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Equations of nonlocal electrodynamics which describe Abrikosov-Josephson vortex structures in 
an SNSNS system of tunnel junctions are derived. Both exact and approximate solutions 
characterizing both the coherent individual vortices and the coherent multivortex structures 
appearing in the two Josephson junctions as a result of the interaction of their magnetic 
fields, which penetrate the superconductor separating the junctions, are obtained. Such a picture 
is obtained for both static and moving vortices. The current-voltage characteristics of the 
Josephson junctions corresponding to multivortex dynamics is considered in the strong- 
dissipation limit. The influence of the finite thickness of the outer superconducting 
electrodes on the size of the interacting coherent vortices and on their velocity in the nondissipative 
limit is revealed. The influence of the thickness of the superconducting layers on the spectra 
of low-amplitude short-wavelength electromagnetic waves propagating in Josephson superlattices 
is studied. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The vortices in layered Josephson structures have at- 
tracted the attention of researchers for a long time.lW3 In 
recent years technological advances have made it possible to 
fabricate tunnel structures with a large number of layers.4 
This led to broadening of the research front in this area. For 
example, two- and three-layer structures were used in the 
experimental study described in Ref. 5. It was established 
there, in particular, that the velocity of a Josephson vortex 
can be determined by the number of tunnel junctions. Split- 
ting of the spectrum of Swihart waves was also discovered. 
This effect was treated theoretically in Ref. 6. Subsequent 
experiments7 displayed agreement with the theory in Ref. 6. 
An interesting experimental investigation of the phenomenon 
of vortex synchronization in two-layer Josephson structures 
was conducted in Refs. 8 and 9. The number of experimental 
investigations of magnetic vortices in layered Josephson tun- 
nel structures will certainly increase (compare Ref. 10). At 
the same time, it must be stressed that all the papers just 
cited were devoted to the investigation of ordinary Josephson 
vortices, for which the characteristic scale of their spatial 
variation is much greater than A, i.e., the London penetration 
depth of a magnetic field into the superconductor. 

In the case of high-temperature superconductors, a situ- 
ation in which the characteristic spatial scale of a vortex is 
smaller than the London length is possible owing to the large 
value of the parameter of the Ginzburg-Landau theory 
K =  A/c (where 6 is the correlation length)." It is also pos- 
sible when there is a moderate magnetic field in a tunnel 
junction." The electrodynamics of a Josephson tunnel junc- 
tion under such conditions was developed in Refs. 11 and 
13-15. A detailed discussion of the conditions under which 
nonlocal electrodynamics must be used instead of the ordi- 
nary Josephson electrodynamics based on the sine-Gordon 
equation was given in Refs. 11, 12, and 16. The vortex states 
appearing in nonlocal electrodynamics, unlike ordinary Jo- 
sephson vortices, correspond to an array of magnetic-field 

force lines which are not pressed against the tunnel junction. 
Their structure is similar to the structure of the force lines of 
Abrikosov vortices, although, unlike ordinary Abrikosov vor- 
tices, they do not have a singular core. Therefore, the term 
Abrikosov-Josephson vortices can be used for the new vor- 
tex structures. 

Some basic aspects of nonlocal Josephson electrodynam- 
ics as applied to layered tunnel structures were given in Ref. 
17, where general relations were derived, the spectrum of 
generalized Swihart waves was obtained, an approach for 
constructing weakly nonlinear vortex structures was formu- 
lated, and the nonlinear one-dimensional picture of vortices 
in a structure with an infinite number of superconducting 
layers whose thicknesses are small compared with the Lon- 
don length was considered. 

In this communication a structure containing two tunnel 
junctions (compare Ref. 5) is considered in the main text of 
the article. Equations for the phase differences of the Cooper 
pairs p1 and p2 in each of the tunnel layers are obtained for 
such a structure. A set of exact solutions is presented. In the 
case of strong coupling of the vortices, it is shown how the 
magnetic interaction causes changes in their spatial scale and 
their velocity. Coherent excitation of a perturbation in one 
tunnel junction by a vortex in the other junction is demon- 
strated in the case of weak coupling of the vortex structures. 
It is shown that solitary vortices excite a bisoliton perturba- 
tion. A description of the excitation of vortices undergoing 
cophasal motion in different tunnel junctions is given in the 
nondissipative limit. 

A discussion of the current-voltage characteristic of a 
moving dissipative vortex structure in closely positioned tun- 
nel junctions, including annular Josephson junctions, is 
given. 

The influence of the thickness of the superconducting 
electrodes forming the outer layers of a system of two tunnel 
junctions separated by a superconductor layer is considered. 
The variation of the dimensions of a static vortex as a func- 
tion of the electrode thickness is established. The laws gov- 
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eming the influence of their thickness on the size of a trav- 
eling 47r kink and its velocity are ascertained. The dispersion 
equation for electromagnetic waves (generalized Swihart 
waves) in a layered superlattice consisting of an arbitrary 
number of tunnel junctions is derived using nonlocal Joseph- 
son electrodynamics. The spectra of generalized Swihart 
waves propagating in two coupled flat Josephson junctions 
and in a mirror-symmetric structure consisting of three Jo- 
sephson junctions are found. It is shown that the group and 
phase velocities of short-wavelength electromagnetic waves 
depend strongly on the thickness of the superconducting lay- 
ers. Unlike the case of the local theory? it is found that the 
coupling of the waves due to the mutual influence of the 
neighboring tunnel junctions weakens significantly as the 
wave vector increases. It is shown in the appendix that the 
properties of Abrikosov-Josephson vortices in a superlattice 
consisting of N identical, closely arranged tunnel junctions 
are determined by the scale N1, which is a multiple of I ,  i.e., 
the scale of a vortex in one junction. 

