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We investigate crossover between the 3D and 2D nature of phase transitions in dimensionally 
quantized and layered systems that allow a description in terms of an effective Bose 
liquid. As a specific physical realization of such systems, we consider a semiconductor near the 
exciton instability and a low-density Fermi liquid with an attractive interaction. We 
calculate the dependence of the temperature of the phase transition on the thickness of the 
dimensionally quantized film L (the width of a quantum well in the heterostructure). We show that 
as L increases, the transition temperature varies continuously from the 3D to the 2D form, 
successively passing through a series of regimes. The physical reason for the successive 
changeover of regimes has to do, first of all, with the change in the relative occupancy of 
the ground and higher subbands of dimensional quantization at the transition point and, secondly, 
with the change in the nature of the renormalization of the interboson interaction. Values of 
the critical lengths are found at which one regime replaces another. It is shown that an analogous 
behavior is demonstrated by layered systems in response to variation of the magnitude of 
the interlayer coupling (e.g., the thickness of the barriers in a superlattice). For superfluid 
dimensionally-quantized systems we show that there exists a critical thickness, the 
Berezinskii-Kosterlitz-Thouless length LBKT, at which the physical mechanism of the superfluid 
transition changes. For L<LBKT destruction of the superfluid state is due to the formation 
of unpaired vortices, and for L>LBKT,  it is due to irrotational fluctuations. The dependence of 
the superfluid transition temperature on L is found. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Modem methods of molecular-beam epitaxy make it 
possible to artificially create layered semiconductor struc- 
tures with a prescribed single-electron spectrum. By varying 
the parameters of such systems (e.g., the width of an isolated 
quantum well or the thickness of the potential barriers in a 
superlattice), one can create series of structures whose 
single-electron spectra successively change over from the 2D 
to the 3D form. By growing structures from materials pos- 
sessing one or another instability of an electronic nature 
leading to phase transformations, it is possible to examine an 
interesting class of problems associated with the study of 
crossover between the 3D and 2D nature of the phase tran- 
sitions. The simplest and for semiconductors the most natural 
type of such instability is the interband exciton instability, 
arising when the exciton energy E,, exceeds the width of the 
forbidden band .sg (.s,,>~,).' AS a system in which it is 
apparently possible to satisfy this condition, one might sug- 
gest a structure based on InAsIGaSb compounds with a 
smooth variation of the thickness of the layers, thus allowing 
one to vary the width of the forbidden band over wide limits, 
successively changing over from a semiconductor spectrum 
to a semimetallic one.2 It may also be noted that recently 
experimental indications have appeared of the appearance of 
exciton condensation in the GaAsIAlAs system.3 

Of special interest is the question of the changeover of 
the phase transition regime from 3D to 2D associated with a 
smooth modification of the single-particle spectrum (e.g., as- 

sociated with a change in the thickness of a dimensionally 
quantized film) for superfluid systems such as superconduct- 
ors and Bose liquids. As is well known, in these systems, 
possessing global gauge invariance, the superfluid phase 
transition in the 2D form takes place by the Berezinskii- 
Kosterlitz-Thouless (BKT) mechanism and is connected 
with the pairing below TBKT of specific topological excita- 
tions (quantum vortices), which exist above the transition 
temperature in free form.4 As the film thickness L increases 
smoothly and transition to the 3D form occurs, two types of 
behavior are in principle imaginable. Either the phase transi- 
tion has a vortex character as before and the superfluidity 
breakdown temperature is determined by how much vortex 
threads of length L (for arbitrarily large L )  ending on the 
faces of the film are favored, or at some critical thickness 
LBKT the regimes change over and destruction of the super- 
fluid state is associated with ordinary irrotational fluctua- 
tions. For a Bose liquid the possibility that the phase transi- 
tion in the 3D case has a vortex nature has been raised by a 
number of but an unambiguous answer to this 
question, as far as we know, has not yet been found. 

