ond component: a, >a2. Then, in order for the limiting 
transition A -+ cr2 / a l  to occur when H+O, the following 
root should be chosen (see Refs. 6 and 7) 

2 112 2 FIG. 2. Transformation to the transposed system: 5; = - 5: , [;= - 4'; . - [ ( a x ~ - ~ r 2 ) 2 + ( a u l - a ~ 2 )  1 ) (17) 
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The parameter A I , as well as the coefficient a ,  remain un- 
determined. 

We use Ei= Ei(r) and E:= E:(r) to denote the electric 
field strength in the ith component ( i=  1, 2) of the original 
and null systems, respectively. Then from (2), (6), and (16) 
we find the relationship between Ei with E: (compare with 
Ref. 6): 

Let the electric field strength (as a function of the coordi- 
nates) in the original system be known for H=O and an 
arbitrary ratio between the conductivities of the components 
h = u2 / a l  . Then, after the replacement h+A with A from 
(17), we find the field in the null system, and using (18), we 
determine the electric field strength E(r) in the original sys- 
tem for H # 0. Relations (2), (4), and (16)-(18) establish the 
isomorphisms in the problems concerning the conductivity 
(when H=O) of an isotropic two-dimensional two- 
component system and its galvanomagnetic properties (see 
Refs. 6 and 7). 

We assume that the effective conductivity a, of the 
original system is known when H=O: 

where p is the concentration (the fraction of the area occu- 
pied) of the first component. The effective conductivity of 
the null system a, = A f(p,A) is thereby also known. Then, 
from the relation like (4) or (9) relating &, and &: we find 
the expressions for the components of the effective conduc- 
tivity tensor (see Refs. 6 and 7): 

where 

In (20)-(22) f(p,X) should be taken with A from (17) as the 
function f. 

For a randomly inhomogeneous two-component two- 
dimensional system with the critical composition (p=  112) 
we have1' 

In this case it follows from (20)-(22) for p =  112 that1 (see 
also Refs. 3, 4, and 6) 

one of the most interesting consequences of (24) is the modi- 
fication of the dependence of u-,, on H in a strong magnetic 
field (the anomalous conductivity1). It is not difficult to see 
that if a H - ~  and uai cc. H -  as H+m, we would have 

u,~, H- in a strong magnetic field. As was noted in Ref. 6 
(see also Sec. 6 of this paper), when p f 112, the anomalous 

conductivity can exist only in a narrow vicinity of the critical 
concentration and in a finite range of magnetic fields. In this 
case, the "normal" asymptote a,, H - ~  is restored at suffi- 
ciently large H. 

4. LINEAR EFFECTIVE CHARACTERISTICS 

Let us find the mean values of the electric field strength 
in each of the components (E)(') and (E ) (~ ) .  Here 

is the mean over the volume of the ith component Vi; the 
mean over the entire volume V is given by the sum of the 
(( . . . ))('). (In the two-dimensional case V and Vi should be 
construed as the corresponding areas.) According to these 
definitions we have the identity 

Next, the effective conductivity tensor is determined using 
the relation (j)= &,(E), whence follows the equality 

&,(E)(')+&,(E)(~)= ke(E). (27) 

From (26) and (27) we find the expressions sought 

Relations (28), which are valid in both the two-dimensional 
and three-dimensional cases, transform into the equations 
obtained in Ref. 11 when H j O .  

In the two-dimensional case the expressions (28) take an 
especially simple form in the complex representation. If the 
complex electric field strength E as defined in (5) is intro- 
duced, instead of (28) we obtain 

The complex conductivity 5 is dcfined in (7). The expres- 
sions (20)-(22) should be taken for the components of 6, in 
Eqs. (28) and (29) in the two-dimensional case under con- 
sideration. 

Calculating ((E)( '))~ = (E)(')(E +)(') for a two- 
dimensional system with the critical composition (p= 1/2), 
from (29) and (24) we find 

Thus, the absolute values of the means of the fields at the 
critical concentration (p = 112) satisfy the relation 

I(E)(')[ = (u.,~ luXl)  " 2 [ ( ~ ) ( 2 ) [ .  (31) 

When HAO, the results obtained by ~ ~ k h n e l '  follow from 
(30) and (3 1). 

