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The melting of a two-dimensional electron crystal and a system of hard disks, and also of a 
system of vortices in a superconductor, is considered within the scope of the microscopic theory 
based on the method of the density functional in the theory of crystallization. Estimates are 
obtained for the instability points of the crystalline and hexatic phases whereby it is shown that the 
systems with long-range potentials-the two-dimensional electron gas and the system of 
vortices-melt by means of two continuous transitions, while the system of hard disks melts by 
means of a first-order transition, but the hexatic phase is absent. O 1995 American 
Institute of Physics. 

I. INTRODUCTION 

The nature of two-dimensional melting has been the sub- 
ject of intense discussion in the past 20 years.1 Significant 
progress in the understanding of melting in two dimensions 
was achieved after the appearance of the theory of Halperin 
and  els son^ and young3 based on the ideas of Kosterlitz and 
Thouless4 (KTHNY theory). This theory predicts that in the 
two-dimensional case the transition can fundamentally differ 
from melting of bulk three-dimensional systems. It has been 
shown that the transition between a crystal and an isotropic 
liquid can take place by means of two continuous transitions 
corresponding to dissociation of dislocation and disclination 
pairs, respectively. The low-temperature solid phase is char- 
acterized by a power-law falloff of the correlation function of 
the translational order parameter (quasi-long-range transla- 
tional order), wherein the system possesses long-range order 
in the orientation of the local crystallographic axes (orienta- 
tional order). Dissociation of dislocation pairs gives rise to a 
phase characterized by the absence of quasi-long-range 
translational order but possessing quasi-long-range orienta- 
tional order in which the shear modulus of the new phase 
p is equal to zero. This intermediate phase has been termed 
hexatic. The properties of the hexatic phase are reminiscent 
of the properties of a nematic liquid crystal, except that the 
role of the anisotropic molecules is played by hexagonal 
clusters consisting of a molecule and its immediate environ- 
ment. In the hexatic phase there exist bound disclination 
pairs (free dislocations), whose dissociation at some higher 
temperature Ti leads to a transition of the hexatic phase to an 
isotropic liquid. 

KTHNY theory has been confirmed by experiments in- 
vestigating the behavior of a system of electrons on the sur- 
face of liquid helium: computer simulations of two- 
dimensional electron computer simulations of the 
behavior of a system of defects in a solid body: and experi- 
ments with a system of charged polystyrene spheres1' (how- 
ever, it should be noted that in the latter case the visually 
observable topological defects are quite complicated and do 
not coincide completely with the simple picture of melting 
suggested by KTHNY theory). 

At the same time, melting of a two-dimensional system 

can also take place by means of a single first-order transition 
as in three dimensions. Many theories predict a first-order 

Some of based on the density- 
functional method in the theory of do not take 
fluctuations of the order parameter and associated possible 
melting mechanisms into account, and their ability to predict 
the order of the transition is therefore problematical. In this 
regard, when the transition really is a first-order transition 
and longwave fluctuations do not play a defining role, these 
theories are capable of giving a good qualitative description 
of melting. We will return to this question below. 

The possibility of describing both two-stage melting and 
melting by means of a first-order transition by means of one 
model has been examined by Kleinert et in a series of 
papers and also by one of the present  author^.^' References 
18 and 19 propose a model that considers, in addition to the 
standard elastic energy, the orientational rigidity of the lattice 
1. Using the Monte Carlo approach, they showed that as 1 
increases, crossover takes place from melting by means of a 
first-order transition to two-stage melting by means of tran- 
sitions of the Kosterlitz-Thouless type. A similar model was 
examined in detail in Ref. 20, where it was shown that there 
exists a critical value 1, of the rotational rigidity, above 
which the system always melts by means of two continuous 
transitions. For 1 < 1, (including the standard case 1 = 0) the 
system melts by means of two continuous transitions if the 
energy of a disclination nucleus Ed is larger than the critical 
value E j  , whereas for E d < E j  melting takes place as a 
first-order transition. This result agrees with the results of 
computer simulations of the behavior of systems of 

A number of experiments investigating the behavior of a 
system of adsorbed atoms indicate the impossibility of inter- 
preting the transition within the Kosterlitz-Thouless- 
Halperin-Nelson-Young theory and appear to demonstrate a 
weak first-order t ran~i t ion .~~ The majority of efforts at com- 
puter simulations of two-dimensional melting show that two- 
dimensional systems with a short-range potential melt by 
means of a first-order transition (see, for example, Refs. 1 
and 23 and the references therein). A study of systems with a 
potential of the form l lr", 3 S n S 6  leads to a similar 
conc~us ion .~*~~  
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Consequently, one may conclude that the type of melting The order parameters pc(r) vary weakly over distances 
is mainly determined by the type of potential, where the of order G - '  and have an amplitude and phase: 
first-order character of the transition becomes less pro- 

iGu(r) 
nounced with softening of the potential. In Ref. 25 it was P G ( ~ ) ' P G ~  - 
shown that for a potential of the form IlrN in the two- 
dimensional case the volume cannot change discontinuously 
during melting for n<2. This result suggests that melting of 
a two-dimensional electron system with an interaction poten- 
tial of the form llr can differ significantly from standard 
three-dimensional melting. It is probable that the system 
melts by means of continuous transitions for soft potentials 
of the form Ilr, but for short-range potentials melting takes 
place as a first-order transition. 