The present paper is dedicated to a study of crossover 
between 2D and 3D collective behavior both in superfluid 
(degenerate) and in nonsuperfluid (exciton semiconductor) 
layered and dimensionally quantized systems. For layered 
systems the character of the single-electron spectrum varies 
with the strength of the interlayer bond (the width of the 
transverse band), and for dimensionally quantized systems, 
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due to a change in the thickness of a single layer (the width 
of a quantum well in a semiconductor heterostlucture or the 
film thickness). As an example of a nonsuperfluid system we 
consider a semiconductor near the exciton instability. Here, 
specifically we assume that the condition 

is fulfilled. This inequality guarantees that the mean distance 
between excitons is much greater than their radius r o .  As we 
showed in a previous paper? in this case an asymptotically 
exact description (in the parameter (I)) of the system in 
terms of a dilute effective Bose liquid is possible. The parti- 
tion function in this case is given by the following functional 
integral: 

where Seff is the effective low-energy action of a Bose liquid 
of excitons7 

In Eq. (3) cp is the Bose field of constituent particles, tk is 
the corresponding dispersion law, and A is the boson chemi- 
cal potential, which is fixed and equal to 

The starting value of the interaction t o ,  written in Eq. (3) in 
local form, has a scale of the order of the boson radius r o .  
The invariance of the action (3) with respect to variation of 
the phase of the field cp in the case of an exciton semicon- 
ductor is always violated due to the presence of interactions 
with the spillage of particles from band to band. This leads to 
the appearance of a gap in the spectrum of collective excita- 
tions, the disappearance of superfluidity, and the appearance 
of vortex excitations. Usually, in semiconductors the strength 
of the interactions leading to interband transitions is much 
smaller than that of the density-density interaction, which 
preserves phase invariance. We will consider specifically this 
case in which the phase is weakly fixed. Specifically, we 
assume that vortex-free fluctuations, as before, are described 
by the action (3), and the contribution of the vortex configu- 
rations is completely suppressed due to a violation of global 
gauge invariance. 

As a superfluid analog of an exciton semiconductor in 
the limit (I), we may take a dilute Bose liquid or Schafrodt 
superconductor, where the fermion density is so low that the 
mean distance between fermions is much greater than the 
radius of the two-particle bound state. In Ref. 8 it was shown 
that in this case the effective action has the form (3), where 
cp is a field describing the two-particle bound state, and the 
chemical potential A is equal to twice the electron chemical 
potential and is determined by the equation for the number of 
particles 

Here p is the boson density, which is equal in the Schafrodt 
limit to half the electron density n. In superfluid systems the 
global gauge symmetry of the action (3) is not violated, 
which then leads to the possibility of the appearance of su- 
perfluidity and rotational phase transitions in 2D systems. 

To investigate the change in the nature of the phase tran- 
sition in systems with the action (3) due to continuous varia- 
tion of the single-particle spectrum from the 3D to the 2D 
form, it is necessary to have a description of a Bose liquid 
that is the same for both limiting cases (3D and 2D systems). 
A self-consistent approximation at once satisfying this re- 
quirement and free from infrared divergences for any dimen- 
sion D was formulated in our previous paper.7 The expres- 
sion for the thermodynamic potential below the transition 
point To in the case of fixed A in the low density limit has 
the form 

where Ek= 4- is the Bogoliubov spectrum, and 
A is the anomalous self-energy function, determined by 
minimizing expression (6) 

The total boson energy is easy to find by differentiating the 
thermodynamic potential (6) with respect to the chemical 
potential A :  

In Eqs. (7) and (8), nk=n(Ek)  is the Bose distribution func- 
tion. The normal (high-temperature) phase has A = 0, and the 
thermodynamic potential is given by 

where Z is the self-consistent potential that minimizes il 
given by (9). Finally, the interboson exchange potential t 
entering into Eqs. (6)-(9) is renormalized to account for in- 
terference in (2) in the "fast" variables with momenta in the 
region K < k < r i 1 :  

This scheme does not have divergences at small momenta for 
any spatial dimensionality and allows one in a noncontradic- 
tory way to describe phase transitions in a low-density Bose 
liquid due to irrotational fluctuations. 

The subsequent development is constructed in the fol- 
lowing way. Section 1 analyzes phase transitions in dimen- 
sionally quantized systems. The dependence on the film 
thickness L  of the transition temperature To decreases due to 
irrotational fluctuations is calculated. It is shown that as L 
decreases, the temperature T o ( L )  varies from the 3D to the 
2D form, successively passing through a series of intermedi- 
ate regimes. The values of the critical thickness are found at 
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which one regime is replaced by another. It is shown that for 
any L the phase transition is first-order. In nondegenerate 
systems (an exciton semiconductor) this transition corre- 
sponds to the appearance of true long-range order and an 
exciton condensate. 

