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For tetragonal antiferromagnets that have an asymmetry center and exhibit a magnetoelectric 
effect we examine the effective elastic anharmonicity of magnetoelastic origin, allowing for this 
effect. We show that in some cases the magnetoelastic and magnetoelectric interactions lead 
to new effective nonlinear elasticity moduli, which are finite only when magnetic and electric fields 
are applied to the sample simultaneously. We find the conditions under which the elastic 
anharmonicity associated with antiferromagnetism becomes gigantic and strongly dependent on 
the applied magnetic and electric fields. Usually this occurs near magnetic orientational 
phase transitions. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The features of the linear acoustic properties of tetrago- 
nal antiferromagnets that allow for the existence of a mag- 
netoelectric effect have been studied in Ref. 1. The velocity 
of elastic waves and the acoustic double refraction were 
found to depend on the magnetic and electric fields. The 
present paper develops these investigations and studies the 
nonlinear acoustic properties of such antiferromagnets. As in 
Ref. 1, we consider only low frequencies, 

where OAF,, is the lowest antiferromagnetic resonance 
(AFMR) frequency. Condition (1) makes it possible, without 
solving the equations of magnetoelastic dynamics, to find the 
renormalization related to magnetoelastic and magnetoelec- 
tric interactions of not only linear elasticity moduli but also 
nonlinear elasticity moduli. To this end one must employ the 
fact that at such frequencies the antiferromagnetism vector 
L, the magnetization vector M, and the polarizability vector 
P follow the elastic strains eij in a quasiequilibrium manner. 

The calculations are carried out using the model of two 
sublattices with constant absolute values of the magnetiza- 
tions. 

in which the longitudinal (in relation to the antiferromag- 
netism vector) magnetic susceptibility XII is zero. The model 
is applicable only for fairly low temperatures. 

These structures are characteristic of a large number of 
trirutiles (Fe2Te06, etc.) and rare-earth phosphates 
(HoP04, etc.) and vanadates (GdV04, etc.); see the litera- 
ture cited in Ref. l . I )  

The total thermodynamic potential density, 

consists of the magnetic contribution F m ,  the electropolar- 
ization contribution F ,  , the elastic contribution F ,  , the an- 
tiferromagnetic contribution FIe  , and the magnetoelectric 
contribution F,, : 

2. THE THERMODYNAMIC POTENTIAL + ~ ~ ~ e , , 1 ~ + 2 ~ ~ 1 , ( e , , ~ , + e , , ~ ~ ) + ~ ~ ~ ~ e , ~ ~ , ~ ~ ~  (4) 

Let us examine tetragonal antiferrornagnets that manifest The Cijklrnn in (4) for tetragOnal 

themselves in the following centrally symmetric exchange crystals are listed in Ref. 4. The magnetoelectric contribu- 

magnetic  structure^:^ tions as functions of the parity of the magnetic structure with 
respect to the 4, axis have the form' 

i ( - ) 4 2 ( + ) 2 d ( - ) = i ( - ) 4 ~ ( + ) 2 ~ ( - ) 9  (4z( + I ) F , , , =  - ~ 2 ( ~ x ~ x + ~ ~ ~ ~ ) ~ z -  ~ 3 ( ~ x ~ x  

i (  - )4,( - ) 2 d ( - ) ~ i ( - ) 4 ~ ( - ) 2 . ~ ( + ) -  +PyMy)lz- Y ~ ( ~ ~ M , + ~ ~ M ~ ) P ~  
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+ M y P x ) l z -  y 4 ( M r l y  + M ) , l x ) P z  (6) 

with y i ( i =  2-5) the magnetoelectric constants, which de- 
termine the magnetoelectric susceptibility: a= X K  y  (without 
indices), where x and K are the magnetic and dielectric sus- 
ceptibilities, respectively. 

Our goal is to establish the influence of the magnetoelas- 
tic effect on the anharmonicity of the specified antiferromag- 
nets as a function of the magnetic state (easy axis and easy 
plane) for different orientations of the magnetic and electric 
fields. 

We describe the idea behind the calculation, using the 
first of these cases as an example. 

3.1. Easy axis: H 11 E 11 L 1) z 

Owing to condition (2) only seven independent dynami- 
cal variables remain, for which in the given case we select 
the following: M , ,  M y ,  P,, P y  , P , ,  l , ,  and 1 , .  