Raising both sides of the equality (26) to the second 
power and taking into account (30), we find the cosine of the 
angle 0 between the vectors (E)(') and ( E ) ( ~ )  for p =  112 
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When H+O, we have U , , = U ~ = ( ~ ~ ~ ~ ) " ~  (see Ref. lo), 
and it follows from (32) that $=O, i.e., when H=O, (E)(') 
and ( E ) ( ~ '  are parallel. In a strong magnetic field we have 
u,,; " H - ~  and u,, H-I (an anomalous conductivity), so 
that 13-~12. Thus, when p =  112 and HAW, the vectors 
(E)( ' ) and ( E ) ( ~ )  are perpendicular. 

Moving (E)(') to the right-hand side of (26), squaring 
the equality obtained, and taking into account (30), we find 
the cosine of the angle BI  between the vectors (E)(') and 
(E) for p = 112: 

We can find the cosine of the angle 82 between the vectors 
( E ) ( ~ )  and (E) in a similar manner; the expression for 
cos& follows from (33) when the following interchange is 
made: ax tr ux2. 

When H= 0, it follows from (33) and the expression for 
~ 0 ~ 6 2  that e l=  02=0, and thus the vectors (E)('), (E ) (~ ) ,  
and (E) are collinear. In a strong magnetic field we can use 
the model expressions (58) from Sec. 6 (for /Il = P2= j?) to 
obtain the following relations when H - t w :  

For a system with components having sharply different con- 
ductivities (u2<a l ) ,  it follows from (34) that O l = d 2  and 
02=0. Thus, in this case (E)(') is perpendicular to (E), and 
(E)(') is parallel to (E). We note that it follows from (31) in 
the case under consideration that (E)(') is small compared 
with (E)(~)--(E) at all H. This circumstance is associated 
with the "displacement" of the electric field from the high- 
conductivity component when the point of the metal- 
insulator phase transition is approached (see, for example, 
Ref. 11). 

The mean current density in the kth component (j)(k) 
can be treated in a similar manner. It is not difficult to see 
that these characteristics can be expressed in terms of the 
mean fields. In the real and complex representations we 
have, respectively, 

For the square of (j)(k) we find 

When p =  112, it follows from (36) and (31) that the absolute 
values of the mean currents are related by the expression 

where px=q,l(q:+a;) is the diagonal component of the 
resistivity tensor b= 3- '. 

5. QUADRATIC EFFECTIVE CHARACTERISTICS 

As in the case of H=O (see Refs. 11 and 12), there is 
considerable interest in the investigation of the mean squares 
of the electric field strength in each of the components 

fi i= (E~) ( ' ) I ( (E ) )~ .  (38) 

Here (( . . . ))(') has the same meaning as in (25). We note 
that the fluctuations of the electric field strength (A;) and 
the current density (A;) (which were studied in Refs. 1 and 
10 for systems with the critical composition) 

can be expressed in terms of the i+bi : 

From the known identity (see, for example, Ref. 10) 

it follows that ax, can be expressed in terms of the 1+4~ : 

The equalities (40) and (42) are valid for isotropic 
n-component systems with n 1. 

We note, finally, that the Joule heat Qi evolved during 1 
s per unit volume of the ith component is also expressed in 
terms of the Gi : 

The total heat Q evolved during 1 s per unit volume of the 
sample is given by the sum of the Qi from i =  1 to i=n .  It is 
also convenient to introduce the dimensionless characteristic 
q i ,  i.e., the fraction of the Joule heat evolved in the ith 
component. For qi= Qi /Q from (43) we obtain 

where by definition 

Substituting expression (44) into equality (45) transforms it 
with consideration of (42) into an identity. 