The specifics of phase transitions in degenerate 
dimensionally-quantized systems (a superconductor, a dilute 
Bose liquid) are considered in Sec. 11. Neglecting vortex con- 
figurations, the temperature To(L) corresponds to the forma- 
tion of a superfluid density and a change in the way the 
pairwise correlation function falls off from exponential to 
power-law. Taking spontaneous creation of vortices into ac- 
count leads to the possibility of a BKT vortex transition. In 
our approximation it turns out that for a dilute Bose liquid 
there exists a critical film thickness LBKT such that for 
L> LBKT the superfluid transition is due to irrotational fluc- 
tuations and really does take place at To(L), while for 
L< LBKT the superfluid state arises via the BKT mechanism 
at the temperature TBKT. The temperature To>TBKT in the 
latter case corresponds to a transition with the appearance of 
"rigidity" in the system p, . It is only by virtue of this that 
vortices and the acoustic branch of the collective excitations 
carrying the intervortex interaction can exist. The presence 
of a Nelson-Kosterlitz universal jump9 during the BKT tran- 
sition allows one to calculate the superfluid transition tem- 
perature for L<LBKT as a function of L. It is necessary to 
point out that the problem of the variation of the transition 
temperature in superfluid films has frequently been treated in 
connection with helium via the macroscopic and phenom- 
enological $-theory of s u p e r f l ~ i d i t ~ , ' ~ ~ ~ ~  but only for thick 
films, where a macroscopic description is actually justified 
(see, for example, Ref. 10). Our microscopic approach places 
no lower bound on L and allows the system to continuously 
approach the pure 2D case. However, the need for a low 
density parameter does not allow one to directly apply the 
results to such systems as, for example, liquid helium. 

Section 3, presents an analysis of the crossover between 
the 2D and 3D character of the phase transition in layered 
systems as the width of the transverse band increases from 
zero. 

2. PHASE TRANSITIONS IN DIMENSIONALLY QUANTIZED 
SYSTEMS 

Let us consider a system of thickness L, bounded in the 
z direction and infinite in the other two. We assume the dis- 
persion law tk to be isotropic and quadratic, and we use 
periodic boundary conditions to allow for the finiteness of 
the transverse length. Such a treatment does not limit the 
generality of the results, but somewhat simplifies the calcu- 
lations. In addition, wherever it is not stated otherwise, we 
use the system of units in which 2m= 1 (m is the mass of 
the boson state). If we take into account, all of the above the 
dispersion law becomes 

where p is the 2D momentum perpendicular to the z axis, 
and n labels the subbands of dimensional quantization. In the 

dilute Bose liquid of component particles (excitons or elec- 
tron pairs) which we consider there are two natural length 
scales. These are the boson radius ro, having the same order 
of magnitude as the interaction radius, and the scale 
*= X -  ' I2 ,  connected with the mean particle density and de- 
termining collective effects. These two scales are combined 
together to give the dimensionless "gaseousness" parameter 
ro/[, which in our case is much smaller than unity. By de- 
creasing the thickness L, we should make the transition from 
the 3D to the 2D regime of the phase transition. Obviously, 
as one decreases L down to ro and lower (L<ro) a "trivial" 
2D regime arises when the two-particle bound states them- 
selves become two-dimensional, thus forcing two- 
dimensionality of the phase transition. More interesting is 
another question: Can effectively 2D-collective behavior 
arise when the component bosons themselves remain three- 
dimensional? It is just this situation that we will consider 
below. That is, we take L*ro and, consequently, the energy 
and radius of the bound state entering into the self- 
consistency equation (7) through the strength of the interpar- 
ticle interaction t are determined by a 3D expression. 

For a dimensionally quantized system, we write the self- 
consistency equation for the anomalous eigenenergy function 
as follows: 

Formally, the solutions of this equation change with decreas- 
ing L.for two reasons. First, the presence of a series in ex- 
pression (12) is essential. As L-tca the series transforms into 
an integral, which leads to 3D behavior, whereas in the limit 
L-tO the dominant role is played by the zeroth term of the 
series, leading to the purely 2D regime. This part of the 
self-consistency equation (12) describes the contribution of 
the low-energy fluctuations. The second reason is the change 
in the renormalization of the interaction t given by Eq. (10) 
due to high-energy fluctuations of the field cp. Note that such 
a division of contributions of fast and slow fluctuations is 
possible by virtue of the low density condition 
((= A-ln%rO). 