We start by minimizing the quantity 
- 

F m p = F , + F P + F m p  (7) 

in P, M ,  , and M y ,  which enables expressing the vectors P 
and M in terms of I. Substituting the obtained expressions 
into (6),  we arrive at the following result for imp: 

where 

M y = M x (  as l x t l y ) ,  1 ~ - - - - 1 - 1 ~ - 1 ~ .  

In both Eqs. (8) and (9) we discard the terms in the R j  (i= 1, 
2, 3) that are proportional to ~ y ~ ~ l l , ~  , in view of their 
smallness. 

Below, when discussing nonlinear elasticity moduli 
through third order, we must write FIT,,, in an approximation 
quadratic in y j  to within fourth-order terms in 1,  and I , .  
Note that in this case the components 1, and 1 ,  do not belong 
to different sets of normal coordinates (these are the vari- 
ables l , r = ( l , + l z ) /  fi and l y , - ( - l X + l y ) / @ ) .  Hence it is 
convenient to transfer to a system of coordinates ( x l , y ' , z )  

rotated about the z axis by 45". In the "primed" system of 
coordinates we arrive at the following expression for 

Fnip + Fie : 

where we have introduced the notation 

a'XY4Kll r 

and 1:= + 1 or - 1 for domains with If lz and  If Jz. In Eq. 
(10) in terms containing the fourth powers of the components 
1,1 and 1 I we ignored the terms of the types yi 

2 Y 2  2 and XKII yII E because of their smallness. Minimizing then 
(10) in l X 1  and 1,  ,, we express these variables in terms of the 
strains e i j  that generate them in a quadratic approximation: 

Equations (11) were obtained in the approximation 
B ~ ~ e j j 4 K ,  K y  . 

Substituting Eqs. (12) into (10) and returning to the ini- 
tial system of coordinates, we find that here the nonlinear 
elasticity moduli C  , C  155 , C244, C2S5 , C 3 @ ,  C355 , and 
C4S6 are renormalized and that the following new nonzero 
effective elasticity moduli emerge: C I S 4 ,  C2S4, C354,  C6*1, 
and C6S5. Here and in what follows we introduce the nota- 
tion C a p ,  for third-order elasticity moduli, where a,  P,  and 
y  label in the usual way4 from 1 to 6 the pairs of indices i,j, 
each of which varies from 1 to 3. Below we also assume that 
the renormalized nonlinear moduli can be written in the form 
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Cap,= Cap,+ ACaP,(E,H), 

where the terms ACffp,(E,H) determine the renormalization 
caused by magnetoelastic and magnetoelectric interactions. 
In the case at hand for hCffpu we obtain 

for eaSr we have 

and the moduli e644= e655 and e354 can be obtained from 
(Eq. (14)) by replacing Bll+B12-2BI3 with BM and 

2(B31-B33). Here we have introduced the notation 
H ~ ~ , ~ / g ,  where g is the gyromagnetic ratio, and ol and 
w2 are the AFMR frequencies determined by the following 
expressions: ' 

W2 1,2-g - 2 [( J K ~ T H ) ~ - ( ~ ~ - ~ E ) ~ ] .  

As Eqs. (14) show, the new effective nonlinear elasticity 
moduli e154,  etc., are nonzero only if the magnetic and elec- 
tric fields are applied to the sample simultaneously, i.e., these 
moduli result from the magnetoelectric interaction. Formally, 
the new moduli arise because the effective anisotropy con- 
stants K, and K, (Eq. (1 1)) depend differently on the electric 
and magnetic fields. As shown in Ref. 1, this difference 
within the given geometry occurs only in antiferromagnets 
with an exchange magnetic structure that is odd with respect 
to the 4, axis and is related to a definite form of the magne- 
toelectric terms (6) in the thermodynamic potential. The con- 
dition for the stability of the state with 1 11 z can be formu- 
lated in terms of the following inequalities: 

This together with (1 1) implies that the threshold of stability 
in the fields E and H is determined by the equation 

Near this threshold the antiferromagnetic modulus CI54 

proves to be of the following order of magnitude: 

If we assume that B ,p- lo6 ergcm-3, 
~ ~ - 3 ~ 1 0 ' ~ e r ~ c m - ~ ,  H-1040e, E-lOesu, and 
a- then 

I C1541- lol*erg cmP3. 