This conclusion may be illustrated by the following 
simple, qualitative picture (which is far from obvious from 
theories which consider the behavior of dislocations and dis- 
clinations in a solid body1). As was mentioned above, there 
exists an analogy between the hexatic phase and a nematic 
liquid crystal; however, the role of rodlike molecules is 
played by hexagonal clusters consisting of a central particle 
and its nearest neighbors. These clusters can be ordered only 
if the interparticle interaction is sufficiently long-range to 
ensure effective interaction between the clusters, i.e., the in- 
terparticle interaction should extend out at least a few inter- 
particle distances in order for the hexatic phase to be able to 
exist. Thus, the hexatic phase is possible in systems with a 
short-range interaction. However, only a microscopic treat- 
ment can show to what extent this qualitative picture corre- 
sponds to reality. 

In the present paper we present microscopic estimates 
for the limits of stability of the crystalline and hexatic phases 
for two systems: a two-dimensional classical system with 
interactions of the form llr which describes the behavior of 
a system of electrons above the surface of liquid helium, and 
a system of hard disks. Note that these systems are two op- 
posite limiting cases of a llrn potential, namely n= 1 and 
n=m. We will also briefly discuss melting of a lattice of 
vortices in two-dimensional superconductors, the interaction 
potential between which is long-range, but differs from the 
simple llr form. A brief exposition of some of the results 
presented here was given in Ref. 26. 

2. MICROSCOPIC DESCRIPTION OF SYSTEM PARAMETERS 

First we define the order parameters which we will need 
to describe the transitions. 

At T =  0 the local density of the system, proportional to 
the single-particle distribution function, has the symmetry of 
a two-dimensional crystal lattice and can be expanded in a 
Fourier series over the vectors of the inverse lattice G, where 
the Fourier coefficients are the order parameters for the 
liquid-crystal transition. At TZO the long-range order is 
washed out by thermal fluctuations, and for low enough tem- 
peratures the Fourier series expansion is preserved, but the 
Fourier coefficients acquire a dependence on r: 

Here u(r) has the meaning of a displacement field in the 
crystal. In two dimensions the phase of the order parameter 
fluctuates the most strong1~,2~ so in what follows we will not 
consider fluctuations of the magnitude. The displacement 
field can be expanded into two parts, one of which varies 
smoothly and corresponds to a background field while the 
second is singular and corresponds to the dislocations and 
disclinations. 

In terms of these order parameters melting can be de- 
scribed in the following way: at T=O long-range transla- 
tional and orientational order exists. For T>O the long-range 
translational order in the system is destroyed by the smooth 
phase fluctuations and is converted into a quasi-long-range 
order, characterized by a slow power-law falloff of the cor- 
relation function of the order parameter, while the long-range 
orientational order in the system is preserved and the shear 
modulus satisfies p#O. As the temperature in the system is 
increased there appear free dislocations, corresponding to 
singular fluctuations (vortices) of the phase of the order pa- 
rameter. The appearance of free dislocations means that the 
system ceases to offer any resistance to shear (p=  0 ) ,  i.e., it 
becomes a liquid. The temperature Tm at which free disloca- 
tions appear is the melting temperature. It should be empha- 
sized that the absolute value of the order parameter does not 
vanish at T ,  , but the quasi-long-range order in the system is 
destroyed by the singular fluctuations of the phase of the 
order parameter. The absolute value of the order parameter 
goes to zero at some temperature T M F ,  which can be deter- 
mined by equating the free energies of the liquid and solid 
phases as functionals of the order parameter (or the local 
density). These functionals do not take account of the fluc- 
tuations of the order parameter, so the temperature TMF cor- 
responds to a transition in the mean field approximation. Two 
cases are possible: 1) Tm< T,, , the system melts by means 
of two continuous transitions of Kosterlitz-Thouless type; 2) 
Tm< Tm , the system melts by means of a first-order transi- 
tion. (Note that it is specifically the temperature TMF that was 
considered in the theory of ~arnakrishnan" as the melting 
temperature of a two-dimensional crystal.) 

