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A theoretical study of elastic waves propagation in layered conductors under external magnetic 
field is presented. The quasi-two-dimensional nature of the electronic spectrum in such 
conductors leads to different attenuation lengths of acoustic waves with polarization parallel and 
perpendicular to the layers and to some specific effects, such as a magneto-acoustic 
resonance without a drift of charge carriers along the wave vector and an orientational effect, 
namely, sharp maxima on the curve of sound attenuation versus angle between the 
magnetic field and normal to the layers. O 1995 American Institute of Physics. 

The interest in research of low-dimensional conductors 
is closely related to the search for superconducting materials 
with high critical parameters. Most of new superconductors 
synthesized over recent years are layered structures with a 
marked anisotropy in the electric conductivity in the normal 
(not superconducting) state, i.e., the in-plane conductivity is 
significantly higher than along the normal n to the layers. 
The discovery of Shubnikov-de-Haas oscillations of the 
magnetoresistance in organic superconductors (see Refs. 1 
and 2 and citations therein) and metallic conductivity in most 
of them indicate that well-developed models of electric cur- 
rent in metals are also applicable to layered conductors. But 
the correctness of introducing quasi-particles similar to con- 
duction electrons in metals and the lifetime of quasiparticles 
with a charge e and an energy E close to the Fermi energy 
EF can be determined only by investigating the physical 
properties of layered conductors in the normal state, specifi- 
cally, by solving an inverse problem to derive the shape of 
the Fermi surface E ( P ) = E ~  from experimental data. The 
achievements in studies of electronic spectra of metals are to 
a great extent due to experiments on magneto-acoustic ef- 
fects in a strong magnetic field when the radius of curvature 
r of carrier trajectories is much smaller than their mean free 
path I. 

between charge carriers and coherent phonons. In the general 
case, terms proportional to ~~(p,,p,)sin(anp,lh), where 
&A(-p,, -py) = - E;(P~ , p y ) ,  should be added to the right- 
hand side of Eq. (1). However, these terms do not change 
radically the results presented below, although they compli- 
cate the calculations considerably. We assume that the anisot- 
ropy of the spectrum described by Eq. (1) is not very large 
and also that A, = vAo*Ao and A,+I+A,, where A, is the 
maximum of the function ~,(p,,p,) on the Fermi surface. 
Here p is the quasi-momentum of conduction electrons and a 
is the separation between adjacent layers. 

The main cause of acoustic wave damping due to con- 
duction electrons at a temperature below the Debye tempera- 
ture is the resistive dissipation of energy of the electromag- 
netic wave generated by sound596 and so-called 
deformational absorption due to renormalization of the car- 
rier energy SE when the crystal is def~rmed.~  When the 
length of a low-amplitude acoustic wave and the conductor 
dimension d are much smaller than the attenuation length 
l , ,  only terms linear in the strain tensor uij=duildxj need 
be retained, and the carrier energy renormalization under 
strain is 

The propagation of acoustic waves in layered c3nductors where the components of the deformation potential tensor 
with a quasi-two-dimensional spectrum of carriers has some 

A i j  for elecmns on the Fermi surface are of the same order 
specific features, especially when the maximum electron as the Femi energy. 
drift velocity across the layers, v,= v -  n, is comparable to or The electric field E generated by the acoustic wave is 
smaller than the sound velocity s . ~  It is also known that the de.ved fmm Be Maxwell equation 
temperature of the superconducting transition of onc modifi- - 
cation of tetrathiafulvalene, P-(ET)21Br2, is about a factor of w2 4miw 
three higher under  train.^ Therefore the response of the elec- V X V E -  -TE= c c2j, (3) 
tron system to the crystal strain is undoubtedly very interest- 
ing. and from the condition of conductor neutrality, which is 

We shall consider propagation of an acoustic wave with equiva!ent to the continuity of electric current, i.e., 
a frequency w in conductors with a quasi-two-dimensional 
electron spectrum V . j = O .  (4) 

m 

QnP, Equations (3) and (4), combined with the elasticity equation 
.(PI= C &.(P, .p,)cos--i;- 

n = O  
(1) 

2 du em -w pui=Xijrnr-+Fi 
and analyze the damping of this wave due to the interaction dxj 

(5) 
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form the conlplete system of equations of the problem if the 
electric current density j and the force F applied to the lattice 
from the electron system driven by the acoustic wave are 
expressed in terms of the nonequilibrium tern1 - @dfold& 
added to the Fermi distribution function fo: 