For comparison we note that the ordinary anharmonicity of 
crystals is of order 10"-10'~er~cm-~. 

3.2. Easy plane: L 11 y, H 1) x, and E (1 z 

Since the procedure for calculating the renormalization 
of nonlinear elasticity moduli is described above rather thor- 
oughly, we list only the results in what follows. 

For the antiferromagnet of the easy-plane type discussed 
here it is convenient to take I , ,  I,, M , ,  M , ,  P , ,  P , ,  P , ,  
and e i j  as the independent variables. 

The expression for f,, in the approximation that is lin- 
ear in yi and up to fourth order in I i  ( i = x , z )  can be written 
as follows: 

where 

Q3= 

(1; = 2 1 for 180-degree domains). Now we assume 1; = 1. 
Then 

As a result the elastic moduli C166, C266, CI4' ,  C244, 
C344, and C456 become renormalized, so that 
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where 

where wl and w2 are the lower and upper AFMR 
frequencies.' The most strongly renormalized moduli are 
C 1 @  and C266, which are related to wl . The stability crite- 
rion for the state considered here is the requirement that the 
squares of the acoustic modes with k(ly be nonnegative, 
which determines the lowest possible values of the effective 
anisotropy constants: 

Hence in the vicinity of an orientational transition in the 
basal plane (where K , + B & / C ~ ) ,  the value of 
AC166(E,H) may become huge: 

Note that the above transition is achieved most easily for 
K2<0 (for the base anisotropy stated in Eq. (4)), when the 
direction Hllx is the difficult one in the basal plane and we 
approach the transition point from the range of values of H 
satisfying the condition 

In this geometry not only is the renormalization of the cor- 
responding nonlinear moduli the greatest but the moduli also 
exhibit a strong dependence on the fields E and H. 

As is well known? in tetragonal crystals the nonlinear 
moduli C3+, and C355 must be equal if the magnetoelastic 
and magnetoelectric interactions are to be ignored. The in- 
equalities (21) imply that only C344 is renormalized as a 
result of these interactions, while the nonlinear modulus 
C,, remains unchanged. This means that in easy-plane an- 
tiferromagnets the magnetoelectric and magnetoelastic inter- 
actions disrupt the symmetry in the relationships between 
nonlinear moduli rather than giving rise to new nonlinear 
moduli. 

4.1. Easy axis: E 11 H (1 L 11 z 

The independent variables are the same as in Sec. 3.1. To 
second order in the yi , the thermodynamic potential F,,, can 
be written as 

where 

In Eq. (24) we discarded the terms of type 
KII  yi y , ( ~ -  K~~ y o l : ~ ) 2 [ * ] ( 1 ~ +  1;)2  in view of their small- 
ness. For 1, and 1, we have 

And again, as in Eqs. (24)-(26), 1;= + 1 depending on the 
direction of 1 in the domain. In what follows we take a do- 
main with 1:= 1. 

Bearing in mind Eqs. (25), we find that the nonlinear 
moduli C144, C24.4, C155, C255, C344, C355, and C456 are 
renormalized, with 

The AFMR frequencies ol and w2 satisfy the following 
relationships: ' 
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Note that no new effective dynamical moduli emerge here, in 
contrast to antiferromagnets with an exchange magnetic 
structure odd with respect to the fourth-order symmetry axis. 

Equations (27) imply that effective dynamical moduli 
increase significantly near spin-reorientation transitions. For 
instance, since the condition for magnetoelastic stability of 
the state in question is the inequality 

the asymptotic value of the moduli CIS, and C2, may reach 
values of order 

if for the purpose of making an estimate we again assume 
Ba8- 10~erg/cm-~ and C44- 3 X l~"erg/crn-~. But observ- 
ing renormalizations of this order requires applying strong 
fields to the sample, so that in accordance with (28) 

Assuming that K - l ~ ~ e r ~ l c m - ~  and X -  lop3, we obtain 
H -  lo4 Oe. 