The functions $i for a two-dimensional two-component 
system can be found in a general form using the isomor- 
phism relations (see Sec. 3). According to Ref. 11, when 
H= 0, the fi; (i = 1, 2) are expressed in terms of the function 
f ,  so that for the null system we have 

&= f - ~ f ' ,  I&= f ' ,  f'-af(p,h)ldA. (46) 

On the other hand, when H # 0, the $; can be expressed in 
terms of the I,@ using relations (18). As a result we obtain 
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with A from (17) and q,, from (20). We note that the sub- 
stitution of (47) into equality (42) turns it into an identity. 

For the mean-square values of the current density we 
obtain, respectively 

where, as above, p, = q,/(qt+ a:) is the diagonal compo- 
nent of ;=&-I.  Finally, for qi  from (44) and (47) we find 

When the expressions (49) are substituted into the equality 
(45), it is satisfied identically. 

At the critical concentration p = p c =  112 from (47) and 
(23) we obtain 

where uxe(pc )  was defined in (24).  When p =  112, the sub- 
stitution of (50) into (40) gives 

which is identical with accuracy to the notation to the ex- 
pression obtained in Ref. 3 by another method. In strong 
magnetic fields, Dykhne's result1 follows from (51) under the 
appropriate simplifying assumptions. 

Since we have a,; o: H-' and (for p = 112) axe o: H -  ' as 
H+w,  it follows from (50) that in this case the i+bi increase 
without bound: +i cc H. Accordingly, H and the fluctuations 
A: and A; increase linearly, in agreement with Ref. 1. These 
effects are clearly related directly to the anomalous conduc- 
tivity. Therefore, when p # 112, the linear increase in Qi (as 
well as in A: and A;) at large H ,  like the anomalous con- 
ductivity (see Ref. 6) ,  occurs only in a small vicinity of the 
critical concentration and in a finite range of magnetic fields. 
The dependence of the rl,; on H in the critical region is con- 
sidered in greater detail in Sec. 6 .  

It follows from (50) and (43) along with (44) that, as in 
the case of H= 0 (see Ref. lo) ,  the evolution of Joule heat 
for p =  112 and arbitrary H # 0 is identical in each of the 
components, i.e., Q = Q 2  , so that q = q 2  = 112. However, 
the equality Q ,  = Q2 holds only for systems with the critical 
composition. In fact, equating Q l  and Q 2 ,  from (43) and 
(47) we obtain the differential equation 2X(r?fldX)= f. The 
solution of this equation (with the obvious condition f =  1 
when A = 1 ) is f = A ' I 2 .  Since f is a monotonic function of 
X, in accordance with (23) the equality Q l  = Q 2  is possible 
only when p = p c =  112. 

We note, finally, that a quadratic effective characteristic 
can also be associated with the Hall component a,, . We use 
E(")(r)  to denote the electric field strength in the medium 
determined for an assigned value of (E(')), where the super- 

script v indicates that the mean field is directed along the v 
axis. It can be shown that in the two-dimensional case cr,, 
can be represented in the form 

where 

cP = ( [E( ,~) ,~()f)] , ) ( ' ) / [ (~("))  , (E(' ' ) ) ] ,  (53) 

is the quadratic effective characteristic mentioned above. In 
(53) ( a , b ) x = a , b y - a y b , ,  and (( . . . ))(') has the same 
meaning as in (25). Expressions (52) and (53),  which are 
valid for arbitrary H, coincide in form with the analogous 
expressions in the case of a weak magnetic field ( H - 0 )  
(compare Ref. I I ) .  

The equalities (18)  make it possible to express p in 
terms of the corresponding function cpO(p ,h)  for the null 
system: 

- 1  0 c p = ( a x , l ~ x l ) f  cp 9 (54) 

where f = f ( p , X ) .  According to Ref. 1 1 ,  for cpO we have 

c p 0 ( p , h ) = ( f 2 - ~ 2 ) l ( 1  - A ~ ) ,  (55) 

so that with consideration of (20) we obtain 

c P = ~ x l ( f 2 - ~ 2 ) ~ ~  (56) 

with D from (22). The substitution of (56) into (52) leads to 
expression (21). 