To obtain the free energy of the solid phase as a func- 
tional of the local density, we use the density functional 
method in the theory of ~r~s ta l l iza t ion . '~~ '~  In the contempo- 
rary version of this method the properties of the initial sys- 
tem are included in the theory via a two-particle direct cor- 
relation function (or the statistical structure factor) of the 
isotropic The majority of current applications of the 
density functional method16 use a simple parametrization of 
the local density p(r) as a sum over the lattice: 

where the function q(r)  describes the density distribution in 
the vicinity of the site R,, and q(r-Ri) is chosen in the 
form of a spherically symmetric Gaussian distribution: 
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This function is in good agreement with the single-particle 
density obtained in a computer simulation even for a strongly 
anharmonic system of hard disks. The parameter a is the 
localization parameter: the case a= 0 corresponds to the 
limit of a homogeneous, isotropic liquid, and an increase in 
a corresponds to greater localization of the particles relative 
to the lattice sites. Taking the Fourier transform of Eq. (2), 
we obtain an expression for the absolute value of the order 
parameter: 

where p=(l/V)$drp(r) is the average density of the sys- 
tem. To calculate the free energy F ,  we make use of a simple 
but accurate effective-liquid approximation.29 In this ap- 
proximation the difference between the free energy of a solid 
body and a liquid with the same density, A F ,  has the form 
(P= llkBT): 

where c(')(r;iELA) is the painvise direct correlation function 
of the "effective" liquid with density jELA, which corre- 
sponds to a solid body with mean density p. Here the effec- 
tive density GELA is chosen so that the direct correlation func- 
tion (structure factor) of the effective liquid optimally 
models the direct correlation function of the solid body. To 
achieve this result, bELA is defined by the condition that the 
position of the first peak of the static structure factor of the 
effective liquid should coincide with the smallest inverse lat- 
tice vector of the solid body with mean density p. (Recall 
that the static structure factor S(q) is related to the Fourier 
transform of the direct correlation function C"(')(q) by the 
relation (see, for example, Ref. 30) S(q)= (1 - C"(2) 
X (9))- I.) The effective liquid approximation has been em- 
ployed to study crystallization of various three-dimensional 
systems, in which good qualitative and quantitative agree- 
ment with the results of computer simulations were 
~btained.'~.'~ 

The localization parameter a is defined by the condition 
that AF have a local minimum with respect to a, and the 
temperature Tm is defined by the condition AF=O at a 
corresponding to the minimum of the free energy. 

The intensity of the interaction of the dislocations in the 
lattice is equal to the following dimensionless quantity (see, 
for example, Refs. 2 and 4): 

where p and A are the ordinary Lami coefficients and a. is 
the lattice constant. According to KTHNY theory, K de- 
creases with increase of temperature until it reaches the value 
16v, at which the system becomes instable with respect to 
the formation of free dislocations. In this case the shear 
modulus p (and thus K) vanishes abruptly and the lattice 

melts into the hexatic phase. We denote the temperature at 
which this occurs as Tnl , and the equation for it has the 
obvious 

where p(T) and A(T) are the Lamd coefficients, renormal- 
ized to take account of bound dislocation pairs. In order to 
use Eq. (6), it is necessary to know the microscopic expres- 
sions for the nonrenormalized Lami coefficients. These ex- 
pressions were obtained by the authors of Ref. 31 by com- 
paring the long-range behavior of the correlator of the order 
parameter, calculated with the help of a phenomenological 
expression for the elastic energy: with the asymptotic behav- 
ior of the analogous correlator obtained from the statistical 
mechanical equation for the painvise distribution function. 
For short-range potentials, expressions were obtained in Ref. 
31 for the elastic moduli which correspond to fluctuations 
with wave vector equal to the smallest inverse lattice vector. 
Generalization to the case of an arbitrary number of inverse 
lattice vectors leads to the following expression for the Lam6 
coefficients: 

where 

Jo(x) and J l (x)  are the Bessel functions, and mG is the 
number of inverse lattice vectors having the same length. 

In the case of the long-range Coulomb interaction, an 
additional term arises in the elastic ~amiltonian?' which 
makes the effective modulus X diverge, A = 03, but the ex- 
pression for p remains constant and is given by Eq. (7). In 
this case the expression for K takes the form 

Let us now determine the order parameters and micro- 
scopic expressions for the quantities characterizing the prop- 
erties of the hexatic phase. To determine the order param- 
eters of the hexatic phase, we consider the two-particle 
conditional distribution function F2(r l  1 ro) = F2(rl  , r,)l 
Fl(ro) ,  which determines the probability of finding a par- 
ticle in the vicinity of the point r l  if the other particle is fixed 
at the point ro. Here F2 ( r l  ,ro) and F ,(ro) are the two- 
particle and one-particle distribution functions, respectively. 
In a homogeneous, isotropic liquid F,(r)= 1, F2(r,  ,ro) 
=g(lr,  -rol), where g(r)  is the radial distribution function. 
Let r,  and ro be the position vectors of nearest neighbors: 
r, - ro = a. . With the appearance of long-range order, the 
isotropy of the two-particle distribution function is destroyed 
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in the direction of the bonds q, (by a bond here we under- 
stand a vector joining a particle with one of its nearest neigh- 
bors). We write the anisotropic part of the two-particle dis- 
tribution function F2(r l  ,ro) in terms off ( r l  I ro): 