2. BASIC EQUATIONS 

Let us consider a tunnel structure consisting of three 
superconductors separated by two flat nonsuperconducting 
layers. We assume that the nonsuperconducting layers oc- 
cupy regions of space in the ranges - L - 2d <x< - L and 
L<x<L+2d2 and that Cooper pairs tunnel between them. 
We base the theory of vortices in such tunnel junctions on 
the equations of the nonlocal Josephson electrodynamics of 
layered superconducting structures presented in Ref. 17. 

According to Ref. 17, for the phase differences of the 
wave functions cp, and the magnetic fields on the boundaries 
of the Josephson junctions in the structure under study we 
have the following system of equations: 

Here the following notations are used: x = - L - d 
x2 = L + d2,  p is a two-dimensional vector in the plane of the 
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junction; j,,,, is the critical Josephson current density in the 
nth tunnel junction; p,, = 47ra,, l ~ , ,  ; E,, and a,, are the di- 
electric constant of the nonsuperconducting nth layer; 
wjn= (167rleld,j,,lh~~,)"~ is the Josephson frequency; A,, 
is the London length in the nth superconductor; e,, = (1,0,0) 
is a unit vector along the x axis; L2=L; 

Neglecting the weak variation of the magnetic field in tunnel 
junctions, from Eqs. (2.2) and (2.3) we find 

The magnetic fields H,(p,r) characterizing the interaction 
between the tunnel junctions are determined by the integrals 
of the phase differences of the wave functions cp,(p,t) in 
accordance with the relations 

where the kernels Q,,I (p) have the form 

Finally, substituting the magnetic field (2.6) into (2.1), we 
arrive at a system of two coupled integrodifferential equa- 
tions for the phase differences 

(2.1 1) 

where A:,,= hc2/87rlel j,,,. 
According to (2.1 I ) ,  the distribution of the phase differ- 

ences is highly dependent on the form of the kemel of the 
integral operator Q,,l(p). These kernels have an especially 
simple form in cases in which the structure is prepared from 
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superconductors with identical London lengths, i.e., 
A,=A2=A3=A, and the thicknesses of the tunnel junctions 
can be neglected. Then 

~ ( k ) = 2 A ~ ( l  +k2A2)[+coth(21 Jw)], (2.12) 

and the kernels (2.7)-(2.9) equal 

x exp - :~-2] 

The system of equations (2.11) together with the kernels 
(2.7)-(2.10) or (2.12)-(2.14) make it possible to investigate 
vortex formations which are two-dimensional in the planes 
of Josephson junctions. To study simpler Josephson vortices, 
which vary only in the z direction, only the derivatives with 
respect to z should be retained in Eqs. (2.1 l), and the kernels 
(2.7)-(2.10) should be replaced by their one-dimensional 
analogs, which are obtained from (2.7)-(2.10) by substitut- 
ing kz for kp and J d k l 2 ~  for J d ~ ( 2 n ) ~ .  In the case of 
superconductors with identical London lengths, in the one- 
dimensional theory instead of (2.13) and (2.14) we have 

where KO is McDonald's function. 

3. STATIONARY ABRIKOSOV-JOSEPHSON VORTICES 

To establish the new properties of Abrikosov-Josephson 
vortex structures caused by the mutual influence of tunnel 
junctions, let us focus on the one-dimensional case, in which 
q ,  and q2  depend only on the coordinate z. Just such a case 
offers information on the properties of Abrikosov-Josephson 
vortices in an individual tunnel junction, which is needed for 
a comparison with the new results presented. For simplicity, 
we shall assume below that A ,  = A, = A 3  = A are identical in 
all the superconductor layers. We shall also assume that the 
critical currents in the tunnel junctions are identical 
( j c l  = jc2= jc , and, therefore, Ao ,=  Ao2= Ao). We neglect the 
thickness of the tunnel junctions. Then in the stationary case, 
according to (2.1 I), (2.15), and (2.16), we have 

where ~ = x ~ / ~ A ~ = A ~ I A  and Xi is the Josephson length. 
We next assume that the thickness of a superconducting 

layer L is small compared with the London length, and we 
consider the consequences of the system of equations (3.1) 
and (3.2) in the case of vortices with a characteristic scale of 
spatial variation which is much smaller than the London 
length. We call such a case the strongly nonlocal limit and 
use the following asymptotic expansions of the kernels: 

Then the system of equations (3.1) and (3.2) takes the form 

If L is sufficiently large, the coupling between these two 
equations can be neglected. We then obtain an equation 
which describes vortices in an individual tunnel junction 

dz' d 
7 c p ( z r )  = sindz) .  