Here p  and X i j l l n  are the density and elastic tensor of the 
crystal, p H = p .  WH, c  is the speed of light, and t is the 
period of the electron gyation in the magnetic field according 
to the equation of motion 

If the lattice strain is small, the force due to electrons 
acting on the oscillating lattice is1) 

where A i k ( p )  = hik (p )  - ( h i k ( p ) ) l ( l ) ,  m is the electron 
 mas^.^.^ 

The function $ satisfies the Boltzmann kinetic equation 

Equation (9)  is linear in the small perturbation of the 
electron distribution function, and the relaxation time ap- 
proximation is used in the collision integral: w,,, 
= ( f o - f ) l r .  Since the acoustic wave is harmonic, time dif- 
ferentiation is equivalent to multiplication by - i w .  

For d < l  acousto-electron effects are very sensitive to 
the conditions of electron reflection from the crystal 

which are included in the boundary conditions 
of Eq. (3). In bulk crystals ( l e d ) ,  however, the boundary 
conditions are not essential. The condition I G d e l , ,  is quite 
feasible if the frequency of electron collisions in the volume, 
r P 1 ,  is much higher than the acoustic frequency. The solu- 
tion of the kinetic equation (9)  in a bulk conductor can be 
expressed as 

where v =  - i w +  117. 
Let us consider an acoustic wave propagating in plane in 

the x direction and, using the Fourier method, derive from 
Eqs. (3)-(5) a set of equations for the Fourier components of 
the electric field Z i ( k )  and ion displacements ui (k ) :  

ini w  I 
- w 2 p u i ( k )  = - ~ ~ , ~ ~ , ~ k ~ u ~ +  - j i ( k )  + --[j(k)HIi 

e  

+ i k ( A i x $ ) .  

Using the kinetic equation solution (1 I ) ,  we can conve- 
niently express the parameters j i ( k ) = ( e v i $ ( k ) )  and 
($ (k )Ai .J ,  which characterize the system response to the 
acoustic wave, in the form 

j i ( k )  = c r i j ( k )%; . (k )+a i j ( k )kwu j (k ) ,  

( $ ( k ) A i x ) =  b i j ( k ) 8 j ( k ) + c i j ( k ) k w u j ( k ) ,  (13) 

where the Fourier components of the conductivity tensor and 
of acousto-electric coupling tensors are 

where 

By substituting the expressions in Eq. (13) into the equa- 
tion system (12), we obtain a system of linear algebraic 
equations in ui (k )  and &.(k). 

After the inverse Fourier transform of these solutions, 
the problem of the electric and strain fields in the conductor 
will be solved completely. The acoustic wave damping factor 
can be derived from the formula 

where k  is the root of the equation system determinant. 
We are interested in the acoustic wave absorption as a 

function of the absolute value and direction of magnetic field 
H= ( 0 ,  Hsinfl, HcosB) orthogonal to the acoustic wave vec- 
tor. 

Longitudinal acoustic wave 

If the acoustic wave polarization is aligned with its wave 
vector ( u =  (u,O,O)), the equation system (12) after the ex- 
clusion of %; takes the form 

k2c2 - w2 
a",, kw - 

4 v c  

(16) 
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where 

PS:=A, , , ,  Gap=ffap- ff,ff ,p/ff . , ,  , 
- 

a -aJ .=a  a . -a  x J a x X x  . bip'bip-bisffxplffxx (17) 

c . . = c . . - b .  a . /a  
J I J  l X  X ]  X X 7 f f ,  P = Y ? Z '  

The compatibility condition is derived by equating the 
determinant Dl of the system (16) to zero, and this condition 

describes the spectrum of resulting waves and the interaction 
between electromagnetic and acoustic waves. 

For ~ r - 4  I one root of the dispersion equation 

is close to w / s l ,  so we seek one solution of Eq. (18) in the 
form 

where the imaginary component of k l  is the acoustic wave 
damping factor, and the real component describes the sound 
velocity sl renormalization. Other roots of Eq. (18) describe 
the velocity and damping of electromagnetic waves driven 
by the sound wave. 