The function f ( r l ( ro)  has the symmetry of the local en- 
vironment of the molecule at ro and in the two-dimensional 
case can be written in the form 

where the angle cp defines the direction of the vector q,. The 
function f(ao ,ro, cp) can be expanded in a Fourier series: 

The Fourier coefficients fm(ao ,ro) are the order param- 
eters of the anisotropic phase. They vary slowly with ro and 
have amplitude and phase 

As in the case of the single-particle distribution function, 
it is possible to neglect the amplitude fluctuations in com- 
parison with the phase fluctuations. In the case of the hexatic 
phase the main order parameter corresponds to m = rt 6, and 
we limit ourselves to these values in expansion (13). 

The hexatic phase is described by the phenomenological 
~amiltonian:~ 

where KA(T) corresponds to the Franck constant in liquid 
crystals. The angle o(ro),  which defines the direction of the 
bonds, can be represented in the form of a sum of two 
terms: one of which corresponds to the slowly varying field 
of the order parameter, and the other to the singular field of 
topological defects or ensemble of disclinations. Here 
KA(T) serves as a measure of the interaction between the 
disclinations in the hexatic phase. The disclination pairs dis- 
sociate at the temperature Ti,  at which the Franck constant - 
KA(T), renormalized for the bound disclination pairs, van- 
ishes discontinuously. The equation for Ti has the form2'20 

It can be seen from this equation that to determine the 
transition temperature Ti it is necessary to know the value of - 
the renormalized coupling constant KA(T), which can be 
obtained by solving the Kosterlitz-Thouless renormalization 
group equations with the microscopic expression KA(T) as 
the initial value. We have proposed a method of calculating 
this quantity in a recent paper?1 based on comparing the 
long-range behavior of the correlation function of the order 
parameter (14), calculated with the help of the phenomeno- 
logical Hamiltonian (15), with the asymptotic behavior of the 
solution of the microscopic equation for the four-particle dis- 
tribution function. The expression for the Franck constant 
KA(T) has the form3' 

where a:= 21 fip. The function T(r ,  , r 2 ,  cp) was introduced 
in our earlier papers,33.34 which addressed orientational or- 
dering of the bonds in simple liquids, and has the form 

-rol)...g(lrk+l -rol)d2r3 ...d2rk+l. 

(18) 

where Sk+ l ( r l  ,..., r k +  is the sum of irreducible Mayer dia- 
grams of order k +  l, r l=lr l -rol ,  r2=)r2-ro), and Q is the 
angle between the vectors rl and r2. 

To obtain an approximation for r (r , r2 ,Q), we expand 
the function (18) in a functional Taylor series in powers of 
h(r) = g(r) - 1 : 

Dropping terms with n 3 3  in the expansion (19), we obtain 

r ( r l  .r2,cp)= p ~ ( ~ ) ( l r ~ - r 2 1 ) .  (20) 

Note that the approximation (20) corresponds to the 
well-known hyperchain approximation in classical statistical 
mechanics.30 In this approximation, Eq. (17) has the form 

where 

To obtain an equation for the absolute value of the order 
parameter, we make use of the exact equation for the condi- 
tional two-particle distribution function F2(r I  lro), which has 
the form33*34 

pF2(r,Iro) 
= exp - P@(r l  - ro) 

z I 

where z is the activity. Substituting expression (12) in Eq. 
(22) and employing the normalization condition 
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( ~ / ~ ) $ ~ ~ ( r , l r ~ ) d r ,  = I, within the framework of the hyper- 
chain approximation we obtain the following equation for 
the absolute value of the order parameter f 6 :  

As in the case of the standard theory of the density func- 
tional, this equation corresponds to the minimum of the free 
energy functional. 

3. MELTING OF A TWO-DIMENSIONAL CLASSICAL WIGNER 
CRYSTAL 

Let us now consider melting of a two-dimensional elec- 
tron crystal. To investigate the properties of this system, it is 
convenient to introduce the dimensionless parameter 
r=  6 e 2 l k B ~ ,  which characterizes the ratio of the mean 
kinetic energy to the mean potential energy and completely 
determines the statistical properties of the system. Using the 
parameter r corresponds to a rescaling of length: 
r' = ( E ~ / ~ ~ T ) -  'r. In the reduced units the average density is 
p=r2/rr. 