4.2. Easy plane: L 11 y, H 11 z, and E 11 y 

As in Sec. 3.2, we take l , ,  l,, M,, M , ,  P,, P , ,  P,,  
and e i j  as the dynamical variables of the problem. Here the - 
potential F,, can be examined in an approximation that is 
linear in y i ,  since acoustic magnetoelectric effects appear 
even in this approximation. As a result we have 

where 

In antiferromagnets of the type considered here the renormal- 
ized elastic moduli are the same as in Sec. 3.2. For the 
ACaB,/(E,H) we have expressions similar to (21) with 
AFMR frequencies (or H corresponding to the effective 
anisotropy constants K ,  and K of Eqs. (32). All that was said 
in Sec. 3.2 concerning the conditions and values of the renor- 
malizations of elastic moduli remains valid. Note also that 
here (and in Sec. 3.2, for that matter) the orientational tran- 
sition in the basal plane can occur along the field E for a 
given H. 

FIG. 1. 

5. EXAMPLES OF SCATTERING PROCESSES 

Here are some examples of nonlinear effects related to 
the anharmonic moduli Cap,, . 
5.1. The process related to e,,, e,,, and eta 

According to Eqs. (13) and (14), this process is possible 
for an antiferromagnet with the exchange magnetic structure 
i ( - ) 4 , ( - ) ~ ~ ( - )  in a state with Lllz. What is important 
here is that C1,, ClS5, els4 depend on both E and H, with 
the modulus ClS4 caused by the magnetoelectric interaction 
and finite only if EH # 0. For example, this can be the decay 
of a longitudinal phonon with a wave vector klllx into two 
transverse phonons with polarizations u211u311z, frequencies 
w2 and w3, and wave vectors k2 and k3 lying in the xy plane 
at the same angles 812 to the x axis (Fig. 1). With such 
directions of phonon propagation we find that 

and the corresponding frequencies determined from the 
equations of the elastic dynamics for the incident (o , )  and 
scattered ( 0 2  and 03)  waves have the form 

6,+ 6,,- 6,- C,,) sine 
(34) 

o2 - 2 
2.3-  PO 

where po is the density of the medium prior to strain, and 
6, and CS5 are determined by Eqs. (15) together with (11). 

Equations (33) and (34) imply that the synchronism con- 
ditions 

which represent the laws of conservation of phonon energ, 
and quasimomentum, can be met in such a geometry if 
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Here the difference in the frequencies o2 and w 3 ,  in accor- 
dance with Eqs. (1  5) and ( I  I), is due entirely to the magne- 
toelectric interaction, which leads to C M  # C S 5 .  Equations 
(36) were obtained in an approximation where 
c 9 E M -  C55 . The dependence of the anharmonic pro- 
cesses on E and H, a characteristic feature of magnetoelec- 
tric antiferromagnets, can be seen even in (36). This is espe- 
cially true in the region of orientational phase transitions. 
Moreover, the dependence of the moduli Cap, on E and H 
and their huge size is highly important for the intensity of 
these processes. 

Far from the region of the spin-flop transition, where 

we have C O S ~ ( ~ / ~ ) . = C ~ ~ / C ~  I and 

Here we have allowed only for the largest terms dependent 
on E and H. Equation (37) shows that one of the frequencies, 
w2 or w 3 ,  increases linearly with the electric field strength 
(at a fixed value of H) while the other decreases. 

In the asymptotic region of the spin-flop transition, 
where 644 or C55 tends to zero, the angle of divergence of 
the generated phonons can be found from the condition that 

and the frequencies w2 and w3 and the absolute value of the 
vectors k2 and k3 are determined by the following relation- 
ships: 

where the values of the external electric ( E) and magnetic i( - )4,( + )zd( - ) structures, only for the effective 
( H) fields in Eq. (38) must satisfy the condition (16). If an ,isotropy constants must we use the appropriate formulas 
orientational phase transition is achieved at such values of E  from (19) or (32). 
and H that B $ - ~ ) ~ ~ E H c ~ ,  then In this case collinear scattering of waves is possible, 

with k31 f k211kl (Fig. 2). The first wave with the frequency 
ol = kl is longitudinal, while the generated waves 
with the frequencies 

In the opposite limit, ~ $ 4 4 1  ~ I E H c ~ ,  the asymptotic val- 
ues of the excited waves are 0 2 3  = k2,3 

and contain no explicit dependence on the electric and mag- 
netic fields. 