If the Fermi surface is slightly warped ( 7 4  I ) ,  the as- 
ymptotic of k ,  has the form 

In the range of moderate magnetic fields, where the elec- 
tron orbit diameter, 2 r ,  is considerably larger than the acous- 
tic wave length, but much smaller than the carrier mean free 
path ( k l P k r B  1 ) ,  the acousto-electric tensor components 
oscillate with the magnetic field (the Pippard effect14). In the 
limit k r g B  1 the amplitudes of the oscillations are smaller 
than the smooth components of these functions, because the 
oscillations are due to a small fraction of carriers of the order 
of (krg)-"2< 1 ,  whose orbit diameters are close to the 
maximum value. In a stronger magnetic field, when 
I < k r 4  7-I holds, the spread of electron orbit diameters, 
A D = 2 r g ,  is much smaller than the acoustic wave length, 
and practically all the carriers on the Fermi surface contrib- 
ute to the oscillations. The amplitude of the oscillations of 
the acousto-electrical tensor components may be comparable 
to the slowly varying parts of these functions. 

For example, after integration with respect to t  and t' by 
the method of stationary phases, the expression for uyy has 
the form 

For simplicity we assume that there are only two points 
of stationary phase, t ,  and t 2 ,  where ku( t  ,,2) = W ,  on an 
electron orbit. Here the prime means differentiation with re- 
spect to time, D =x ( t2 )  - x ( t l ) ,  y =  v/fZ, fi is the frequency 

of charge motion along a closed trajectory in magnetic field. 
Taking into account the central symmetry of the electron 
spectrum, E ( - p) = ~ ( p ) ,  we obtain the following expres- 
sions for uyy in a two-dimensional conductor ( 7 = 0 )  at 
) y l ~ 1 ,  k r B l :  

At kD/2= rrn+ d 4 ,  terms of higher order with respect to 
the small parameters y and (kr ) - '  should be retained. In a 
quasi-two-dimensional conductor ( 7 = 0 ) ,  the p ~ -  depen- 
dence of the integrand in Eq. (21) determined by the electron 
spectrum of the material should be taken into account. It will 
be illustrated below by a specific example. 

One can easily check that the parameter a,, is largely 
controlled by the component uyy . Therefore the denomina- 
tor on the right of Eq. (20) is considerably smaller at 
kD/2= m+ d 4 .  But in this case the numerator does not 
change a lot, although not only u m p ( k ) ,  but all components 
of the acousto-electric tensors oscillate with large amplitudes 
for 1 - 4 k r - 4 ~ -  I .  

The quasi-two-dimensional spectrum of electrons results 
in sharp maxima of the acoustic absorption rate. These reso- 
nant maxima are periodic with 1/H, so they can be used to 
derive the Fermi surface diameter from the oscillation pe- 
riod. Let us recall that the magneto-acoustic resonance can 
be observed in conductors without pronounced anisotropy of 
the Fermi surface only when charge carriers drift along the 
wave vector k." 

The amplitude of resonant peaks drops with the mag- 
netic field, and for k r s  1 the resonance is not observable. 
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Explicit expressions for r can be easily derived at any krv. For kR @- 1, the Fermi surface warping is essential, and 
Consider as an example a layered conductor whose electron the acoustic absorption is similar to that in an ordinary 
spectrum has the form (nearly isotropic) metal: 

2 2 h  at'z ~ E F  
P~r+P~+n-uocos-- ,  u O = - p ,  E ( P ) =  2nt)i: h m * = const, a 

and assume that the magnetic field is perpendicular to the 
layers. In this case, to lowest order in the small parameters 
y and (kr)- ', the conductivity component 

where N is the charge carrier density, r o = v o l n ,  
R = 2hcleHa, and Jo is the Bessel function. 

For kR 74 1, the quasi-two-dimensional nature of the con- 
ductor is essential, and r is described by the expression 

where p = 7 r v o c 2 0 2 / 2 s ~ o ~ ~ ~  and oo is the plasma fre- 
quency. If it is comparable to that of common metals 
(10'~-10'~ s-'), the parameter p in the range of ultrasonic 
frequencies is fairly small, and the function r (  llH) has giant 
resonant oscillations. This shape of r(1lH) is usual for any 
electron spectrum described by Eq. (1). 

Transverse acoustic wave 

In the case of transverse acoustic wave polarization, 
u= (O,uy ,uz), the external magnetic field H= (0, Hy ,Hz) is 
contained only in expressions for acousto-electric coeffi- 
cients, hence 

Having excluded 8, using Eq. (13), we obtain 

Taking a combination of these equations with elasticity equa- 
tions (5), we obtain the equation system, whose self- 
consistency condition 

yields damping parameters of the acoustic wave and the co- m u 2  - 
moving electromagnetic wave. Here sy=  and ~ ,p '  - koGffp- a,p, 

sz=  are the velocities of y-  and z-polarized sound, 
respectively; 
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and the components of the elastic tensor, A,,,, and Airyx, are 
zero if, for example, the xy plane is a crystal symmetry 
plane.16 Otherwise these components should be taken into 
account, but they do not essentially affect the result. This 
crystal symmetry is implied in Eq. (I). 