The existence of the Wigner crystal was first demon- 
strated experimentally by Grimes and  dams; who consid- 
ered a system of electrons on a surface of liquid helium, 
where the electron density is so low that exchange effects 
can be neglected and the system can be treated as purely 
classical. They showed that a Wigner 2D crystal melts at 
rEP= 1372 15. All later experimental results for this 
system6 lie in this interval. These results have been discussed 
theoretically by a number of a ~ t h o r s ~ ~ ~ ~ ' ~ ~ ~ ~ , ~ ~  who have ob- 
tained fair agreement with experiment by taking account of 
the renormalization of the elastic constants p and A due to 
the background anharmonicity and the bound dislocation 
pairs and by using the Kosterlitz-Thouless criterion (6). 
However, the criterion (6) in principle determines only an 
upper bound on the transition temperature and does not ex- 
clude the possibility of a first-order transition at a tempera- 
ture below T,,, . More convincing arguments in favor of the 
possibility of melting by means of two continuous transitions 
can be obtained from an analysis of the stability of the 
hexatic phase. Note that a microscopic expression for the 
Franck modulus of the hexatic phase was obtained only re- 
cently by the  author^,^' so that estimates for hexatic phase- 
isotropic liquid transitions are absent in the literature with 
the exception of preliminary results obtained in Ref. 51 for a 
system of vortices in a two-dimensional superconductor. In 
the present paper we have undertaken an effort to obtain 
estimates of the melting parameters and of the hexatic 
phase-isotropic liquid transition for a two-dimensional clas- 
sical system of electrons using Eqs. (7) and (21). 

In order to use Eqs. (7) and (21), it is necessary to have 
an expression for the direct correlation function ~ ( ~ ) ( r ' ; p ) .  
Unfortunately, exact analytic results for the function c ( ~ )  
X(rr;p) do not exist at the present time; therefore, in the 
present work we assume a simple approximation for the di- 
rect correlation function which is constructed in the follow- 
ing way: we take the long-range behavior of the approximate 
function to coincide with the first term of the high- 

temperature expansion of the exact direct correlation func- 
tion, i.e., in the reduced units r '  the long-range behavior of 
d 2 ) ( r  ;p) has the form 

The direct correlation function is finite for all r ' ;  therefore, 
in order to model its short-range behavior we assume that an 
effective diameter deff exists such that ~ ( ~ ) ( r ' ; p )  is continu- 
ous at r l=def f ,  has the form (24) for r t>def f ,  and can be 
written for r '  <deff in the form 

where c-(r l ;p)  is a function which is finite at r l = O .  The 
exact form of the function E(rl;p) is unknown and is chosen 
on the basis of additional considerations although, as will be 
shown below, the results depend only slightly on the behav- 
ior of the direct correlation function in the region of small 
r'. In the spirit of the effective liquid approximation'7329 the 
effective diameter deff is defined by the condition that the 
position of the first peak of the static structure factor coin- 
cide with the smallest inverse lattice vector. The position of 
the first peak of the structure factor is determined mainly by 
the short-range part of the direct correlation function (25), 
while the height of this peak is determined by the long-range 
part. By virtue of this, thanks to the effective liquid approxi- 
mation, the melting parameters of a classical electron system 
should depend rather weakly on the exact form of the short- 
range part of the direct correlation function 2(r1 ; p). 

In order to carry out actual calculations, in analogy with 
the mean sphere approximation we take E(rl;p) in the form 
of the direct correlation function cg3(r1;p) for a system of 
hard disks of diameter deff. The physical meaning of this 
choice is that at the given temperature most of the particles 
cannot approach one another closer than by some distance 
less than deff, by virtue of which it may be assumed that the 
direct correlation function of a system of electrons is well 
approximated by a combination of two parts, one of which 
corresponds to the long-range part of the potential and is 
given by formula (24), and the other, to the presence of a 
"quasirigid" core, whose diameter depends on r. 

For c$j(r1;p) we use the approximate analytic expres- 
sion obtained in Refs. 15 and 39: 

where c2 = 0.128, a 2 (  77) = - 0.2836+ 0.273377, and 
v= 1rpd:~44. 

In this case the mean-field thermodynamic instability 
AF=O (see Eq. (4)) sets in at rMF=21.62. This value is 
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much lower than the values of I' experimentally observed 
and also obtained by computer simulation. Thus, one may 
expect that the picture of melting of a two-dimensional sys- 
tem of electrons differs from the standard first-order transi- 
tion corresponding to the condition A F  =O. Note that pre- 
cisely this value of T would have been obtained froni 
Ramakrishnan's theory1' (or the analogous theories set forth 
in Refs. 17 and 15) if they had been applied to a description 
of the melting of a classical 2D Wigner crystal. 

Invoking the Kosterlitz-Thouless criterion (6) and Eqs. 
(7) and (1 I), we obtain riT= 80.07. Equation (7) allows one 
to estimate the renormalization of the shear modulus p due 
to the background anharmonicity. The ratio of p(T) at the 
melting temperature to the shear modulus at zero tempera- 
ture, , ~ ( 0 ) = 0 . 2 4 5 0 6 5 e ~ ~ ~ / ~  (see, for example, Ref. 7), has 
the form p(T)lp(0)=0.98. This value is greater than that 
obtained by other a ~ t h o r s ~ , ' ~ , ~ ~  who have studied the influ- 
ence of phonon-phonon interactions on the shear modulus. 
In our view, this discrepancy is a result of the approximation 
(24) for the long-range part of the direct correlation function, 
which leads to the result that the long-range part is extremely 
"rigid." One possible way of correcting this result is to use 
the ring approximation, which is well known in statistical 
plasma physics, to calculate the long-range part of the direct 
correlation function. In this case the long-range part of the 
direct correlation function "softens," which should reduce 
the ratio p(T)lp(O) and increase T y  at the transition point. 