Let us find the dependence t(L) for the case of 3D 
bound states. The starting value of the interaction to is pro- 
portional to the quantity ro: 

where a is a constant determined by the details of the 
fermion-fermion interaction in the initial system (thus, for a 
point potential it satisfies a = 47r). We write the polarization 
operator Il in Eq. (10) with allowance for dimensional quan- 
tization 
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The three-dimensional polarization operator r13D can be rep- 
resented in the form 

If the momentum dependence of the interboson interac- 
tion potential is a step-function, the numerical coefficient is 
y= 1 1 4 ~ .  Calculating expression (13) for L> ro and substi- 
tuting the result into Eq. (lo), we finally obtain 

The first (three-dimensional) interaction regime is realized 
for 

Here 

In the opposite limit the vertex t is given by 

It is natural to call this regime two-dimensional. The transi- 
tion from regime (15) to regime (16) takes place at 

For the component bosons to remain three-dimensional, the 
condition L>ro  must be fulfilled. This is entirely possible 
since, by virtue of the low density, Lc2%r0 holds. For a 
model liquid of point bosons with scattering length ro L can 
decrease further without change of the properties of the par- 
ticles themselves. In this case, for L<ro  the quantity tlL 
stops decreasing and saturates, taking on purely 2D form (see 
Ref. 7): 

Now let us analyze how Eq. (12) changes when L is de- 
creased and calculate the phase transition temperature 
To(L). First we will consider the case ( 2 7 r l ~ ) ~ % 2 A .  The 
latter condition allows us to discard A from all terms of the 
series on the right-hand side of Eq. (12) except n =O. Calcu- 
lating the asymptotic limit of the 2D integral corresponding 
to the term n= O for 2A/T< 1, we obtain the self- 
consistency equation near the transition point 

The function x(T) is the sum of all the terms of the series in 
Eq. (12) except n =0: 

As the temperature increases, the solution with A # 0 van- 
ishes abruptly when the straight line A -x- A touches the 
function (tTl2~rL) In Tl2A. Differentiating both the right 
and left sides of Eq. (19) with respect to A, we find that the 
value A(TO)= A, at the transition point is related to To by 
the formula 

Substituting Eq. (21) in Eq. (19), we obtain a transcendental 
equation for To(L): 

The form of the solution of this equation is determined by 
the function x(To), which depends on the dimensionless pa- 
rameter For 4 7 r 2 / ~ 2 ~ o +  l we have 

Here the renormalized vertex t is given by the three- 
dimensional expression (15). As a result, a 3D regime with 
temperature To develops near the transition temperature in a 
three-dimensional system (see Ref. 7): 

If the condition 

is fulfilled, then ,y(To) tends exponentially to zero and be- 
comes much smaller than A in Eq. (22): 

t 
x(To)--To exp 

2 7rL 

The "intermediate" regime arises when ,y(To) has already 
assumed the asymptotic form (26) and the renormalized po- 
tential still preserves the 3D form (15). For the transition 
temperature in this regime we find 

Substituting relation (27) into condition (25) , we find the 
critical length LC,  below which the intermediate regime (27) 
replaces the three-dimensional one (24): 

When the length L becomes less than Lc2 given by (17) and 
the interaction potential is determined by relation (17), the 
quasi-2D regime with transition temperature 

is realized. Note that Eq. (29) has the characteristic 2D form 
with a double logarithm (see, for example, Refs. 6, 7, and 
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FIG. 1. Qualitative dependence of the temperature of the phase transition on 
the thickness of the dimensionally quantized system. 

12), where instead of the scattering length the sample thick- 
ness appears. Thus, as L decreases the solution of Eq. (22) 
successively passes through three regimes-the 3D (24), the 
intermediate (27), and the quasi-2D (29). These regimes suc- 
ceed one another at L equal respectively to Lcl (28) and 
Lc2 (29). Note that these lengths satisfy the condition 

roeLc2GLc1. 

For a Bose liquid of point particles it is meaningful to speak 
of a decrease of L down to ro and below. In this case 
(L<ro) To ceases to depend on L and is given by the well- 
known 2D expression 

A qualitative picture of the dependence of the transition tem- 
perature To on the thickness of the sample L is given in 
Fig. 1. 