The pronounced anisotropy of the electron spectrum in 
layered conductors leads to essentially different attenuation 
lengths of sound with polarizations perpendicular and parral- 
lel to the layen2) In the limit of small 7, the displacement of 
ions along the normal to the layers decays over a length over 
a length a factor of 17-2 larger than a wave with 
y-polarization. One can easily prove that expansions in pow- 
ers of 7 of acousto-electric constants with one or two z in- 
dices start with terms of the second or higher order. Omitting 
in Eq. (29) terms of the order higher than two with respect to 
q, we obtain 

Since Eq. (31) is factored, acoustic waves with y- and 
z-polarizations do not interfer in this approximation. By 
equating to zero the first multiplicator in Eq. (31), we obtain 
the equation fork = wls, + k2, from which follows 

The denominator in this equation is similar to that in the 
equation for kl , so the absorption of the y-polarized wave 
has the same resonances as the longitudinal wave. The de- 
viation of the other root of Eq. (31) from w / ~ ,  is proportional 
to q2 when q -iO and is described by the expression 

which indicates that the damping of a z-polarized wave at 
7 4 0  has no resonances. 

In this case, the quasi-two-dimensional nature of the 
electron spectrum is manifested at a higher magnetic field, 
when k r 6  1. Under this condition, electro-acoustic coeffi- 
cients are very susceptible to the magnetic field alignment 
with respect to the layers. If in the expressions for A,, and 
uz , l.e., 

the functions A,,(p, , p y )  and ~ , ( p ,  ,p,) decrease rapidly 
with n ,  the asymptotic forms of the acousto-electric coeffi- 
cients are essentially different at some angles 8 between the 
magnetic field and normal to the layers. These are the values 
8= 8, at which the terms with 7' in the expansion in powers 
of 7 equal zero. For tan89 1 these terms turn to zero repeat- 
edly with a period A(tan6)=2dilDp,  where Dp is the 
Fermi surface diameter along the p, axis. 

One can easily find that the last term in Eq. (33) is a 
factor of ( U ~ I S , ) ~  larger than other term in brackets. If 8 is 
essentially different from 8,, the following expression can 
be relatively easily derived for r = Im k3 for k r 4  1 and 
074 1 : 

But at 8= 8, the acoustic attenuation length I,= l / r  is con- 
siderably larger because 

The latter term in Eq. (37) is due to the mismatch between 
the roots of iizz(8)/q and b",,(O)lp ', on one side, and 
Ez,(6)lq ', on the other side, at q+0. 

For an electron spectrum of this form (Eqs. (I), (34), and 
(35)) the acousto-electric coefficients a,, and bzz tend to zero 
at q+0 faster than q2, i.e., f(7) also tends to zero at a 
small q. Strictly speaking, this is the main feature of the 
electron spectrum (Eq. (1)) selected in our analysis. For this 
reason we retained the parameters iizz and b",, in the final 
formulas for k3, although this does not correspond to the 
actual accuracy of the formulas, given the electron spectrum 
described by Eq. (1). 

If 7 is not infinitesimal, but satisfies the condition 

the term &?,, in the denominator of Eq. (33) cannot be omit- 
ted. For k r 9  1 the damping rate of sound with z-polarization 
may have resonances if 

For 8 = 0  we obtain the following expression for a,, by re- 
taining only the terms proportional to 772: 

For 
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the terms of higher orders in g and y should be retained in 
the expression for 6,, , which results in sharp maxima of I' 
versus 11H at H = H,, . 

If the magnetic field is tilted with respect to the normal 
to the layers at k r 9  1, we have 

eHcos0 u;(tl) - 
a,,,, = 

( 2 ~ f i ) ~ c a  Ikv:(t,)l 

where 

In this case the magneto-acoustic resonance takes place only 
at some fixed magnetic field orientations, when 
D,(alh)tan0= ?rn, where n is integer. For even n positions 
of sharp maxima in r versus lIH, are the same as in the case 
of 8=0, and for odd n the resonant curves for acoustic 
waves polarized parallel and perpendicular to the layers are 
inverted with respect to each other. 