Conversely, if L is small compared with the characteristic 
spatial scale of variation of the vortex, the system of equa- 
tions (3.5) and (3.6) takes the form 

dz' d 
- - [ q l ( z ' ) + ~ 2 ( z ' ) ] = s i n q l ( z ) ,  (3.8) 

?r --m Z'  - Z  dz' 

dz' d I F  - -[q,(zr)+ q2(zf)1=sinq2(z). (3.9) 
?r -- Z '  -2 dz' 

An obvious solution of this system of two equations is 
q ,(z) = q2(z) = #(z), where #(z) obeys the equation 

2 dz' d 
#(zf) = sin$(z). 

The difference between Eqs. (3.10) and (3.7) is confined to 
the doubling of the coefficient on the left-hand side of Eq. 
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(3.10). Therefore, for example, in the case of a solitary 
Abrikosov-Josephson vortex Eq. (3.10) gives 

which is distinguished from the corresponding solution of 
Eq. (3.7) (Ref. 11) 

by a twofold increase in the scale of spatial variation of the 
vortex. 

In the case of a stationary train of Abrikosov-Josephson 
vortices with a nonzero mean magnetic field 

where ~#~=ficllel=2.05X low7 0e/cm2 is the magnetic flux 
quantum a-d LH characterizes the periodicity of the vortex 
structure, Eq. (3.10) gives 

The difference between this expression and the correspond- 
ing solution of Eq. (3.7) (Ref. 16) 

is similar to the case of (3.11). 
We now turn to the limit of large L%l, in which the 

terms containing L on the left-hand sides of Eqs. (3.5) and 
(3.6) can be assumed to be small. Then we can consider the 
coherent perturbation which appears under the action of the 
vortex in the first tunnel junction 

in the other junction. For a small perturbation cpz(z) we can 
write the following equation: 

dz' d 

The solution of this equation can be written in quadratures 

where 

is an exponential integral. However, it is clear that the sec- 
ond integral term on the left-hand side of Eq. (3.17) is rela- 
tively small when LBI. Therefore, it can be asserted with 
high accuracy that the vortex (3.16) in the first junction is 
accompanied by the bisoliton perturbation 

in the other junction. 
In analogy to the treatment just presented for the case of 

one solitary vortex [the 271- kink (3.16)] in the tirst junction, 
we can consider the case of the train of vortices (3.15) in the 
first junction. According to Eq. (3.6), at sufficiently large 
L B l  the following cophased perturbation then appears in the 
other junction: 

Thus, comparatively simple limiting equations describing 
static coherent vortex structures which exhibit cophasal be- 
havior in two tunnel junctions separated by a superconduct- 
ing layer have been derived in this section. 

4. NONDlSSlPATlVE TRAVELING ABRIKOSOV-JOSEPHSON 
VORTICES 

In this section we shall discuss consequences of the 
theory which describe the interaction of vortices in different 
tunnel junctions in cases in which such an interaction is re- 
alized for nonstationary traveling vortices. In the process we 
shall bear in mind that in the nondissipative case,') for an 
individual isolated Josephson junction in the strongly nonlo- 
cal limit, in which the phase difference between the wave 
functions of the Cooper pairs cp is described by the equation 

d2 
wr21cp(~,t)+ sin cp(z,t) ' at 

there is a known solution corresponding to a 47r kinkt4,'' 

z-vt 
cp(z,t) = 4 arctan- 

1 ' 

moving with a velocity v = l o j ,  and there is a known solu- 
tion corresponding to a periodic structure of Abrikosov- 
Josephson vortices16 

1oj+u z-vt 

moving with a velocity given by the expression 
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According to Eqs. (3.5) and (3.6), the system of equa- 
tions describing the dynamics of vortices in two interacting 
tunnel junctions with the neglect of dissipation in the 
strongly nonlocal limit has the following form 

Here it is assumed that the Josephson frequencies in the two 
tunnel junctions are identical. 

For vortices traveling with a constant velocity v, where 

cp~,z(z,~)=rp~,~(E), t=z -v t ,  (4.7) 

the system of equations (4.6) and (4.5) has the form 

In the limit L 9 1  these equations take the form 

Accordingly, we have the following solution, which corre- 
sponds to cophasa l4~  kinks 

z-vt 
r p ~ ( ~ - v t ) = r p ~ ( ~ - v t ) = 4 a r c t a n -  21 (4.1 1) 

traveling in two tunnel junctions with the velocity 

The interaction of the vortices in two closely positioned 
identical tunnel junctions led to doubling of the characteristic 
scale of variation of each  IT kink and a twofold increase in 
its velocity (4.12). 

If the distance between the tunnel junctions is compara- 
tively large ( h >  L>1), in an approximation we have 

and for the weak vortex coherently induced in the second 
tunnel junction by the   IT kink (4.13), we have the following 
equation: 

Bearing in mind the smallness of 1 in comparison to L, from 
(4.14) we obtain the simple approximate solution 

which describes a bisoliton excitation traveling in the second 
tunnel junction, which is coherently induced by the   IT kink 
traveling in the first junction. 