In order to demonstrate the stability of the results with 
respect to the choice of the form of the function E(rl;p), let 
us consider the simple "rectangular" approximation for this 
function: we assume E(rl;p) = - lldeff at r lSde f f ,  for which 
the long-range part of the direct correlation function is given 
by expression (24). In this case Ty=79.6. Thus, variation 
of the form of the short-range part of the direct correlation 
function leads to an insignificant change in the transition 
parameters. As was already mentioned, such stability is to a 
significant extent the result of using the effective-liquid ap- 
proximation. Of course, the above considerations do not rig- 
orously prove that the magnitude of the melting parameters 
depends weakly on the unknown exact form of the short- 
range part of the direct correlation function; however, they 
can serve as a convincing illustration of this fact. Note that, 
in contrast to the short-range part, the long-range part of the 
direct correlation function has been determined quite well. 
Therefore, using other approximations should not lead to a 
qualitative change in the results. 

These results for the melting parameters and the shear 
modulus p do not take account of renormalization of ,u due 
to bound dislocation pairs. To estimate this renormalization, 
we use the renormalization group equations, derived for the 
case of two-dimensional melting by Halperin and  els son: 
and expression (7) as the initial condition. The initial value 
for the activity y =e-Ec'k~T can be obtained by using the 
estimates for the energy of the dislocation nuclei E, obtained 
in Ref. 35 for the case T= 0 and assuming that the energy of 
the dislocation nuclei decreases due to the background an- 
harrnonicity in the same proportion as the shear 
i.e., E,= ~ , u a : / 4 ~ ,  where C= 4.8820.98. For C= 4.0, we 
obtain r,,= 114.22. Note that this value corresponds to the 

reduced value of the localization parameter 
& = ~ 1 l ( e ~ / k ~ ~ ) ~ = 4 3 . 6 8 ,  i.e., the crystalline structure in 
front of the melting line corresponding to the appearance of 
free dislocations in the system is well defined. The above 
value of the parameter I',, is lower than the experimental 
results and results of computer simulations; however, they 
are in good qualitative agreement, and besides, as was men- 
tioned above, they can be improved by using the ring ap- 
proximation to calculate the asymptotic behavior of the di- 
rect correlation function. 

Let us now estimate the instability parameters for the 
hexatic phase. Using Eqs. (16), (21), and (24), (25), we ob- 
tain rKT=24.07. However, this value does not take into ac- 
count the renormalization of the Franck constant KA(T) due 
to bound disclination pairs, i.e., it corresponds to an infinite 
energy of the disclination nucleus Ed=w. TO estimate this 
renormalization, one can use the renormalization group 
equations, analogous to the Kosterlitz equations for the case 
of a planar magnet.27 In this case the transition temperature 
Ti is found from the intersection of the line defined by the 
initial conditions with the "entering" separatrix of the cur- 
rent diagram of the renormalization group equations. The 
equation for Ti has the form 

Unfortunately, at present there are no microscopic esti- 
mates of the energy of the disclination nucleus Ed in the 
hexatic phase; however, using the Hamiltonian (15), in anal- 
ogy with the result of Ref. 14 one can obtain an estimate for 
the energy of the disclination nucleus in the form 
Ed= E?rKA(T)/72, where E-3. This value of the energy of 
the disclination nucleus corresponds to Ti= 25.86. Thus, 
within the framework of the proposed theory we have 
T,>Ti although decreasing E narrows the existence region 
of the hexatic phase. 

To illustrate the stability of the results with respect to the 
choice of the form of the short-range part of the direct cor- 
relation function E(rl;p), as in the melting case, we make 
use of the "rectangular" approximation for E(rl;p) de- 
scribed above. In this case Ti=22.84 for Ed=w, i.e., as has 
already been discussed, the results depend only weakly on 
the form of the short-range part of the direct correlation func- 
tion. 

