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A study was made of the instability that arises when acoustic and gravity waves propagate in an 
inhomogeneous medium which is characterized by oscillatory approach of the reaction 
coordinates to the steady state. It is shown that loss of stability can occur in two different ways: 
by bifurcation of the periodic solution and by Eckhaus bifurcation. It is considered how an 
introduced nonlinearity stabilizes the unstable modes when the controlling parameter passes 
through the bifurcation points. O 1995 American Institute o f  Physics. 

I. INTRODUCTION 

Self-organization effects in nonequilibrium chemical 
systems with diffusion due to stability loss of the thermody- 
namic branch have been systematically presented in the well- 
known monograph of Nicolis and prigoginel and following 
publications (see, for example, Refs. 2 and 3). It is important 
to note that for certain values of the system parameters the 
thermodynamic branch stable with respect to the chemical 
processes loses stability when diffusion is "switched 

It turns out that a similar situation occurs when chemical 
processes are combined with hydrodynamics. It is shown in 
the present paper that a stable-node-stable-focus transition 
in a chemical (or thermochemical) system of reactions can be 
accompanied by the loss of stability of propagating hydrody- 
namic perturbations. We recall that it was shown in Ref. 4 
that if there is departure from equilibrium in the system of 
only the chemical reactions, then transition from a mono- 
tonic to an oscillatory nature of the damping of the reaction 
coordinates "does not follow from any kind of instability but 
comes progressively." 

Using the standard assumption of local equilibrium and 
also the thermohydrodynamic criterion of stability; we con- 
sider in this paper the occurrence of instability in the case of 
propagation of acoustic and internal gravity waves in a non- 
equilibrium medium with an oscillatory nature of the ap- 
proach of the chemical (thermochemical) reaction variables 
N i  ( i =  1,2) to the steady state. The controlling parameter of 
the problem is r=sin P, where IPI<n-12 characterizes the 
phase shift between the deviations of N i  from the current 
values N P  in the wave. The stability region is r -  S r S r ,  (for 
the considered model of internal gravity waves, r - S r S I ) .  
It is shown that the loss of stability at the boundaries r7  
occurs in two different ways: through bifurcation of the pe- 
riodic solution of the nonvanishing critical frequency and 
through Eckhaus bif~rcation.~ 

Using the well-known assumption7 of weak variation of 
the wave profile due to nonlinearity and dissipation over dis- 
tances of the order of the characteristic wavelength, we in- 
troduce quadratic nonlinearity into the acoustic problem. A 
model equation of this form was considered for the first time 
by Malkin and the author of the present paper in Ref. 8. On 
the basis of the equations obtained in the paper, we shall 
show how the introduced nonlinearity stabilizes the unstable 

modes on the passage of the controlling parameter through 
the bifurcation points. 

A fairly large number of nonequilibrium in 
which behavior in the form of chemical or thermochemical 
oscillations is realized, is now known. In general, such be- 
havior is not restricted to chemical systems; for example, it 
was noted in Ref. 11 that nonmonotonic relaxation of a de- 
gree of vibrational excitation of molecules can occur in a 
gas-discharge plasma through a trapping-vibrational insta- 
bility. It can be seen that the class of nonequilibrium media 
in which the considered form of hydrodynamic instability 
can exist is quite large. 

2. DEVELOPMENT OF INSTABILITY AS A RESULT OF 
PROPAGATION OF ACOUSTIC WAVES 

We consider acoustic perturbation of a steady, homoge- 
neous, nonequilibrium state whose stability is maintained by 
continuously unfolding dissipative processes. There are two 
interesting cases in which the medium can execute damped 
chemical or thermochemical oscillations in the absence of 
hydrodynamic perturbations. 

2.1. The case of chemical oscillations 

We consider a chemically active (reacting) medium with 
two degrees of freedom-the mass concentrations N ,  and 
N 2 ,  which describe a rapid (compared with the consumption 
of the original materials) stage of a complex reaction1 and 
are characterized by an oscillatory nature of the relaxation of 
N i  to the steady state. 