Let us now turn to the case of a traveling periodic struc- 
ture of Abrikosov-Josephson vortices. In this case Eqs. 
(4.10) have the following solution instead of the structure 
(4.3) for a single tunnel junction: 

z-vt 
=4arcta{J2tan-1, 21wj-v 2LH (4.16) 

where, in contrast to (4.4), the velocity of the traveling peri- 
odic train of Abrikosov-Josephson vortices is given by the 
relation 

Thus, when the distance between the tunnel junctions is 
small, the interaction of vortices in different junctions results 
in significant modification of both the velocity of the vortices 
and the scale of their spatial variation. 

If the distance between the tunnel junctions is great and 
if we assume in an approximation that rp,(z,t)= rp(z,t) in 
one of the junctions, where rp is given by (4.3) and (4.4), we 
have the following equation for rp2(z,t)= rp2(5): 

- 
21v 5 

sin - 
LH LH 

2 L 
X sinh - - v cos - . 

L H LH I-' 
If 1 < 2 L e  L,, , from this expression we obtain 
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1 5  
cp2(5) = - - sin - (4.19) 

LH LH 

The smallness of the vortex perturbation (4.19) is stipulated 
by the large value of 2LH 11. 

If both 1 and LH are small compared with the distance 
between the tunnel junctions, the perturbation in the second 
tunnel junction is given, according to Eq. (4.18), by the ex- 
pression 

The relations obtained in this section characterize simple co- 
herent couplings of traveling vortex structures in two Joseph- 
son junctions caused by a magnetic field penetrating through 
the superconductor separating the junctions. 

5. DISSIPATIVE ABRIKOSOV-JOSEPHSON VORTEX 
STRUCTURES 

Numerous exact solutions of the equation of the nonlocal 
Josephson electrodynamics of an isolated tunnel junction that 
describe vortices under conditions under which dissipation is 
quite great are presently known.2) The corresponding equa- 
tion for the phase difference between the wave functions of 
Cooper pairs which describes small-scale structures of 
Abrikosov-Josephson vortices has the form 

d 
p~:~-cp(z,t)+ sin cp(z,t)+i 

J dr 

Here W?/P= j,~,(2lellh),  and i = jl j, , where j is the cur- 
rent density and R, is the resistance per unit area of the 
tunnel junction. We compare the expressions obtained below 
which describe Abrikosov-Josephson vortices modified by 
their interaction in two Josephson junctions with some 
known solutions of Eq. (5.1) for Abrikosov-Josephson vor- 
tices in an isolated junction. We, first of all, write down the 
solution of Eq. (5.1) describing a traveling solitary vortex (a 
2 71- kink):18 

cp(z,t)= - 8 + ~ + 2  arctan ( Z ~ V r m ) ,  - (5.2) 

where 

8= arcsin i, u = l o ; ~ - ' i / m .  (5.3) 

In addition, a train of traveling dissipative Abrikosov- 
Josephson vortices in one tunnel junction is described by the 
expression 

I tan[(z- ut)/2LH] 
cp(z,t)= - 8+ 7r+2 arctan 

tanh( al2) 

where 

In the case of two Josephson tunnel junctions discussed be- 
low, the dissipative small-scale Abrikosov-Josephson vorti- 
ces are described by the system of equations 

P a 
i +  - -cp2(z,t)+ sin cp2(z,r) 

W; dl 

z r - z  d + (z' - z ) 2 + 4 ~ ~  - azl PI(Z'.f)]. 

Here it is assumed that the resistances of the junctions are 
identical. For vortices traveling with a constant velocity v, 
the dependence on the coordinate z and the time r is de- 
scribed by the variable (=z- vt[compare (4.7)]. Accord- 
ingly, Eqs. (5.8) and (5.9) give 

In the limit of closely arranged tunnel junctions, where 
L 6 1, these equations have the form 

The solution of these equations describing 27r kinks moving 
synchronously in two layers has the folm 
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q1(5)=(Q2(5)= - 0+77+2 arctan 
21 

where 

O= arcsini, v = 2 l o ~ ~ - ' i l ~ .  (5.14) 

The synchronized vortices in two tunnel junctions described 
by (5.13) have a doubled size in comparison to a vortex in an 
isolated tunnel junction at the same value of the current i, 
and their velocity is also doubled. 

For trains of traveling Abrikosov-Josephson vortices 
moving synchronously in two Josephson junctions, Eqs. 
(5.12) have the solutions ( P I =  q2= ( ~ ~ ( 8 ) .  where (~(5) is 
given by (5.4). Here the parameters 6, a, and v are de- 
scribed by the expressions 

which are distinguished from (5.5)-(5.7) by the replacement 
of 1 by 21. 

Let us now dwell on the current-voltage characteristic of 
two tunnel junctions in which periodic trains of dissipative 
traveling Abrikosov-Josephson vortices move synchro- 
nously. For the value of the electric potential averaged over 
the period of a train we have (compare Ref. 18) 

where v is given by (5.17). Therefore, for the dependence of 
the voltage on the dimensionless current i = jlj, we obtain 

This equation can be written in the form of the dependence 
of the current density on the voltage 

Eq. (5.20) gives3) 

which corresponds to the ordinary Ohm's law when 

In the limit 

it follows from (5.20) that 

In the case of 4 l 2 4 ~ ; ,  Eq. (5.25) gives 

At small voltages (see 5.24) this corresponds to a decrease in 
the resistance of the two tunnel junctions with moving trains 
of Abrikosov-Josephson vortices by a factor of 21/LH in 
comparison to the ohmic resistance. 