6. CRITICAL REGION 

The general equations (47) make it possible to thor- 
oughly examine the behavior of the in the vicinity of the 
critical concentration pc= 112 using the similarity 
hypothesis.8.9 Let the conductivities of the components in a 
zero magnetic field differ sharply ( h  = a* l a l  9 1 ), so that 
there is a pronounced metal-insulator phase transition in the 
system when H=O. According to the ideas underlying the 
similarity hypothesis, when h e  1 and I rl G 1 [where 
r = ( p - p c ) l p c ] ,  for f ( p , h )  we (in the notation of 
Refs. 1 1  and 12): 

for r>O, Ao< T< 1 

f = 7 - ' { ~ ~ + ~ ~ ( h / 7 ' / ~ ) +  . . .), (574  

for 1 71 < A0 

for T<O, Ao91r1e1 

Here A,= hS" is the size of the smearing-out regiong when 
H=O; the critical indices t ,  s ,  and q are related by the 
expression9 t l s  = t+  q .  According to Ref. 10 [see also Eq. 
(23) from Sec. 31, in a two-dimensional randomly inhomo- 
geneous system s = 112, so that q = t, and the coefficient a ,  
from (57b) equals unity. 

Below we shall use the same model expressions as in 
Ref. 6 for a,; and aUi: 
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Here ui is the conductivity when H=O; Pi p;H is the di- 
mensionless magnetic field; p; is the mobility of the carriers. 
To simplify the treatment we also assume that P I  = / I 2  = P .  
Now, when h = u2/uI< 1, we have &2<c?1 for all H, so that 
(17) and (20) give 

Then the relations (47) take the form 

where f =  f ( p , A )  and f' =d f ldA .  
According to (59), X is small at all H, so that the ex- 

pressions (57) with the replacement h-+A can be used for 
f ( p  ,A) when 1 T I  4 1. In this case for the size of the smearing- 
out region A, (when H # 0) we obtain6 

where s= 112 and t -  1, 3. Thus, AH is highly dependent on 
the magnetic field? the size of the smearing-out region de- 
creasing with increasing H, tending to zero as H--+m. There- 
fore, if the system is found within the smearing-out region 
( 1  T I  4 A.  , T # 0)  when H= 0, a situation in which 171 %-A, 
arises, i.e., the system "leaves" this region, in sufficiently 
large fields H. As was noted in Ref. 6, just this circumstance 
restricts the range where the anomalous conductivity exists 
on the high-magnetic-field side. Similar restrictions also ap- 
pear for Gi.  

Let us investigate the dependence of @, and t,h2 on H in 
the critical region. We consider the highly interesting situa- 
tion in which the system is found within the smearing-out 
region (1 T I  4 A 0 ,  r # 0)  when H= 0. As follows from (61), 
when p > p ,  ( ~ > 0 ) ,  in this case four ranges of magnetic 
fields can be demarcated in the dependence of $i on H: 

Here h = u2 /ul  , and the corresponding values of q,, are 
presented along with @ ,  and f i2  (compare with Ref. 6). The 
numerical multipliers of order unity were omitted in (63c) 
and (63d). 

Expressions (63a) and (63b) correspond to the case in 
which the system is found within the smearing-out region 
( r< A1,) ,  SO that f ( p ,  A )  = A Il2 and the expressions (60) and 
(61) take the following form when ~ < h " ~ r - '  

In the range of magnetic fields 1 < P <  h1I2r-' the anomalous 
conductivity appears, and G I  and 1/,2 increase linearly 
( H) with increasing H. Equations (63c) and (63d) corre- 
spond to the situation in which r + A H ,  the system has al- 
ready "left" the smearing-out region, and expression (57a) 
with the replacement h - + A  is valid for f ( p , X ) .  In this case, 
omitting the numerical multipliers of order unity, for 
~ % = h " ~ r - '  from (60) and (61) we obtain 

In this range of magnetic fields the anomalous conductivity 
and the effects associated with it are absent. The case of 
T<O can be treated in a similar manner. 