We take the equations of the chemical kinetics in the 
form of an expansion around the steady state, retaining the 
first term of the expansion: 

d , N i =  f i j ( N j - N : ) =  f i j S N j - a i 6 ~ ,  i j  1 2  (1) 

where d , = d l d t  = d l d t + u d l d x ,  u  is the velocity, x  is the 
spatial variable, ai= f i j ( d N y l d p ) ,  , S  is the entropy, P  is the 
pressure, and N ~ ( P , s )  denotes the steady concentrations 
corresponding to the current values of P  and S;  
S N j = N j - N ? ,  S P =  P - P o .  In the wave, N j  relax to the 
current values N ~ ( P , s ) .  In the medium unperturbed by the 
wave, P = P o ,  S = S o ,  N ~ ~ = N ~ ( P ~ , S , ) .  

As usual, we assume that the dissipation has a weak 
effect on the change in the wave amplitude over times of the 
order of a period, and therefore in (I) we set S  = S o .  For this 
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reason, it is sufficient on the transition from the natural vari- 
ables P  and T  to the variables P  and S used in Ref. 1 to 
make a restriction to the term ST= ( d T I d P ) s , N G P .  

It is important that NiOO is a singular point of the type of 
a stable focus for (1) with 6 P  =0: 

where v (>O) is the frequency of the concentration oscilla- 
tions, and K- I  is the characteristic time of their damping. We 
write down the equation of state, retaining only the terms 
linear in the increments: 

where 

V  = llp is the specific volume, 6V = V  - V o  , ST= T - T o ,  h is 
the enthalpy per unit mass, C p  and 8 are the "frozen" spe- 
cific heat and "frozen" coefficient of expansion at constant 
pressure; x  is the spatial coordinate, d:=dmldxm, K; 
= - V -  ' ( d ~ l d ~ ) ~ , ~ ;  is the "frozen" compressibility, and h 
is the coefficient of thermal conductivity. We define 

where K: is the compressibility corresponding to a very slow 
process, so that the medium is at all times in a steady state. 
In accordance with the adopted approximation of local equi- 
librium, we assume that 

SKs>O. (5) 

Inequalities of the type ( 5 )  are well known in the acoustics of 
linearly nonequilibrium media.12 The contribution of the 
chemical reactions to the change in the volume during propa- 
gation of the wave is taken into account by the second term 
on the right-hand side of Eq. (3). From (1) and (2), we can 
obtain a relation for the deviation of 2 v f S N i  from its steady 
value: 

where bi= ( d ~ y l d ~ ) ~ ,  

In (6), it is convenient to parametrize the constant factors 
multiplying J ,  and J ,  as follows, taking into account (5): 

2,y cos P= - vfbi, 
1 

with constants x>O, - d 2 S P ~ r 1 2 .  The introduced param- 
eter p characterizes the phase shift between the deviations of 
N i  (i=1,2) from the current values N ~ ( P )  in the wave. De- 
noting 

we write the dependence (6) with allowance for (7) in the 
differential form 

To investigate the stability of pressure waves in the dis- 
sipative medium, we shall proceed from the local thermody- 
namic and hydrodynamic criterion of stability for the 
Lyapunov function 6'2 = a2s- T i  ' ( 6 ~ ) ~  (Ref. 5): 

In the case of one spatial variable, the balance equation for 
S2z  has the form 

Here L is the flux of the function 6'2, pi is the chemical 
potential, and 17 and 5 are the coefficients of first and second 
viscosity. On the right-hand side of Eq. (lo), we have re- 
tained terms of order not higher than the second in the incre- 
ments. Smallness of the dissipation presupposes smallness of 
the dimensionless dissipative coefficients, and also smallness 
of the change in the volume and enthalpy during one step of 
each reaction. Therefore, in order to retain on the right-hand 
side of (10) terms of not higher than third order (we assume 
that the increments of the dimensionless pressure and the 
velocity are quantities of first order of smallness), it is suffi- 
cient to expand 6(piT-  ') with respect to P  and Nj at S= S o .  
Thus, bearing in mind that in the acoustic wave in the first 
approximation 

we obtain the following expression from (10) after transfor- 
mations (with the indicated accuracy): 
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(11) 