The linear increase in the current according to the law 
(5.26) ceases upon attainment of a voltage V-2lj,R, ILH, 
at which the current density approaches the critical value. If 
214LH, the current density subsequently varies slowly in 
the range of voltages up to V- jcRs . At larger voltages the 
variation of the current approximates an ohmic law. 

We use (5.19) to describe the current-voltage character- 
istic of a structure having the form of a ring. We assume that 
the radius of such a ring is much greater than the London 
length and the distance L between two distributed Josephson 
junctions. Accordingly, we use Eqs. (5.10)-(5.11) for an ap- 
proximate description of the Abrikosov-Josephson vortices 
in such a structure (compare Refs. 24 and 25). If it is as- 
sumed that R=mLH in the solution of (5.4) and (5.15)- 
(5.17), it will describe the picture of a set of cophasal vorti- 
ces traveling along two annular tunnel junctions, which, for 
example, approximate m single Abrikosov-Josephson vorti- 
ces when the value of L is large. According to Eq. (5.19), in 
this case the current-voltage characteristic can be written in 
the form 

Figure 1 presents the dependence of the current on the 
voltage averaged around the ring when l/R=0.1. The di- 
mensionless current i = j l  jc is plotted along the vertical axis, 
and VIR,jc is plotted along the horizontal axis. The dashed 
straight line corresponds to Ohm's law V= jR, . Curves 1,  2, 
and 3 correspond to ni= 1, 2, and 3, respectively, i.e., to the 
cases of one, two, and three vortices in the annular structure. 
It is seen from Fig. 1 that the current increases sharply with 
increasing voltage when VI R, jc< m 11 R. The increase subse- 
quently slows, and when VIR,jCP2mlIR the dependence of 
the current on the voltage is described by the approximate 
law 19-22 
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FIG. 1. Dependence of the current on the voltage averaged around the ring 
in the case of two closely arranged annular Josephson junctions for 
IIR = 0.1 and m = 1, 2, 3. where rn=RIL, . 

j l jc= J1 +(VIR J,)~,  (5.29) 

which transforms into Ohm's law when VSR,jc. Plots of 
the dependence of the current on the voltage for m = 1 and 
several values of 1IR are presented in Fig. 2. According to 
Fig. 2, an increase in the ratio 11R results in the formation of 
a smoother current-voltage characteristic. 

6. VORTICES IN STRUCTURES OF FINITE THICKNESS 

In an experiment a layered structure of Josephson junc- 
tions has a finite thickness. In this section we shall follow the 
work of Alfimov and ~ o ~ k o v "  and turn to a study of the 
properties of vortices in distributed Josephson junctions, in 
which the outer superconducting layers (the electrodes) have 
a finite thickness. In contrast to Ref. 27, we shall focus on 
the case of two tunnel junctions. In addition, we shall estab- 
lish the relationship to the treatment in Ref. 26. Let us, first 
of all, examine how the finite thickness of the outer super- 
conductors influences the equations for the phase differences 
of the wave functions under the condition that there is a 

FIG. 2. Current-voltage characteristic of two closely arranged annular Jo- 
sephson junctions for R=L, ,  and three values of IIR: 1 )  0.01; 2)  0.05; 3) 
0.1. 

magnetic field outside the structure. In this case, neglecting 
the thicknesses of the nonsuperconducting layers, in accor- 
dance with the general rules in Ref. 17 for determining the 
magnetic fields in tunnel junctions we have the system of 
equations [compare (2.2) and (2.3)]: 

( dp' ( &$exp[ik(p- p r )1{ -a2 (k )~2(~ ' . t )  

where H, is the magnetic field at the boundaries of the lay- 
ered structure. It was assumed in Eqs. (6.1) and (6.2) that the 
thicknesses of the superconducting electrodes are equal to 
L and L3, respectively, and that the thickness of the super- 
conducting layer between the tunnel junctions is equal to 
L2. Accordingly, H1 and Hz are the magnetic fields in the 
first and second tunnel junctions. Treating (6.1) and (6.2) as 
a system, we note that when the thickness of the inner su- 
perconducting layer is equal to zero, in which case 
Hl(p,t)=H2(p,t)=H(p,t) and b2(k) -a2(k)=0, the sum- 
mation of Eqs. (6.1) and (6.2) gives an equation which de- 
scribes a single Josephson junction between superconductors 
of finite thickness 

where q(p,t) = cp,(p,t)+ cp2(p,t) is the phase difference of 
the single Josephson junction formed in the limiting transi- 
tion. In the special case of a uniform external magnetic field 
Hp(p,t)= H,(t), Eq. (6.3) is a natural generalization of the 
one-dimensional equation for the magnetic field obtained in 
Ref. 26 under conditions under which the magnetic field var- 
ies in two directions in the plane of the tunnel junction. 