For A(To) = A, finite at To the phase transition is first- 
order. The magnitude of the jump A, is given by (21) and 
can be easily calculated in each of the three regimes. Figure 
2 plots the function A(T) obtained by solving the self- 
consistency equation (12) at three different points 
L > L2> L3. For all T< To there exist two branches of the 
solutions of (12). The lower branch (depicted in Fig. 2 by a 
dashed line) corresponds to the maximum of the thermody- 
namic potential and, consequently is absolutely unstable. The 

FIG. 2. The dependence A ( T )  in a dimensionally quantized system for 
different thicknesses ( L ,  >L ,>L , ) .  

minimum of the thermodynamic potential, corresponding to 
the normal phase, exists all the way to T=O (for any finite 
L), becoming metastable for T< To. It can be easily shown 
that To is the transition temperature of a first-order transition 
(i.e., that at the moment of its appearance the phase with A 
# 0 becomes more favored than the normal phase) by calcu- 
lating the difference 80 of the thermodynamic potential of 
the nornlal (high-temperature) phase S1, given by (9) and 
the thermodynamic potential 0, of the phase with A # 0 
given by (6) at the point T= To. Obvious but lengthy calcu- 
lations lead to the result 

The quantity 7 at the point To does not depend on L and is 
determined by the condition e-"=e  77/2 (see Ref. 7). Solu- 
tion of this equation gives ~ ~ 0 . 4 6 3 .  Consequently, 80 > 0 
holds, and at the point where the new phase with A # 0 ap- 
pears the high-temperature phase immediately finds itself in 
the supercooled state. 

These results correspond to systems with a variable 
number of particles (fixed chemical potential A). Now let the 
total density p be given. The existence of a simple relation 
between A and p makes it easy to eliminate the chemical 
potential from the self-consistency equation (7) (or (12)). As 
a result, in place of Eq. (12) we now have 

Comparison of Eqs. (12) and (31) shows that the solution of 
Eq. (31) (p=const) can be obtained by solving Eq. (12) 
(A=const) via the substitution 2 t 4  t followed by the sub- 
stitution A 4  tp. Thus, for example, we obtain the following 
equation (by making the above substitutions in Eq. (22)) for 
the transition temperature To: 

The case of a fixed number of particles permits a deeper 
understanding of the physical difference between these re- 
gimes. Indeed, the function @(To) defined by (33) is the 
number of particles occupying all the dimensional- 
quantization subbands with the exception of the ground sub- 
band ( n  =O). Consequently, the particle density pnYo stands 
in the numerator in Eq. (32). Thus, the 3D regime differs 
from the intermediate regime, the quasi-2D regime, and the 
2D regime by the relative occupancy0 f the ground and 
higher subbands at the phase transition point. Specifically, 
the 3D regime has pn=olpn>o + 1, whereas in the other re- 
gimes the opposite inequality p,I=olpn>O %= 1 holds. The "in- 
termediate" regime merges into the quasi-2D regime and 
then into the 2D regime, in response to the changing charac- 
ter of the renormalization of the interboson interaction. 
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We give here the expressions for the transition tempera- 
ture in the case p=const in successive intervals of the thick- 
ness L: 

for L >  LC, 

( I 1 ( a ) 1 J 3  2;:~) 
To=TB I-- - - In- , 

67ra L p 

for L,,>L>L,, 

for LC,> L > r o  

for L < ro 

In Eq. (34) TB = (pla)2/3 is the condensation temperature of 
an ideal Bose gas [a = 5 ( 3 / 2 ) / ( 4 ~ ) ~ ' ~ ,  see Eq. (23)l. The 
critical lengths separating regimes (34)-(37) for p=const 
have the form 

The magnitude of the jump of the anomalous eigen- 
energy function at the transition point is given by 

Recall that so far we have only considered the solution of the 
self-consistency equations when the quantity A can be 
dropped in all terms of the series with n # 0 [Eq. (12) or 
(31)], i.e., we assume the condition 

holds. Substituting the value of the jump A, in the regime 
(34) in condition (40), we find that our treatment is valid for 

Thus, condition (40) places an upper bound on the region of 
validity of Eq. (34), and also Eq. (39) relating A, and To. In 
the limit opposite to (40) the behavior of the system is not 
substantially different. As before, we obtain a 3D regime 
with transition temperature near the three-dimensional value, 
but with a different form of the small L-dependent correction 
than in formula (34). Fundamental changes in the nature of 
the transition in the thickness region L % p-2'3ri arise only 
in degenerate systems if vortex excitations are taken into 
account. 