Here 

We consider the evolution of a periodic wave 
(a exp[io(t-xlc,)]) with slowly (compared with the factor 
exp[iw(t-xlc,)]) varying amplitude, where 
c," = ll(poKF) 'I2. Going over to complex variables5 by a sub- 
stitution of the form SA SB --+ ( SA * SB + SA SB *)I2 and 
bearing in mind that expressions of the type SA * SB do not 
depend on the "fast" variable c=t-xlc,, we obtain the 
following expression from (8), (9), and (1 1) for each normal 
mode: 

- - 2X02 
T ~ [ ( K ~  + v * ) ~  cos2 P+ 0 2 ( ~  cos P+ v sin P ) ~ ]  

X (: 04+ y I ~ 2 +  Y ~ ) R * R ~ O ,  (12) 

where the asterisk denotes the complex conjugate, and 

6 
~ ( K ~ - v ~ )  - + K  C O S P + V  sin P , 

X I 
Equation (12) is written within the same order of accuracy as 
Eq. (11). A similar expression [without the coefficient 2 on 
the right-hand side of (12)] is obtained if the right-hand side 
of (1 1) is averaged with respect to 6 over the period 2mlo. 

2.2. The case of thermochemical oscillations 

We consider a thermochemical system that includes pho- 
tochemical stages with one concentration degree of freedom. 
Here we also assume an oscillatory nature of the relaxation 
to the steady state. Examples of such systems can be found 
in Refs. 1 and 9. For acoustic problems, the most interesting 
case is one in which the nonequilibrium state is maintained 
solely by exchange of energy with the ambient medium. 

In the simplest case, the balance equation for the part of 
the entropy S,, which is responsible for the exchange of 
energy with the ambient medium, has the form 

where N is the mass concentration, 6 and G are the coeffi- 
cients of absorption of external radiation and heat transfer, 
and T,, is the temperature of the external medium. The tem- 
perature increment in an acoustic wave is 

Combining the expression (13) written for the increments 
with (14), we obtain a kinetic equation for SS, of the form 
(I). With allowance for (14), the kinetic equation 
d , N =  f(N,P,T) can also be represented in the form (1). De- 
noting 6 N 1  = SN and 6 N 2  = Cp ' SS, , we reduce the consid- 
ered problem to the previous one. Here 

The equation of state (3) and the stability conditions (1 1) and 
(12) remain unchanged if we assume v:= ToBlpo. However, 
it is here necessary to regard SN, as quantities of second 
order; the dimensionless coefficients of absorption of the ex- 
ternal radiation and heat transfer, Eu(CpT,,)-' and X ,  ', and 
also the dimensionless variations of the volume and enthalpy 
during one stage of the reaction must be regarded to be quan- 
tities of order unity. As before, the dimensionless dissipative 
coefficients, and also the increments of the dimensionless 
temperature, pressure, and velocity are assumed to be first- 
order quantities. Such a scale of orders of smallness makes 
the thermal and chemical effects of the same order, while the 
dissipation, as before, has only a slight effect on the wave 
amplitude over times of the order of the period. 

2.3. Stability conditions 

The requirement of positive definiteness of the right- 
hand side of the expression (12) for all o gives the stability 
conditions (jh-0, x>O) 

y2>0, if yl>O. ( 15b) 

The conditions (15) determine the region of stability in the 
space of the parameters V, K, $x, and r =sin p (the control- 
ling parameter): 

where 

The critical frequency 
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corresponds to the state r = r +  of neutral stability [which is 
valid for O S , L < ~ + ,  if $ 6 3 2 ,  or O G ~ ~ < ~ K V I ( K ~ + ~ ) ~ ' ~  if 
$>32;  r +  is the larger root of the equation y2=0]. For 
r > r +  , the Eckhaus instability  arise^.^ 

At the point r =  r -  , bifurcation of the periodic solution 
occurs with critical frequency 

r-  is the smaller root of the equation (for O ~ , k < f i - )  

For r < r - ,  a band of finite width of modes near w,- be- 
comes unstable. 