The above process refers to the GdV04, DyP04, and 
HoP04 compounds (see the literature cited in Ref. I).  One 
must only bear in mind that the x axis mentioned above must 
be directed along the same symmetry axis 2 with respect to 
which the exchange magnetic structure is odd. 

5.2. The process related to EI6, 
Here we examine the case of an easy-plane antiferro- 

magnet, where the renormalized value of the modulus C1,j6 
and its dependence on E and H are especially important. The 
results refer to the same extent to both i ( - ) 4 , ( - ) 2 , , ( - )  

are transverse waves with polarizations u211u311y. 
The condition of synchronism (35) in this case leads to 

the following system of equations: 

FIG. 2. 
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Its solution yields the following values for the wave numbers 
and frequencies of the generated waves: 

The magnetoelastic and magnetoelectric interactions enter 
these expressions through the renormalized linear modulus 
CM,  which is given by the following expressions:' 

where, as noted earlier, K, must be taken from (19) or (32), 
depending on whether we are considering the 
i(-)4,(-)2,(-) or the i(-)4,(+)2,(-) structure. The 
asymptotic behavior of the wave numbers and frequencies at 
the orientational phase-transition point, where eM-+O, has 
the following form: k 2 , 3 + ~  and 0 2 . 3 4  0 1/2 . 

The above formulas can be applied in the given case to 
the trirutiles Cr2W06 and V2 W06 (4,(-)) and also to 
Cr2Te O6 (4,(+)); again see the literature cited in Ref. 1. 

6. CONCLUSION 

The investigations summarized in the present paper and 
Ref. 1 show that tetragonal antiferromagnel, to which 
trirutiles: rare-earth and vanadates7 belong, 
constitute interesting objects for studying their acoustic prop- 
erties. Among these compounds there are large groups of 
antiferrornagnets with different exchange magnetic proper- 
ties (say, the i ( -  )4,(+)2,(-) structure in the trirutile 
Fe2Te06 (Ref. 8) and the i(-)4,(-)2,(-) structure in 
Cr2W06 and V2WO6 (Ref. 9)) and in different magnetic 
states (L114, in Fez Te06 and LL 4, in Cq). Some of these 
have high Niel temperatures ON (ON=370 K for 
V2W06). Also important is the fact that these antiferromag- 
nets exhibit a magnetoelectric effect. Hence various acoustic 
phenomena can be observed in them, because they strongly 
depend on the exchange magnetic structure, the orientation 
of vector L in relation to the crystallographic axes, and the 
size and direction of the applied external electric and mag- 
netic fields. However, there have been no experimental stud- 
ies in the acoustics of these compounds. The literature has 
little or no data on measurement of magnetoelastic constants, 
static first- and second-order elastic moduli, anisotropy con- 
stants, and magnetoelectric constants in such antiferromag- 
nets. For this reason it is difficult to make numerical esti- 
mates of the effective anharmonicity with an accuracy 
greater than that achieved in this paper. Such calculations in 
the case of antiferrornagnets of the easy-plane type require 
knowing the magnetoelastic constants B I , B 12, and B66, 
the static elastic moduli C, , CM , C lM,  and C and, for 
the geometry adopted above, the constants K I ~  and y4 and the 
anisotropy constants K and K2. In the case of antiferromag- 
nets of the easy-axis type, for different exchange magnetic 
structures it is desirable to have the values of the constants 

B , B 1 2 r  B44, and B66, the constant K ,  the elastic moduli 
C,, C,,, C244, and C456, and also the values of X ,  K I I ,  

and y4, which together determine the value of a. 
The effective anharmonicity of the elastic subsystem in 

tetragonal antiferromagnets depends not only on the magne- 
toelastic interaction but also on the magnetoelectric. In easy- 
axis antiferromagnets with EIIHIIz, the contributions to the 
nonlinear elastic moduli related to the fields E and H prove 
to be different for exchange magnetic structures even and 
odd in relation to the 4, axis. For the i(-)4,(+)2J-) 
structure only the elastic moduli C14, C2,, C155, C255, 
C344, C355, and C456 are effectively renormalized, which is 
specified by Eqs. (13). Note that this renormalization is 
present even when E= H= 0. The effective anharmonicity 
strongly increases near spin-flop transitions, where, for ex- 
ample, e155 and C2, may reach values - 10'~erg/cm-~, 
which exceeds ordinary anharmonicity by a factor of ld. 
However, as Eq. (16) shows, observing such values of 
Cap, requires that a magnetic field H- 1040e be applied to 
the sample. 