3. DEGENERATE DIMENSIONALLY-QUANTIZED SYSTEMS 

The temperature To calculated in Sec. 2 corresponds to a 
phase transition caused by irrotational fluctuations. In sys- 
tems that violate phase invariance (an exciton semiconduc- 

tor) a pure condensate appears, together with true long-range 
order. In degenerate (superfluid) systems for any finite thick- 
ness L, long-range order is absent all the way to T = 0,  the 
same as in purely 2D systems. The vanishing of the correla- 
tion function at infinity is completely natural, since at large 
distances the main contribution comes from fluctuations in 
the region of infinitesimal energies, where by virtue of the 
boundedness of the system in the z direction the spectrum 
has a two-dimensional character. Let us calculate the case of 
the pairwide correlation function at low temperature. In this 
case, as usual 

where d r , ~ )  is the phase of the Bose field. The correlation 
function (42) looks quite simple when the transverse coordi- 
nates coincide (z = z'). For the argument of the exponential 
on the right-hand side of Eq. (42) we obtain 

The low-energy asymptotic behavior of the correlator of the 
phase fluctuations is well known (see, for example, Ref. 6). 
For a dimensionally quantized system we can write 

where c is the speed of sound. In the limit I r - r' 1 t m  the 
spatial dependence of expression (42) is determined by the 
term n = 0,  o = 0 in Eq. (43). The remaining terms contribute 
only to the coefficient of the function defining the spatial 
dependence. Ordinary calculations lead to a power-law fall- 
off of the correlation function 

The latter expression shows that pure long-range order at T 
> 0 arises only atL = m. 

If we neglect rotational configurations, the power-law 
behavior of the correlation function replaces exponential be- 
havior at the temperture To. The superfluid density p, ap- 
pears at the same point. The magnitude of p, is equal to the 
difference between the total density and the density of the 
normal component pN: 

We will determine the density pN for a dimensionally 
quantized film by calculating the momentum density P in a 
coordinate system moving in the direction perpendicular to 
the z axis with velocity u 

As a result, we obtain 
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Substituting expression (46) into Eq. (45) and expressing the 
total density in terms of A with the help of the self- 
consistency equation (31), we find for the superfluid density 

The second (integral) term in Eq. (47) tends toward zero for 
A/T  4 1. Accordingly, near the transition temperature p, is 
proportional to A ( T )  : 

and, consequently, experiences a jump at To equal to A,lt. 
Equalities (48) and (39) allow us to calculate the ratio 
Lp,lTo which defines the scale dimensionality of the field cp 
at the transition point 

Taking into account the condition of validity for relation (39) 
[see condition (41)], it follows that Eq. (49) is valid for L 
gp-2/3r ,1 .  

Taking account of the vortex excitations leads to the pos- 
sibility of a BKT phase transition. The breakdown tempera- 
ture of the superfluid state TBKT in this case is determined by 
the condition of energetic favoredness of the formation of a 
vortex in the free state.4 At the BKT transition point, the ratio 
LpsIT has the universal form9 

Comparing Eqs. (50) and (49) shows that in the region of L 
satisfying condition (41), the temperature at which superflu- 
idity is destroyed due to vortex fluctuations is less than the 
irrotational phase transition temperature To. Consequently, 
superfluidity arises by way of the BKT mechanism at the 
temperature TBKT. However, the normal (high-temperature) 
phase appears only at T > To.  In the region TBKT < T < TO 
the quantity p, given by (47) describes the "rigidity" of the 
system, by virtue of which the appearance of vortices and the 
acoustic branch of the excitations carrying the intervortex 
interaction. For T > TBKT the unpaired vortices screen the 
acoustic branch. A result of this is exponential falloff of the 
correlation function and absence of superfluidity. In a dilute 
Bose liquid the transition temperature TBKT lies quite near 
To. This fact allows one to calculate TBKT as a function of L 
using the Nelson-Kosterlitz relation (50), the relation be- 
tween p, and A (48) and the self-consistency equation (31) 
which determines the temperature dependence of A(T). As a 
result, we find for L < p-2 '3r i  that in the 3D regime ( L C ,  
< L < p - 2 1 3 r i  ') the dependence TBKT(L)  is given by 

For the remaining regimes arising for L < L C , ,  we can write 
down the general expression 

The formulas for TBKT(L)  in the intermediate, quasi-2D, and 
2D regimes are obtained by substituting expressions (15), 
(16), and (la), respectively, for the vertex t in relation (52). 