To consider the propagation of acoustic waves in a me- 
dium with monotonic approach of Nj to the stable state (N? 
is a singular point of the type of a stable node), it is neces- 
sary to make the formal substitutions w i v '  and P-+iP1 
under the assumption that v' and p' are real and that 
O<V'<K. In this case, the stability condition (12) is satisfied 
identically for all o. In fact, 

become positive at all f l .  
The stability of the acoustic waves in the medium with 

monotonic damping of the reaction coordinates near equilib- 
rium is, as is well known,13 a consequence of Onsager's 
principle. 

It is clear from the above discussion that far from equi- 
librium the stable-node-stable-focus transition in a chemical 
(or thermochemical) system of reactions can be accompanied 
by the loss of stability of propagating acoustic perturbations. 

3. DEVELOPMENT OF INSTABILITY AS A RESULT OF 
PROPAGATION OF GRAVITY WAVES IN A LAYER 

We consider a horizontal layer of liquid in a constant 
gravity field between two infinitely extended parallel planes. 
A constant temperature gradient cp=(T, - To)Izo>O, is 
maintained. Here TI and To are the temperatures on the up- 
per and lower boundaries, respectively. Such a temperature 
gradient prevents convection but creates a density gradient 
that facilitates the generation of internal gravity waves. We 
assume that the layer is chemically active and has one con- 
centration and one temperature degree of freedom. The liq- 
uid is assumed to be incompressible in the Boussinesq 
approximation.'4 

We investigate the stability of the steady state deter- 
mined by the distributions 

where 0 0  is the isobaric coefficient of expansion, 7 is the 
bulk reaction effect at constant pressure and temperature, and 
z is the vertical coordinate; iff (N, P,T) is the rate of forma- 
tion of the mass concentration N, then 

In addition, we assume that in (19) the bulk reaction effect 
does not change the direction of the density gradient due to 
the heating, i.e., 

The mass and energy balances are written in the form 

Here GN = N - NS, ST= T- T ~ ,  w is the vertical component 
of the velocity, and D and k ,  are coefficients of diffusion and 
thermal diffusivity. The coefficients f.. are obtained by vary- 
ing f(N,P,T) in (21a) and ( p o ~ p ) - ' k ( - ~ ~ j ) ~ j  in (2lb) 
at constant pressure (AHj and Wj are the change of the en- 
thalpy and the rate of the jth reaction). For simplicity, we 
assume on the boundaries (z=0 and z=zo) of the layer the 
conditions at a free surface: 

and then in (21) we can make a change of variables of the 
form 

where n= rrm/zo, m is an integer, zo is the thickness of the 
layer, and the variables with the prime do not depend on z. 
We shall take into account the diffusion and heat conduction 
only in the z direction (across the layer). In accordance with 
(21), the nature of the relaxation of SN' and ST' will then be 
determined by the set f;j: 

where we assume that for some n, the f ; j  satisfy the condi- 
tions (2); i.e., SN' and ST' have an oscillatory nature of the 
damping to the steady state. Further, we consider the mode 
n, and values v>O and K>O corresponding to it. 

As in the previous section, we introduce the constant ,y 
and variable l?: 

where g is the acceleration of free fall. Taking into account 
the assumptions that have been made, we obtain from (21) 

J ; R + ~ K ~ , ~ ? + ( K ~ + V ~ ) R = ( V  sin P- K cos P ) w  

- d,w cos p. (23) 

Here and in what follows, the prime on w is omitted; sin ,O 
and cos p (-d2~P<.rr /2)  will be determined by (7) if we 
set v ; = ~ ? ,  v : = ~ B ,  b,=-?q ,  b2=-q; it also follows 
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from (20) that x>O. Note that Eqs. (8) and (23) can be trans- 
formed into each other by the substitution 
d , R = - R - 6 ~  COSO, W=SP. 