4. MELTING OF A SYSTEM OF HARD DISKS 

In this section we will briefly discuss melting of a sys- 
tem of hard disks. Beginning with the classic work of Alder 
and wainwright4' it has been assumed that a system of hard 
disks melts by means of a first-order transition. However, 
during the entire time since the appearance of Ref. 40 this 
question has been the subject of intense discussion, and only 
recently have convincing proofs of this fact been obtained.23 
The application of the density functional method to this 
problem has yielded good qualitative and quantitative agree- 
ment with the results of computer simulations; however, the 
instability with respect to dissociation of dislocation pairs 
and the possibility of the existence of the hexatic phase have 
not been examined. 
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Using the direct correlation function (26) and the condi- 
tion A F = O  [see Eq. (4)] ,  we obtain ps=0.933 for the tran- 
sition density. This quantity should be compared with the 
value pyP=0.921 obtained by computer sin~ulation.~~ Thus, 
a treatment in the mean field approximation leads to good 
agreement with the results of computer simulation, which is 
characteristic of first-order transitions. Using Eqs. (9, (7) ,  
and (8) ,  we can calculate the value of the dislocation cou- 
pling constant in the lattice K. At the transition point we 
obtain K 1 1 6 7 ~ 4 . 7 9 7 .  This is substantially larger than the 
value Kll6n-= 1 at which dissociation of dislocation pairs 
takes place. Renormalization of the coupling constant K to 
account for bound dislocation pairs can substantially lower 
its value; however, using the renormalization group equa- 
tions and assuming that thermal effects renormalize the en- 
ergy of the dislocation nucleus by the same factor as K ,  i.e., 
Ec=EK/16n-, it can be shown that fulfillment of the condi- 
tion K ( T ) =  16a  can hold for E-0.996. This value is much 
smaller than the value below which, according to various 
 estimate^,"^'^^'^' melting should take place as a first-order 
transition. 

However, an even more convincing argument in favor of 
the assertion that a system of hard disks melts by means of a 
single first-order transition is provided by an analysis of the 
possible existence of the hexatic phase. Invoking Eq. (21), 
we obtain the result that for a system of hard disks the 
Franck constant satisfied KA(T)<O at all densities and, ac- 
cording to the simple physical picture given in the Introduc- 
tion, the hexatic phase cannot exist in a system of hard disks. 

5. MELTING OF A VORTEX LATTICE IN A 
TWO-DIMENSIONAL SUPERCONDUCTOR 

In this section we will discuss melting of a vortex lattice 
in a two-dimensional superconductor according to the theory 
presented above. Melting of a vortex lattice has been the 
subject of intense discussion in recent years; however, up to 
the present time there is no single point of view on the nature 
of melting in this system. In a number of papers (see, for 
example, Refs. 51, 41-43) it was assumed that the system 
melts by means of two continuous transitions in accordance 
with the KTHNY theory. At the same time, the authors of 
Refs. 44 and 45 come to the conclusion that the transition 
can be first-order, but close to second. We also note Refs. 46 
and 47, whose authors, on the basis of a Monte Carlo simu- 
lation of a system of vortices in the high-temperature region, 
came to the conclusion that a vortex lattice does not melt. 
Thus, not only the type of the transition, but even the very 
existence of vortex lattice melting, remains an open question. 

In this superconducting films the interaction energy of 
two vortices located at the points ri  and r j  
( r i j =  lri- r,l S 5) has the 

4 
( r , )  r i j + A ,  

4n- r i j  

where h ( T )  = 2 h i ( ~ ) l d  is the effective penetration depth, d 
is the film thickness, AR is the bulk penetration depth, 
c p o =  hcl2e is the flux quantum, Ho(x)  is the Struve function, 
and Y o ( x )  is a Neumann function. 

The potential (28) is long-range (it is even "softer" than 
the Coulomb potential l l r ) .  One might therefore expect, in 
accordance with the above discussion of two-dimensional 
melting, that a vortex lattice will melt by means of two con- 
tinuous transitions. 

The mean density ( n )  of the vortices in the system is 
related to the induction by the equation B =  cpo(n). In the 
case of a thin film, the demagnetization factor N--t 1 as 
dlR+O, where R is the characteristic dimension of the sys- 
tem, i.e., in the limit dlR-+O the vortex density has the form 

where H is the external magnetic field. With the help of Eq. 
(29), the melting curve of the vortex lattice can be con- 
structed in the coordinates ( T , H ) .  

Note that the region of applicability of the vortex lattice 
melting theory using the potential (28) is bounded by the 
case of not-too-large fields, whose magnitude is determined 
by the condition c ( T ) < a o  o: (n)-I"= (cp l~) '" .  

In order to construct the melting curve of a vortex lattice 
using the potential (28), we use an approximation analogous 
to Eqs. (24) and (25): 

2 ; ( n ) ) =  ( r )  for r 3 d e f f ,  (30) 

de f f  is determined with the help of the effective liquid ap- 
proximation. We take the short-range part of the direct cor- 
relation function E(r;(n))  in the simple "rectangular" form: 

d 2 ) ( r ; ( n ) )  = - /?@(deff )  for r<def f  

(as has already been discussed for the case of a two- 
dimensional electron crystal, this result depends only slightly 
on the exact form of the short-range part). 

By virtue of the long-range character of the interaction, 
the coupling constant of the dislocations is given by Eq. ( 1  1). 