The solution of the system of integral equations (6.1) 
and (6.2) has the form [compare (2.6)] 
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Here the kernels of the integral operators are described by 
the expressions 

where we used the notation 

Equations (6.4)-(6.10) are distinguished from the Eqs. 
(2.6)-(2.10), which describe an unbound system of two Jo- 
sephson junctions, first, by the appearance of the additional 
term stipulated by the magnetic field outside the structure in 
(6.4) and, second, by the changes in the form of the kernels 
Qnnl(p). NOW the Qnnl(p) contain the dependence on the 
thickness of the outer superconductors. Plugging the mag- 
netic field (6.4) into the equation for the phase difference 
(2.1), we find 

Unlike (2.11), these equations contain the new kernels 
Qnnl(p) of the integral operators and the source of phase 
differences created by the nonuniformity of the magnetic 
field outside the structure. The system of equations (6.11) 
makes it possible to discuss the excitation of vortices by an 
external magnetic field, as well as to investigate Abrikosov- 
Josephson vortices with a magnetic field outside the layered 
structure itself. In the case of a uniform magnetic field out- 
side the structure, in which H, (p , t )=k( t ) ,  the source of 
phase differences in (6.11) vanishes (see also Ref. 22). 

If the phase differences and the magnetic field 
&= (OJI, ,0) are nonuniform only in the direction of the z 
axis, Eqs. (6.1 1) take the form 

where the kernels QfInl and Q,, are described by the rela- 
tions (6.5)-(6.10), in which kp should be replaced by kz and 
Jdkt(2-1~)~ should be replaced by Jdk12r. Let us examine 
Eqs. (6.12) in the case in which the superconductors have the 
identical London lengths An= A and the critical current den- 
sities in the Josephson junctions are equal to j, . 

In the static limit and in the case of one tunnel junction, 
the system of equations (6.12) transforms into the equation 
obtained in Ref. 27. We note that the nonstationary treatment 
used here corresponds to a quasimagnetostatic approach. We 
are interested in vortices having dimensions smaller than the 
London length. In addition, we assume that the thickness of 
the inner superconductor L2=L is much smaller than both 
the dimensions of a vortex and the thicknesses of the outer 
superconductors, which we assume are equal to 
L = L3 = LB . Then, focusing on the stationary distribution 
of the phase differences in a layered structure with a uniform 
external magnetic field, from (6.12) we have 

1 
sin q l (z )=  -? 4LB -, dzf S ~ * - ~ [ L ( Z ~ - Z ) ] [ ~ ; ( Z ~ )  4 L ~  

1 
sin q2(z)= -? 4~~ -, dzf ~ i n h - ~ [ ~ ( z ' - z ) ]  ~ L B  

Using the result in Ref. 28, which was obtained in the theory 
of dislocations (see also Ref. 27). we can write the cophasal 
solution of the system of equations (6.13) and (6.14) 

where the spatial scale D> 4LB is found from the equation 

When LB*l, the solution consisting of (6.15) and (6.16) 
transforms into (3.1 I), which was found in the third section 
for unrestricted outer superconductors. Conversely, when 
1%- LB , from (6.16) we have 

~ = 2 r & < 2 r l ,  (6.17) 

which describes the decrease in the size of a vortex in a 
structure of small thickness. We also note that the solution 
consisting of (6.15) and (6.16) is distinguished from the so- 
lution found in Ref. 27 for a single Josephson junction by the 
replacement of 1 by the larger value 21. 

Now let us examine the one-dimensional nonstationary 
synchronized distribution of the phase differences in a sys- 
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ten1 of two closely positioned nondissipative junctions 
formed by identical superconductors of tinite thickness. 
Here, for the functions cpl(z - u t )  = q2(z - v t )  = cp([), 
where (= z- ur, we have the equation 

v 
-2 cpt1(5) + sin ~ ( 5 )  = 

The integral equation (6.18) has a solution of the traveling 
471. kink type 

with a spatial scale D and a velocity v , which depends on the 
thickness LB of the outer superconductors (electrodes) in ac- 
cordance with the relations 

The dependences described by (6.20) and (6.21) of the spa- 
tial scale D and the vortex velocity v on the thickness of the 
superconductors 2LB are shown in Fig. 3. If LB+l, Eqs. 
(6.19)-(6.21) describe a 47r kink (4.11) traveling with the 
velocity v = 210j (4.12). Conversely, when 1% LB , from 
(6.20) and (6.21) we find 

D = 2 ~l ' l4~Y, (6.22) 

v=2wj&. (6.23) 

Thus, as the thickness of the superconductors serving as elec- 
trodes decreases, the size of the vortex and its velocity also 

FIG. 3. Dependence of the spatial scale D and the velocity v of a traveling 
4 w  kink on the thickness of the outer superconductors (electrodes). 

decrease. A solution like (6.19)-(6.21) is also valid for a 
single Josephson junction consisting of superconductors of 
finite thickness, if the scale 1 is reduced by a factor of 2 in 
Eq. (6.20). 