After transformations, we write the equation of momen- 
tum conservation in the form 

where A,=g, and x is the horizontal coordinate; $ is the 
coefficient of kinematic viscosity, and for brevity the asterisk 
on n is omitted here and below. In deriving (24), we have 
used the standard transformations employed to treat the Bi -  
nard problem'4 (with allowance for diffusion15). 

We seek the solution of (23) and (24) in the form of 
plane waves R,  wmexp[ikx- i o t ]  with i o =  iwR- o, and 
real k. Assuming that the dissipation is small (o14 oR) ,  we 
obtain 

W2- 2 2xk2 cos P 
R- K + V 2 +  

k2+n2 ' 

xk2( v sin P+ K cos P )  

k2+n2 

In contrast to the acoustic case, there is no instability 
(w~+-K<O) here in the long-wavelength limit (k+O), but 
for negative sin /3 the value of y can become positive, i.e., 
loss of stability can occur. The condition for neutral stability 
(o,=O) gives the critical wave number kc and the minimum 
value of I(tan ~ ) ~ l  at which stability loss occurs: 

The formal substitutions v+ivl and P+iP' (v' and /?' are 
real and O<V'<K) transform the stable focus (0,O) on the 
(SNr,ST') plane into a stable node. In this case, the stability 
condition oI<O is satisfied for all values of the parameter P': 

It can be seen that here, as in the previous section, the stable- 
node-stable-focus transition in the thennochemical system 
of reactions can be accompanied by a loss of stability of 
propagating hydrodynamic perturbations. 

The considered form of instability must also occur in the 
case of the propagation of gravity waves on the surface of a 
nonequilibrium active liquid. 

4. NONLINEAR EQUATIONS 

From the equation of state (3), augmented by the nonlin- 
ear term 1 / 2 ( d ' ~ / d ~ ~ ) ~ , , ( S ~ ) ' ,  and the equations of conti- 
nuity and motion, we can, using the usual assumptions of a 

weak change of the wave profile due to nonlinearity and 
dissipation over distances of the order of the characteristic 
wavelength (see, for example, Ref. 7), deduce the equation 

where 

,y is determined from (7), 

and R' is determined by the dimensionless equation (8): 

C ? ; R ' + ~ K ~ @ ' + ( K ~ +  v 2 ) ~ '  

By means of the substitution 

d6u=R1f  h cos p, x"=xl,  tl=.$-x'x' cos p 
we obtain from (27) 

where u=X(v sin p-K cos p), and the primes on 5, x, and x 
have been omitted. With allowance for the boundary condi- 
tion h+O as .$+-m, we can rewrite the system (28) in the 
f o m  of the single equation 

Equation (29) was first considered by Malkin and the present 
author in the studies of Ref. 8. 

Further, using Eqs. (27) and (28), we consider how the 
introduced hydrodynamic nonlinearity stabilizes the unstable 
modes on the passage of the controlling parameter r=sin /? 
through the bifurcation points r -  and r+  (see Sec. 2.3). 

4.1. Behavior near r- 

In this case, it is convenient to proceed from the system 
(27). At the bifurcation point r -  , the solution of the system 
(27) linearized near the homogeneous state h =0, R1=O has 
the form of a traveling wave with nonvanishing frequency 

(18): 

h,R1xexp[i(kc-x- we-t)], kc- =kR(wc-), kR=Re k. 

Near the point r - ,  we can set r=r - - r2e2 ,  & < I .  It is as- 
sumed that the nonlinear dynamics is described by a weakly 
varying amplitude W: 
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Using the standard procedure (see, for example, Ref. 16), we 
obtain from (27) the Ginzburg-Landau equation for W: 

where 

W(X2,Y) is a complex function, and C j  and CJ are real 
coefficients that depend on the parameters v,K,*,x. The cal- 
culations show that C2 and C3 are >0; the sign of C, is the 
same as the sign of r2. It can be seen that supercritical bi- 
furcation occurs upon the passage thorugh r-  (with r de- 
creasing). Equation (31) has many interesting solutions (we 
mention some recent studies of Ref. 17). 