According to (63)-(65) for all P< T - I ,  and, 
conversely, cjll%- $2 in the range P%- T-', so that the values 
of and are comparable when P-  T-'.  We note that the 
inequality is perfectly natural for the system under 
consideration ( h  = a2 l a l  4 1 ) near p, , since the electric 
field is displaced from the high-conductivity (first) compo- 
nent (see, for example, Ref. 11, as well as Sec. 4 in this 
communication). However, as was noted in Ref. 6, in the 
ultrastrong magnetic fields P%- T-' insulating inclusions ex- 
hibit some properties of ideal conductors, so that the electric 
field is concentrated mainly in the first component even in 
this case: %- G2.  

When p 4  h1I2r-', for q and q2  from (44) and (64) we 
obtain 

In the range p<h'l2r-' the system is found within the 
smearing-out region ( r G A , ) ,  SO that, as was noted above, 
Q - Q 2 -  Q12, whence follows (66). Accordingly, in the 
range P%-h1I2r-' from (44) and (65) we find 

In this range of magnetic fields the system is found outside 
the smearing-out region ( T S A , ) ,  and Joule heat is evolved 
mainly in the first component. 

Thus, along with a,, and q,, the study of @;[as well as 
p, see (53)] as functions of p and H is of unquestionable 
interest. Such a complex investigation (for example, by nu- 
merical methods) of galvanomagnetic phenomena in two- 
component media should provide diverse information on the 
properties of such systems. In the two-dimensional case there 
is considerable interest, in particular, in the study of the ef- 
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fects predicted in Ref. 1, viz., the anomalous conductivity, 
the saturation of the effective Hall parameter, and the linear 
( H) increase in the fluctuations of the electric field strength 
and the current density. It should, however, be noted that, 
according to the results in Ref. 6 and the present article, all 
these effects take place in a finite (when p  # p, )  range of 
magnetic fields and in a narrow vicinity of the critical point, 
and they exhibit asymptotic behavior (as H + w )  at the iso- 
lated point p  = p, = 112. 
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sian Fund for Fundamental Research (Project 95-02-03727) 
and the International Scientific-Technical Center (Moscow, 
proiect 015 of March 31, 1994). 

'A. M. Dykhne, Zh. ~ k s p .  Teor. Fiz. 59,641 (1970) [Sov. Phys. JETP 32, 
348 (1971)l. 

'B. I. Shklovskii, Zh. ~ k s p .  Teor. Fiz. 72,288 (1977) [Sov. Phys. JETP 45, 
152 (1977)l. 

'B. Ya. Balagurov, Fiz. Tverd. Tcla (Leningrad) 20, 3332 (1978) [Sov. 
Phys. Solid State 20, 1922 (1978)l. 

4 ~ .  Ya. Balagurov, Zh. ~ k s p .  Teor. Fiz. 81, 665 (1981) [Sov. Phys. JETP 
54, 355 (198 I)]. 

5 ~ .  M. Dykhne and 1. M. Ruzin, Phys. Rev. B 50,2369 (1994). 
6 ~ .  Ya. Bnlagurov, Zh. ~ k s p .  Teor. Fiz. 82, 1333 (1982) [Sov. Phys. JETP 
55, 774 (1982)l. 

'8. Ya. Balagurov, Zh. kksp. Teor. Fiz. 85, 568 (1983) [Sov. Phys. JETP 
58, 33 1 (1983)l. 

'B. I. Shklovskii and A. L. ~ f r o s ,  Usp. Fiz. Nauk 117, 401 (1975) [Sov. 
Phys. Usp. 18, 845 (1975)l. 

9 ~ .  L. ~ f r o s  and B. 1. Shklovski, Phys. Status Solidi B 76, 475 (1976). 
''A. M. Dykhne, Zh. ~ k s p .  Teor. Fiz. 59, 110 (1970) [Sov. Phys. JEW 32, 

63 (1971)l. 
"B. Ya. Balagurov, Zh. ~ k s ~ .  Teor. Fiz. 93, 1888 (1987) [Sov. Phys. JETP 

66, 1079 (1987)l. 
"B. Ya. Balagurov and V. A. Kashin, Zh. ~ k s p .  Teor. Fiz. 106, 811 (1994) 

[JEW 79, 445 (1994)l. 

Translated by P. Shelnitz 

1207 JETP 81 (6), December 1995 B. Ya. Balagurov 1207 