The condition of the magneto-acoustic resonance is 
rather strict for tetrathiafulvalene salts, which have been ex- 
tensively investigated recently. In these compounds the mean 
free path is 10-~-10-~  cm, and resonances can be observed 
at acoustic frequencies of the order of lo9 s- . But the effect 
of field alignment on the sound absorption can be observed 
in such layered materials at acoustic frequencies of the order 
of lo8 s- ' because for kr< 1 the ratio of the electron mean 
free path to the acoustic wavelength is not essential, and only 
the condition r e f ,  which is fulfilled in a field of 10-20 T, is 
obligatory. 

The specific behavior of damping of acoustic waves with 
different polarizations can be used in filters transmitting 
waves of a definite polarization, and the sound absorption 
may be a very accurate tool for studying electron spectra in 
layered conductors. 

Shear wave propagating perpendicular to the layers. 

Let us consider a shear wave propagating across the lay- 
ers [(k= (O,O,k) and u= (u, ,u,,O)]. In this configuration the 
features of layered conductors are seen most explicitly at 
electron velocities below the sound velocity, v,<s, i.e., 
when the Fermi surface cylinder is slightly warped. There- 
fore the most interesting case is the limit g-+O. In reality this 
corresponds to the metal conductivity along the layers and a 
low jump conductivity along the z-axis, which takes place, 
for example, in intercalated dichalcogenides of transitional 
metals.19 It follows from the equation of motion (7) that for 
g+0 the kinetic coefficients are susceptible only to the 
z-component of the magnetic field, hence the field can be 
aligned with k with no loss of generality. Besides, to make 
the final results more visual, we shall neglect the anisotropy 
of both electron spectrum and elastic constants in the x y  
plane. 

Under these assumptions, the exact expressions for the 
conductivity tensor and electro-acoustic coefficients can be 
easily derived from Eq. (14). Taking the deforn~ation poten- 
tial in the form9 

A = -  
ai vap,/2, 

we have 

Introducing "circularly polarized" parameters 

u,=uX+iuy, u,=uxx+iuy, 

and excluding the electric field 

wH mcw u2 U* 
(pH ' l )  k2c214?riw- u, (45) 

from elastic equations, we obtain the acoustic problem solu- 
tion in the k-representation. If a displacement 
u(z=O)=(uo,O,O) is defined on the boundary of a semi- 
infinite sample ( 0 s  z< m), the exact solution for u, (k) 
takes the form 

where 

(47) 

At a sufficiently high frequency ( w ~  1) the first term 
in the expression for A- , which describes the deformation 
component of the acousto-electric coupling, has a sharp reso- 
nance when the acoustic and Larmor frequencies are equal: 
a= a,= w. In three-dimensional metals this corresponds to 
the so-called Doppler-shifted cyclotron resonance at frequen- 
cies O , = k ~ ~ + w . ~ ~  The conventional acoustic cyclotron 
resonance is possible only when k and H are orthogonal.2' 

The pole of the second term in the expression for 
A-(k) (see also Eq. (45)) corresponds to the well known 
helicoidal electromagnetic wave22.23 with a spectrum 

In a conventional metal, where charge carriers moving at 
large velocities of order v~ are always present and hence the 
conductivity exhibits spatial dispersion, only the low- 
frequency branch of the helicon spectrum described by Eq. 
(48) limited by the condition Rlw - l ~ u ~ l v ~  
( v i =  H ~ / ~ T N ~ * )  is observed under realistic magnetic 
fields, in which vA< 10~-10' cmls. In the quasi-two- 
dimensional case this limitation is not critical because 
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FIG. 1 .  Crossing between spectra o f  acoustic and helicoidal electromagnetic 
waves in a two dimensional conductor takes place at 2ks=  0% 
(f= W ~ S / C ,  W O ,  and 0 are the plasma and Larmor frequencies, respec- 
tively). 

v,- ~; /VF,  and in a purely two-dimensional configuration it is 
irrelevant since the maximum phase velocity of a helicon is 
achieved at k= w/c and is equal to vA/2. 