4.2. BEHAVIOR NEAR r+ 

We consider the system (28), which can be readily re- 
written in the form of one equation for h by applying to the 
first equation of the system the operator + + 2 ~ d ~ + ~ ~ + 2 .  
Linearizing this equation, we obtain several terms of the dis- 
persion relation in an expansion around the critical frequency 
(17) (haexp[i(kx- wt)]): 

where 

where the sign of a-a+ is the same as the sign of r - r +  , 
since x and r+  are >0. It can be seen from (32) that for 
a>a+ a band of unstable modes O<o<w,<l appears. We 

2 introduce a small parameter &==wg : r -  r +  = r2 s  , where 
r2-0(1), and consider the behavior of the solution 

of Eq. (28) near the bifurcation point r = r +  . 
The first nontrivial equation that can be extracted using 

the standard technique of multiscale expansions corresponds 
to length and time scales X2=e2x and Y =s t .  This is the 
standard equation for a simple Riemann wave: 

where dx2 = dldX2, and dy=d/dY. 
It is clear that for perturbations having initial amplitude 

of order E the nonlinear effects predominate over the disper- 
sion effects, and at distances x2--e-' the amplitudes of the 

N waves that are formed7 become quantities of order =&'I2 

(or =e2 for periodic sawtooth waves). Therefore, in (33) we 
must set h ,  =0  and consider the evolution of perturbations 
having initial amplitude of order e2: h = s2h2,  assuming 
h2(X3 , Y ) ,  where x3=s3x.  From (28) we obtain for h2 the 
equation (we assume a-a+ =e2a2) 

which can be interpreted as a perturbed Korteweg-de Vries 
equation. If in (34) we omit the terms of higher order than 
the first in s ,  we obtain 

The linear terms of this equation correspond to the dispersion 
relation (32). An equation of the form (35) was apparently 
first considered by ~awaha ra . ' ~  For s=O, the single-soliton 
solution of Eq. (35) has the form 

Assuming that the amplitude a(X4 ,Y 2) and $=const, where 
X4= s4x and y2=s25, we can deduce from (35), using the 
condition of so l~abi l i t~ , '~  an equation for a:  

It can be seen that the steady-state solution 

is stable. 
Further, we can consider the case where h241 by setting 

where sl is a new small parameter (a similar procedure was 
used in Ref. 20). For u ,, as can be seen from (35) and (32), 
there exists a nonvanishing periodic solution with frequency 

Assuming that the amplitude of this periodic solution is a 
function of the "slow" constant X5, and then using the stan- 
dard procedure for eliminating secular terms, we can show 
that in the given case the Eckhaus instability has a supercriti- 
cal nature. 

5. CONCLUSIONS 

In this paper, we have considered the appearance of in- 
stability when acoustic and internal gravity waves propagate 
in a nonequilibrium medium characterized by oscillatory ap- 
proach of the reaction coordinates to the steady state. Mono- 
tonic approach of the reaction coordinates to the steady state 
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cannot lead to a loss of stability of propagating waves. For 
linear nonequilibrium systems, this last fact is a direct con- 
sequence of Onsager's principle.'3 

For acoustic waves, the stability problem has been con- 
sidered by means of the thermohydrodynamic ~riterion.~ We 
have shown that loss of stability can occur in two ways: 
through bifurcation of the periodic solution of the nonvan- 
ishing critical frequency and through Eckhaus bif~rcation.~ 
We have considered the propagation of nonlinear acoustic 
waves and shown that the introduced nonlinearity stabilizes 
the unstable modes on the passage of the controlling param- 
eter through the bifurcation points. 

We have constructed a model of the propagation of in- 
ternal gravity waves in a stratified layer of a nonequilibrium 
medium with damped thermochernical oscillations. We have 
shown that in this case loss of stability can occur only 
through bifurcation of the periodic solution. The considered 
form of instability must also occur in the case of the propa- 
gation of gravity waves on the surface of a nonequilibrium 
liquid. 
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