7. GENERALIZED SWIHART WAVES 

The electromagnetic waves in Nb-(Al/AIOx-Nb)n struc- 
tures consisting of two (n = 2) or three (n = 3) Josephson 
junctions were investigated experimentally in a recent study: 
and a description of the experimental data was given in the 
context of the local Josephson electrodynamics of layered 
structures. In view of the interest in the investigation of lin- 
ear waves in multilayer Josephson structures and the new 
possibilities for preparing the in this section we 
shall discuss small-amplitude electromagnetic waves (gener- 
alized Swihart waves) under conditions under which nonlo- 
cality effects are significant. Applying the basic equations of 
the nonlocal electrodynamics of Josephson super lattice^'^ to 
linear waves of the form cp,exp(-iwt+ikp) in a structure of 
N tunnel junctions, we obtain the following dispersion equa- 
tions: 

where we used the notations Bll(k)=bn(k) +bn+  l(k)+2dt, - (7.3) 

2 - 1  
Equation (7.1) transforms into the equation obtained in the 

~ ~ , ( k ) = ~ n ( k ) - k ~ ~ i n ~ ; n ( ~ ~ + i ~ ~ z w - ~ j t t )  (7.2) local theory? if the a,,(k) and b,,(k) are replaced by the 
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a,,(O) and b,,(O), i.e., a transition to local electrodynamics 
occurs at wave numbers much smaller than the inverse Lon- 
don lengths kA,,-=3 1.  

Let us first consider the dispersion equation (7.1) in the 
case of two arbitrary Josephson junctions (N= 2). Then, ne- 
glecting the weak dissipation of the waves (P,,=O), we find 

Here the characteristic frequencies of the electromagnetic 
waves w,(k) have the form 

where Qi(k) and Qn(k) are the Fourier components of the 
kernels of the integral equations for the phase differences of 
the wave functions of the Cooper pairs, 

The dispersion law for electromagnetic waves takes an espe- 
cially simple form in the case of a mirror-symmetric struc- 
ture of two flat junctions, in which the critical currents j,, , 
the dielectric constants e n ,  and the thicknesses d, of the 
nonsuperconducting layers, as well as the London lengths 
and the thicknesses of the outer superconductors are equal: 
j c l= jc2 ,  e l = e 2 ,  d l = d 2 ,  X1=A3=A, L1=L3=LB. Then 
Wjn=mj r Aon=Ao, Bl(k)=B2(k>r Ql(k)=Qz(k), and 
from (7.4)-(7.7) we obtain 

where B2(k) and a2(k) are described by (7.3), (2.4), and 
(2.5). Here the amplitudes of the waves obey the following 
relations: cp, = q2  for w + and (ol = - q2 for w - . According 
to (7.4) and (7.8), the modification of the dispersion laws in 
the individual junctions is specified by the coupling param- 
eter a2(k) (2.4), which characterizes the mutual influence of 
the magnetic fields in the neighboring junctions. We recall 
that in the local theory7 the coupling of the waves was speci- 
fied by the constant ~ ~ ( 0 ) .  Now the coupling parameter 
az(k) is a monotonically decreasing function of the wave 
vector k. In particular, in the short-wavelength region, where 
kA2%l and 2kL2%1, the coupling parameter is exponen- 
tially small: a2(k)=2kA2exp(-2kL2). The weakening of the 
interaction of the waves is especially significant when the 
thickness of the superconducting layer separating the junc- 
tions is greater than their wavelength. At short wavelengths 
the Josephson frequency, i.e., the first term in the square 
brackets in (7.5) and (7.8), can be neglected. In this limit the 
local theory7 leads to a linear dispersion law for electromag- 
netic waves propagating with the constant Swihart velocities 
c, = w, lk= const. Totally different wave dispersion laws 
hold in the nonlocal theory. For example, neglecting the 
small thicknesses of the tunnel junctions in a mirror- 
symmetric structure, in the short-wavelength portion of the 
spectrum, where kA B I and k A 2 B  1, we find 

According to (7.9) and (7.10) the phase and group velocities 
of the generalized Swihart waves are functions of the wave 
vector and do not coincide. They are highly dependent on 
both the thickness of the superconducting layer separating 
the junctions L2 and the thickness of the outer superconduc- 
tors (the electrodes) LB. For a thin inner superconducting 
layer (kL2-=3 1) and thin electrodes (2kLB< I ) ,  from (7.9) 
and (7.10) we have 

w + l k = c + = 2 w i ~ ,  (7.11) 

In this limit dependences typical of the local theory: in 
which the group and phase velocities of the waves are deter- 
mined by the Swihart velocity c+ or c- , are realized. Con- 
versely, for comparatively thick superconducting layers, for 
which kL2+ 1 and 2kLB+ 1, we obtain 

w+ = w- = O ~ I / ~ A ~ ~ ( A ~ +  hi).  (7.13) 

The latter expression is precisely equivalent to the dispersion 
law for a generalized Swihart wave in an isolated Josephson 
j~nct ion. '~"~ 

To conclude this section, as in Ref. 7, let us also consider 
electromagnetic waves in a mirror-symmetric structure con- 
sisting of three Josephson junctions, in which jcl = jc3, 
E I = E ~ ,  d l = d 3 ,  A 1 = X 4 ,  X2=h3, L I=L4 ,  and L2=L3. 
Then, in the case of identical capacitances in the tunnel junc- 
tions (W;, ,A~,~= o;~:), neglecting the weak dissipation of 
the waves and the small Josephson frequencies in the de- 
nominator in (7.2), from the dispersion equ_ation-(XQ-we- - 

find 

The main fact distinguishing (7.14) and (7.15) from the ex- 
pressions obtained in the local theory7 is that the phase and 
group velocities of the electromagnetic waves do not coin- 
cide and are functions of the wave vector. The new relations 
are manifested most explicitly in the wavelength region for 
short London lengths and in not excessively thin supercon- 
ducting layers. 