For antiferromagnets with an exchange magnetic struc- 
ture odd with respect to a fourth-order axis, in addition to 
renormalization of the same moduli as in the previous case - - - - 
there are new dynamical moduli C154, C254, C345, C6,, 
and e655 (Eq. (14)), which are finite only if the fields E and 
H are nonzero. Thus, the emergence of these moduli is 
caused by the presence of magnetoelectric interaction in the 
tetragonal antiferromagnets considered here. The greatest 
values that these moduli may reach are - 1018 e r g / ~ m - ~  in 
the range of reorientation transitions, where the effective an- 
isotropy constants K, and K, become minimal. 

No marked differences in nonlinear acoustic properties 
exist in easy-plane antiferromagnets with structures 
i(-)4,(+)2d(-) and i(-)4,(-)2,(-). In both cases the 
constants renormalized for the geometry of the fields dis- 
cussed above are C 1,j6, C2%, C I,, Czar C3,, and C456. 
Note that far from orientational transitions, in all the cases 
considered here, the greatest effective anharmonicity sets in 
for the moduli C166 and C266. For instance, far from transi- 
tions the contribution to CIM from E and H is 

If we assume that Bop- lo6 e rg~cm-~,  I K I  - 10~erg/cm-~, 
a- E-10 esu, and H- 1040e, then 
ACIM(E,H)- 10'~erg/cm-~ and can be of the same order of 
magnitude as ordinary elastic anharmonicity. The values of 
C166 and CZ66 in the region of spin-reorientation transitions 
may be of order 10'~erg/crn-~. A transition of this type is 
most easily achieved for K2<0 in magnetic fields of about 
100 Oe. One more feature of antiferromagnets of the easy- 
plane type is worth noting. The magnetoelastic and magne- 
toelectric interactions in this case violate the symmetric re- 
lationship C344= C355 between the anharmonic moduli, since 
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according to (21) only the nonlinear modulus C344 is renor- 
malized. This means that when magnetic ordering emerges, 
the symmetry of an easy-plane state decreases. 

Only in centrally symmetric antiferromagnets has a large 
number of nonlinear acoustic phenomena been studied ex- 
perimentally and theoretically. Direct experimental measure- 
ments of third-order anharmonic moduli have been done in 
hemitite,1° excitation of the second acoustic harmonic in the 
orthoferrite TmFe03 has been experinlentally observed," 
and Raman scattering of sound in hemitite has been 
studied.'' 

In Sec. 5 we demonstrated that there can be a great va- 
riety of nonlinear effects in centrally symmetric antiferro- 
magnets. A characteristic feature of such media is that non- 
linear processes are affected not only by electric as well as 
magnetic fields. Hence the experimental study of the various 
anharmonic effects in such antiferromagnets makes possible 
a detailed study of the dependence on E of the frequency and 
intensity of the excited waves and of the values of the effec- 
tive nonlinear elasticity moduli. In view of this the field E 
may serve as one more parameter, in addition to the magnetic 
field, that can be used to control the processes of nonlinear 
wave interaction by changing, say, the conditions for syn- 
chronism. This fact could play an important role in applica- 
tions. 

Note that we have considered only the features of non- 
linear processes that follow directly from the synchronism 
conditions. Calculating the amplitudes and intensities of the 
interacting waves requires using the inverse scattering 
method, following the ideas of 2akharov13 and allowing for 
the explicit form of the moduli Cap,,. The explicit form of 
these moduli must be allowed for because this makes it pos- 

sible to analyze the magnitudes of the amplitudes and inten- 
sities of the excited waves near an orientational phase tran- - 
sition, where the Cap, may reach huge values. 
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l'ln contrast to Ref. I, here the parity of exchange magnetic structures with 
respect to the symmetry element g is written in the form g ( + )  rather than 
g'80 state (see Ref. 3). 
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