On the basis of the formulas we have obtained we have 
calculated the melting of a vortex lattice for the specific case 
of a niobium film of thickness 20 A , which was investigated 
in detail experimentally in Ref. 49, from which we have 
taken the necessary parameters: t ( t )  = &O)/  G, 
X , ( t ) = X ( O ) l f i ,  t=TIT, ,  Tc=3.66K, c ( 0 ) = 1 0 4 a ,  
X(0)  1600 , and dHc2 ldT= 7 kG1deg. Unfortunately, at 
the present time reliable estimates of the energy of the dis- 
location nucleus E,  in a vortex lattice in a superconductor 
are absent, so that in analogy with the case of a two- 
dimensional electron crystal we have assumed that 
Ec= ~ ~ a ~ 1 4 7 r  and C= 4.0. Similarly, in the calculation of 
the curve of the transition from the hexatic phase to the iso- 
tropic liquid we used the approximation E d = t a K A ( T ) / 7 2 ,  
2-3.0. 
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FIG. 1. Phase diagram of a system of vortices in a thin (d=20  A ) niobium 
film. Curve 1 is the melting line of the vortex lattice, curve 2 is the transition 
from the hexatic phase to the isotropic liquid, and curve 3 is the second 
critical field H C 2 .  

Figure 1 displays melting curves for a vortex lattice 
(curve l), the hexatic phase-isotropic liquid transition (curve 
2), and also the temperature dependence of the second criti- 
cal field Hc2 (curve 3). Note that the second critical field 
corresponds to the transition from the superconducting to the 
normal state in the mean field approximation. In reality, the 
transition coincides with the melting curve of the vortex lat- 
tice, and in the region between the melting curve and the 
second critical field Hc2 there exists a local tendency for 
electrons to pair, but the superconducting order parameter 
field fluctuates strongly. In this state the system can be de- 
scribed in terms of mobile vortices-f the hexatic phase and 
the isotropic vortex liquid. The presence of mobile vortices, 
as is well known, leads to energy dissipation and the appear- 
ance of electrical resistance. Above Hc2, in the normal 
phase, the tendency toward local electron pairing disappears. 

Figure 2 shows the same curves as in Fig. 1, but for the 
case d =  100 A with all the other parameters unchanged. As 

FIG. 2. Same as Fig. I ,  but for a film of thickness d =  100 A . 

could be expected, since an increase in the film thickness 
substantially suppresses fluctuations of the superconducting 
order parameter, the melting line and the line of the transition 
from the hexatic phase to the isotropic liquid shift toward 
higher temperatures, and the existence region of the hexatic 
phase narrows. Our treatment of the melting of a vortex lat- 
tice is based on the assumption that vortices of only one sign 
exist with magnetic moments aligned with the field, whose 
density n+ is given by expression (29). In thin superconduct- 
ing films for T>O, thanks to thermal fluctuations, vortices of 
opposite sign n - always exist (Refs. 5 1,52); however, in the 
case of small fields we have n- en+ (Refs. 51, 52), so that 
allowing for vortices of opposite sign should not qualita- 
tively change the form of the melting curve. In addition, the 
case of intermediate fields requires additional consideration. 
Note also that in the case of small fields the jump in the 
resistance when the vortex lattice melts should be very small 
by virtue of the low vortex density and in reality the transi- 
tion from the superconducting state to the normal state is a 
Kosterlitz-Thouless 

Finally, note that we have not taken pinning into ac- 
count, which is unavoidable in two-dimensional supercon- 
ductors. The presence of frozen disorder can substantially 
change the character of the melting32; however, a consider- 
ation of this question lies outside the scope of the present 
PaI'm 

6. CONCLUSION 

Within the framework of the proposed theory, in systems 
with a long-range interaction such as a classical two- 
dimensional system of electrons or a system of vortices in a 
two-dimensional superconductor, the appearance of free dis- 
locations causing the shear modulus to vanish and melting to 
take place before the mean-field thermodynamic instability 
AF=O is reached [see Eq. (4)]. In such cases the melting 
temperature T,,, is lower than the temperature Ti of the insta- 
bility of the hexatic phase with respect to formation of free 
disclinations, i.e., melting of a two-dimensional system with 
a long-range interaction proceeds via two continuous transi- 
tions. At the same time, in a system of hard disks the hexatic 
phase is unstable at all densities according to the physical 
picture described in the Introduction, and the system melts 
by way of a first-order transition coincident with the thermo- 
dynamic instability point. The results obtained for a system 
of 2D-electrons and a system of hard disks are in good agree- 
ment with the results of experiments, and also with computer 
simulations. In our opinion, this agreement could be im- 
proved by finding a more accurate form of the direct corre- 
lation function in the case of long-range potentials, and also 
by accounting for other terms besides m = + 6 in the expan- 
sion (13). However, we feel that the use of more accurate 
approximations should not alter the qualitative results ob- 
tained in this paper. 
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