As can be seen from relation (51), as L increases the 
region where free vortices exist rapidly narrows. An interest- 
ing phenomenon takes place for L satisfying the inequality 
opposite to (41): 

In this region the self-consistency equation (31) has in fact a 
three-dimensional form and, consequently, To is given by the 
three-dimensional expression (see Ref. 7). As was shown in 
Ref. 7, in the 3D case the phase transition is also weakly 
first-order. The jump in A, which via formula (48) deter- 
mines the jump in p, at the transition point, is equal to 

Consequently, for the ratio Lp,/T we obtain 

Thus, the quantity (55) grows without limit as L increases 
and if condition (53) is fulfilled exceeds the corresponding 
value at the BKT transition point (50). This latter result 
means that the phase transition caused by the irrotational 
fluctuations takes place at a temperature To at which vortex 
formation is still impossible. Thus, in degenerate systems 
there is one critical thickness LBKT at which the physical 
mechanism of destruction of the superfluid state changes. For 
L > LBKT the superfluid transition takes place by way of the 
BKT vortex mechanism, and for L > LBKT, as a result of 
irrotational fluctuations. The nature of the transition changes 
when the ratio Lp,IT at the irrotational transition point To 
becomes equal to this ratio at the BKT transition (50). Con- 
sequently, L = LBKT is the solution of the equation 

The solution of this equation is graphically illustrated by Fig. 
3. From the foregoing considerations it is obvious that Eq. 
(56) is satisfied for 

4. LAYERED AND ANISOTROPIC SYSTEMS 

In layered systems the presence of even a weak inter- 
layer bond substantially reduces the probability for the emer- 
gence of vortex configurations. Therefore, from a formal 
point of view the description of thermodynamically spatially- 
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FIG. 3. Dependence on L of the ratio Lp,(T,)IT,,  illustrating the solution 
of equation (56). 

homogeneous states is in fact identical for both degenerate 
and nondegenerate systems. (Here, by nondegenerate we, of 
course, mean only weak violation of phase symmetry.) The 
difference consists only in the absence of superfluidity in the 
last case. 

Let us consider a system consisting of two-dimensional 
layers perpendicular to the z axis. The dispersion law of the 
two-particle bound states [the effective bosons figuring in the 
action (3)] tk can be represented in the following quite gen- 
eral form: 

where p is the 2D momentum, parallel to the layers, and in 
the z direction the dispersion law ~ ( k , )  satisfies the condi- 
tions 

In Eq. (59) W is the width of the transverse band of effective 
bosons. For example, assume that the description of the dis- 
persion in the z direction for the initial fermions using the 
tight-binding method and the nearest-neighbor approxima- 
tion be considered acceptable. Then the fermion dispersion 
law has the form 

The solution of the two-particle problem with such a spec- 
trum leads to the following boson dispersion law in the z 
direction (if the energy of the bound state eo  is greater than 
the width of the fermion transverse band w): 

Obviously, the function (60) is a special case of (59) 
( W =  w2/eO; f(x) = sin2x/2). 

Let us investigate the question of the variation of the 
transition temperature as the width of the transverse band W  
increases from zero. We pose the question: Is effective 3D 
behavior possible when the boson states themselves remain 
two-dimensional? The latter situation obtains if the binding 
energy of the two-particle state is much larger than the 

width of the fermion band in the z direction and, naturally, 
much larger than the width of the boson band W  (see Eq. 
(60)). In this limit the product of the polarization operator 
n into the starting vertex of the boson-boson interaction 
to is always much greater than unity. Consequently, as in the 
purely 2D case, the quantity to falls out of the expression for 
the renormalized interaction potential t of (10): 

where according to Eq. (10) Il is defined as follows: 

d2p dk, - 1 

- 2 n  p ' ~ m + 2 ~  (k,) 

If the condition A s 2 W  holds, the renormalized interaction 
has the two-dimensional form (see Ref. 7) 

In the opposite limit (A42W) evaluation of the integral in 
Eq. (62) leads to the following "quasi-two-dimensional" re- 
sult: 

Note that for any relation between A and W the renormalized 
vertex can be roughly (with logarithmic accuracy) written in 
the form 

which, by the way, is obvious from Eq. (62). 
Let us now find the solution of the self-consistency 

equation (7) for a layered system when the spectrum (58) 
differs slightly from two-dimensional. Specifically, let 

In the temperature region (including the transition tempera- 
ture) 2A/T< 1 we write the self-consistency equation after 
integrating with respect to the longitudinal momentum as 
follows: 