8. CONCLUSIONS 

Summarizing the material presented, we can state that 
the nonlocal Josephson electrodynamics describing 
Abrikosov-Josephson vortex structures made it possible to 
obtain comparatively simple and physically visualizable 
equations, which give a picture of coherent vortices in two 
tunnel junctions. This became possible both as a result of the 
derivation of nonlinear integral equations describing vortices 
in two junctions and as a result of the attainment of exact and 
approximate solutions corresponding to an interaction be- 
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tween the vortices mediated by a magnetic field penetrating 
through the superconductor separating the tunnel junctions. 
Modification of the picture of interacting vortices in two 
separate junctions stipulated by the finite thickness of the 
superconducting electrodes forming the outer layers of the 
tunnel structure was revealed both in the case of static vor- 
tices and in the case of moving quasimagnetostatic vortices. 

A systematic nonlocal description of the magnetic fields 
made it possible to reveal new spectral properties of electro- 
magnetic waves (generalized Swihart waves) in the wave- 
length region for short London lengths which are not com- 
mensurate with the thicknesses of the superconducting 
layers. 

APPENDIX A: 

Let us discuss the mutual influence of N identical Jo- 
sephson junctions separated by thin superconductors having 
a thickness 2L, which is smaller than both the London length 
and the dimensions of a vortex, where the inequality 
2LJ-G 1 holds. The thickness of the outermost su- 
perconductors with the numbers n = 1 and n = N + 1 is as- 
sumed to be much greater than X or the dimensions of a 
vortex. Then, neglecting the thickness of the tunnel junctions 
themselves, for the magnetic field in them we have (compare 
Ref. 17) 

where a,=O, b n = 2 ~ J W 2 ' & 1  for n = l ,  N + l  and 
where a ,  = b ,  = 1 for n # 1, N + 1. In a superlattice of closely 
arranged identical Josephson junctions having a thickness 
smaller than the dimensions of a vortex, it is natural to as- 
sume that the magnetic fields and the phase differences are 
equal: H, = H, cp, = cp. In this case, summing all N Eqs. 
(Al), we obtain 

dp' --exp[ik(p- p ' ) ] X 2 J ~ ~ ( p '  ,t) 1 1,::) 
tic a 

= -N eX--cp(p,t) 
414 [ JP 1 

We hence find the magnetic field [see (2.6)] and then the 
equation for the phase difference 

where the kernel QN(p) contains the dependence on the 
number of tunnel junctions 

A comparison of (A4) with (2.13) reveals an N-fold increase 
in the kernel of the integral equation (A3) in comparison to 
the case of a single isolated tunnel junction. Such an increase 
in the kernel results in an N-fold increase in the dimensions 
of the Abrikosov-Josephson vortices, and in the case of 
moving vortices it results in a corresponding change in their 
velocity. 

The equation for the phase difference in a superlattice 
consisting of N identical closely arranged Josephson junc- 
tions with identical outer superconductors (electrodes) hav- 
ing a finite thickness 2L,= 2LBS2L (n = 1, N +  1) is de- 
rived in a totally similar manner. For the case of identical 
phase differences in all the junctions we find 

where the kernels of the integral operators have the form 

In the case of electrodes of finite thickness there is also an 
N-fold increase in the kernel of the integral equation for the 
phase difference QNL describing the mutual influence of the 
tunnel junctions. At the same time, the kernel Q H ,  which 
describes the influence of a magnetic field on the boundaries 
of the structure, remains unchanged. 

')we note that the analog of Eq. (4.1) in local Josephson electrodynamics is 
the sine-Gordon equation and that the investigation of its consequences 
which are used in the theory of Josephson junctions has been the subject of 
numerous papers. 

' ) ~ e ~ l e c t  of the second derivative with respect to time corresponds to the 
so-called case of the resistive model in local Josephson 
e le~trod~narnics . '~-~~ In the case of the intrinsic Josephson effectsz3 in 
high-temperature BiSrCaCuO superconductors, the resistive limit corre- 
sponds to a conductivity smaller than 10" s-I. 

3)~quation (5.22), which holds in the limit of large voltages (5.21). does not 
depend on the length parameter I ,  which characterizes the small-scale 
Abrikosov-Josephson vortices studied here. Therefore, the limiting equa- 
tion (5.22) corresponds to the results of ordinary electrodynamics obtained 
in Refs. 19-21 (see also Ref. 22). 
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