The helicon-phonon resonance, when the curve de- 
scribed by Eq. (48) crosses the non-perturbed acoustic spec- 
trum w(k)=sk, takes place at 

The resonance is possible when v A d 2 s  ( a >  2 ~ 9 ,  and the 
acoustic frequency falls in the interval 1 w- a121 
S Jw (Fig. 1). Thus the conditions of the helicon- 
phonon resonance in a layered conductor are less strict than 
in three-dimensional conductors, in which the respective 
conditions are3) 

v ~ % s u ~ ,  f 2 / a < W e  ffi. 
From this it follows that features of layered conductors are 
seen most explicitly at high frequencies, when w is compa- 
rable to the characteristic frequency of f=109 s-I or even 
higher. A simple analysis of roots of the dispersion equation, 
i.e., zeros of the denominator in Eq. (46) for u(k) reveals 
that the parameter of coupling between the acoustic and elec- 
tromagnetic branches of the spectrum is 

(50) 

Since ~ r n * l ~ = 1 0 - ~ - 1 0 - ~ ,  w<10I2 s-I, and the free- 
travel time of charge carriers even in purest metals is within 

s, the coupling parameter in Eq. (50) is very small at 
w> f and the spectrum can be studied quantitatively in the 
local approximation, i.e., the problem is reduced to a calcu- 
lation of acoustic spectrum renormalizations. Assuming that 
they are small, we derive from Eqs. (46) and (47) 

Then from the definition in Eq. (44) it follows that 

u(z) = J K = e x p [ i z ( k +  + k-)I21 

and the sound attenuation (in terms of the displacement am- 
plitude) is 

The difference between k +  and k-  in magnetic field leads to 
rotation of the acoustic polarization plane as it propagates 
along z ,  the respective phase factor Q being determined by 
the formula 

where the values of the functions A,(k), as in Eq. (52), are 
taken at k= wls. 

After simple calculations, we obtain 

where C =  (12/.rr~)(am*sl?z)~. 
At typical values of the parameters [a--10-~ cm, 

m * = g, s2= 10'' ( c ~ I s ) ~ ]  the helicon-phonon reso- 
nance is much weaker than the cyclotron resonance: 

But at a lower frequency or at a higher mass of charge car- 
riers this relationship may change considerably so that both 
resonances may be observable. 

Equation (54) presents properties of the resonances in a 
fairly graphic form, and for brevity we shall only consider 
the first terms in the braces responsible for the cyclotron 
resonance. These terms are plotted versus R 2 / w 2 - ~ 2  in 
Fig. 2. The curve r ( a )  has a maximum only if w ~ >  1 at 

a2= 2 w J m -  w2- T-2. 

At the maximum 

which is always higher than the attenuation factor at zero 
magnetic field (see Eq. (61) below). 

For large w~ we have 

and the extrema of the function Q ( a )  are shifted by + 7 - I  

and equal to 

1177 JETP 81 (6), December 1995 Gokhfel'd et al. 11 77 



i.e., the acoustic attenuation factor is 

HG. 2. Sound absorption factor r and the rate of polarization plane rotation 
Q versus square. of magnetic field intensity around the acoustic cyclotron 
resonance; 07=6. In the hatched m a  lQl>I'. 

On both sides of these maxima, the parameter is larger 
than I', i.e., the rate of polarization plane rotation is larger 
than its attenuation (Fig. 2). An important point is that the 
effect takes place in a relatively weak magnetic field, when 
a < ~ - l < ~ .  

It is noteworthy that the parameter B, 
= ( , r r / 1 2 ) ~ , l ~ s ~ a ~  is not very small: an estimate yields 
B , - - ~ o - ~ ,  and in high-quality samples (at low temperatures 
and hypersound frequencies) the condition B ore 1 may 
not hold. Then the relative change in k is not small, and 
instead of Eq. (5 1) we have 

You can see that the resonance occurs at a , ~ o ( l  +B1), 
which can be used to estimate B, from experimental data: 

In the opposite case, B w ~ 9  1, the parameters r and 1 Q(  at 
the resonance are approximately equal: 

The distinction from a three-dimensional metal can be ob- 
served even at zero magnetic field. At H = 0 we derive from 
Eqs. (46) and (47) 

For WTG 1 the factor r' is proportional to w2r, as in a con- 
ventional metal when sound is attenuated owing to the elec- 
tron viscosity.7 But in a two-dimensional conductor the col- 
lisionless regime is not realized, and for wr> 1 the 
attenuation is proportional to the scattering frequency of 
charge carriers. 

We are indebted to the International Science Foundation 
for support of this work (grant SPU042051 and grant 
K5X 100). 

"A complete equation system taking into account nonlinear effects was 
derived by Andreev and Pushkamv (see Ref. 10). 

')1n the case of a large anisotropy of elastic constants of a layered crystal, a 
wave with a polarization parallel to n may have a nonlinear spectrum 
o ( k )  (see Ref. 17). The attenuation of such waves by electrons was dis- 
cussed in Ref. 18. 

3)The theory of the helicon-phonon resonance and related phenomena in 
conventional metals and semimetals have been developed in details in 70th 
(see Refs. 24-27). 
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