The procedure for calculating the temperature of the jump- 
like appearance of the nontrivial solution To and the magni- 
tude of the jump A, at the transition point is analogous to 
that described in Sec. 2. Therefore we present only the final 
result: 
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Substituting this value of A, in condition (65), we find the 
applicability criterion of solutions (67) and (68) 

As one could have expected, the appearance of transverse 
dispersion causes an increase (in comparison with the 2D 
case) of the transition temperature To (67) and a decrease of 
the jump of the anomalous function (meaning the superfluid 
density in degenerate systems). In addition, the appearance 
of even weak effects of three-dimensionality leads to the 
result that, in contrast, to 2D and dimensionally quantized 
systems (see Sec. 2), there is a finite temperature TB, below 
which the normal phase becomes absolutely unstable. This 
temperature is determined from Eq. (66) [or in the general 
case from Eq. (7)] at A = 0 and coincides with the conden- 
sation temperature of an ideal Bose gas. With logarithmic 
accuracy we have 

Expression (69) characterizes the width of the two-valued 
region of the solutions of the self-consistency equation. In 
the 2D system ( W = 0) TB = 0 holds and the self-consistency 
equation has two solutions for all T<To; if, on the other 
hand, we have W # 0, then the second branch of the solutions 
exists only for TB< T< To. 

The regime that can be called "three-dimensional" 
arises when the ratio 2WIT becomes large in comparison 
with unity (2WITB 1 ). Because of the presence of the dis- 
tribution function in Eq. (7), only energies less than or of 
order T are important. Therefore, in this case in the expres- 
sion for tk (58) it is sufficient to restrict ourselves to the 
quadratic term in the transverse momentum. In other words, 
in the limit under consideration the effective mass concept is 
applicable 

The integral in the self-consistency equation (7) is evaluated 
in the same way as in the three-dimensional case. Near the 
transition temperature (2AlTG 1 )  we obtain the following 
expression: 

where (= l(312) is the Riemann zeta function. The solution 
with A # 0 appears with a jump at the To: 

FIG. 4. The dependence A ( T )  in layered systems for different widths of the 
transverse zone ( W ,  > W,> W,). 

The normal phase exists all the way to the temperature TB , 
becoming metastable below To. Substituting the expression 
for the renormalized vertex (64) and the expression for the 
transverse mass of the bosons (70), we obtain the transition 
temperature for layered systems in the 3D regime: 

These expressions demonstrate the tendency already noted 
for the 2D regime. Specifically, with increase of the width of 
the transverse band W the phase transition temperature 
grows and the region of metastable existence of the normal 
phase (the two-valued region of the solutions of the self- 
consistency equation) narrows. The dependence A ( T )  is 
shown in Fig. 4 for different values of W. In conclusion, we 
note that the transition temperature for an anisotropic liquid 
of the three-dimensional component bosons (the energy of 
the bound state EO is much smaller than the width of the 
transverse band w) is also described by formulas (72). In this 
case, it is necessary to substitute the three-dimensional ex- 
pression (15) for it as the renormalized vertex t. 

5. CONCLUSION 

In the present paper we have described crossover be- 
tween the 3D and 2D phase transitions in systems that can be 
described as a dilute Bose liquid of component particles (ex- 
citons in a semiconductor or electron pairs in a superconduc- 
tor with low particle density). We have shown that a change 
in the single-particle spectrum, due to a change in the thick- 
ness of the dimensionally quantized system or the width of 
the transverse band in layered systems, leads to a corre- 
sponding change in the phase transition temperature. Speciti- 
cally, the transition temperature varies gradually from 3D to 
2D form, passing through a series of regimes, one supersed- 
ing the other at the corresponding values of the critical thick- 
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nesses in dimensionally quantized systems (the critical 
widths of the transverse band in layered systems). We have 
shown that the phase transition is first-order for any values of 
the parameters characterizing the anisotropy of the spectrum. 
In this regard, note that a first-order transition usually leads 
to pronounced hysteresis phenomena. In the given case the 
indicated effects are substantially suppressed since, as was 
shown in Sec. 11, when the new phase appears, the old (high- 
temperature) phase at once finds itself in the supercooled 
state. The latter may hinder an experimental determination of 
the order of the phase transition. And finally, for superfluid 
dimensionally-quantized films we have demonstrated the ex- 
istence of a critical thickness at which the physical mecha- 
nism of destruction of the superfluid state changes. 
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