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New forms are proposed for logarithmically normal and multifractal models of turbulent 
intermittency that ensure consistency of the space and time representations of the scaling laws of 
turbulent diffusion. The corresponding corrections in the power exponents are determined 
on the basis of an exact solution of the balance equation for the mean square vorticity (enstrophy) 
for a system of strongly interacting point vortex dipoles (maximally small vortex 
rings). O 1995 Anierican Institute of Physics. 

1. INTRODUCTION In accordance with the observational data, the correc- 
tions due to the fluctuations E are quantitatively small, but 

1. The investigations of vortex intermittency of turbu- their presence has fundamental importance, for example, in 
lence begun in the experiments of Refs. 1-3 (see also Refs. connection with the property of scale invariance of the 
4 and 5 and the references given there) confirmed the con- Navier-Stokes hydrodynamic equations with respect to 
jecture of Landau and ~ i f s h i t z ~  regarding limitation in the stretching (and scaling transformations:~~ 
applicability of the concept and theory of locally isotropic 
turbulence of Kolmogorov and ~ b u k h o v ~ - ~  which does not rr=Xr,  u1=~"13U, t r  = ~ l - a l 3  t , 
take into account the unbounded growth in the fluctuations of 
the dissipation rate of the turbulent energy 

when there is a corresponding increase of the Reynolds num- 
ber R ~ = L ( u ~ ) ' / ~ / v ,  where L is the external turbulence scale. 
Indeed, in the theory of locally isotropic turbulenceF8 the 
fluctuations of E were not taken into account, and it was 
assumed that in the inertial interval of scales r V 4 r 4 L  
[ r , = ( d l ( ~ ) ) ~ ' ~  is the internal turbulence scale, and the angu- 
lar brackets denote averaging] just the one physical param- 
eter (E) is sufficient to describe turbulent regimes by means 
of scaling laws. Some of these laws have the form 

where K is the turbulent diffusion coefficient, EL is the La- 
grangian frequency spectrum of the turbulence energy, and 
DL is the structure function of the velocities of the Lagrang- 
ian particles that corresponds to this spectrum. When allow- 
ance is made for the fluctuations of E, which serve as a 
natural measure of the observed (see Refs. 1-5) intermit- 
tency of turbulence, it becomes necessary to introduce cor- 
rections to the exponents yo-y4 in (1)-(5) and other scaling 
laws in the theory of locally isotropic turbulence. By inter- 
mittency, we here understand nonuniformity of the space- 
time distribution of the energy of the small-scale motions 
and localized eddy 

where a is any number. We also have for E from (6) 

where E, is obtained from E by averaging over a region with 
characteristic dimension r, and the angular brackets denote 
statistical averaging, including averaging over the fluctua- 
tions of E. Only the case cu=l corresponds to the scaling 
laws of the Kolmogorov-Obukhov theory of locally isotro- 
pic turbulence, for which the relation (E , )=(E)-E~ corre- 
sponding to the representation (1)-(5) must hold. Thus, in 
the theory of locally isotropic turbulence, it is assumed that 
not only the hydrodynamic equations are scale invariant but 
that also (E,) possesses the same properties. This implies that 
in (6) too the value of cu cannot differ from unity even by a 
small amount, and at the same time it is effectively impos- 
sible to introduce corrections for 70-74 in (1)-(5) without 
violating the scale invariance of the original hydrodynamic 
equations. On the other hand, in the theoretical modeling of 
intermittency effects, for example, in Refs. 12-20, the fluc- 
tuations of E are taken into account by replacing (E) with E, 

in (1)-(5) and the other scaling laws of the theory of locally 
isotropic turbulence. The corresponding expressions are then 
averaged over the probability distribution of E, under the 
assumption that in fact 

(8,) = (8) = const, (8) 

which means that (E,) is independent of r and t. Then in the 
scaling laws proportional to the first power of E, [such as 
(3)-(5)], corrections do not appear in the power exponents 
that are due to the fluctuations of E, while in the intimately 
related scaling laws ( l ) ,  (2) such corrections do occur. This 
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makes the corresponding modified scaling laws inconsistent 
and can violate the scale invariance of the hydrodynamic 
equations. Indeed, under the condition (8) the presence, for 
example, of corrections to (2) is already incompatible with 
(6) and (7) for the value a= I corresponding to (8). Thus, in 
the logarithmically normal (LN) model of turbulence inter- 
mittency (formulated by the pioneers in the theory of locally 
isotropic turbulence12913 and refined in14315) it is assumed that 
In E(X,I) and In E, have a normal probability distribution with 
variance of the form9 

where for large Reynolds numbers p is a universal constant, 
and A(x,t) may depend on the details of the macroscopic 
structure of the turbulent flow. Asymptotically, the LN distri- 
bution corresponds to the distribution with respect to the 
diameters of particles obtained as a result of a series of suc- 
cessive independent fractionations, and therefore the LN 
model can serve as a natural model of a cascade process in 
which ever smaller eddies are generated successively in a 
turbulent flow. Below, in Sec. 3 of this paper, we shall dem- 
onstrate the compatibility of the LN distribution for E with 
exact solutions of the hydrodynamic equations correspond- 
ing to a system of dynamically interacting point vortex di- 
poles (maximally small vortex rings). 

For the LN model, the quantity (8:) (the angular brackets 
here denote averaging over the LN distribution of E,) has the 
formg 

where m=(ln E,), and the form of 2 is determined in (9). 
From (8) we then obtain the relationship between m and 2: 

Thus, (8)-(1O)yield the equation 

where for the considered formulation of the LN model the 
function p(q) has the fonn 

where in accordance with Ref. 9 we have (E(x+~)E(x))- 
(LIr)pO. 

In Ref. 4 it is noted that there is better agreement be- 
tween the conclusions of the LN model and the experimental 
data [including the data for large q (q=S16)] than for forms 
of the p m ~ d e l ' ~ - ~ '  with linear dependence p(q)-q (for all 
q) in (12). In Ref. 17, it is shown that quite generally all 
models of intermittency using the conditions of scaling of the 
cascade process of vortex fractionation can correspond to the 
representation (12) [with different expressions for p(q)]. In 
particular, for the Novikov-Styuart model,16 which is the 
basis of various fractal and multifractal forms of the fl 
 mode^,'^-^' the function p(q)  has the form 

where we write po=log2(ll/3)>0, and /3 does not depend on 
the step n of the cascade fractionation of the vortices and is 
equal to the ratio of the volume occupied by the vortices with 
scale ~12" '  ' to the volume of the original (decaying) vortex 
with scale L12". In the multifractal models of Refs. 20 and 
21, /3 is assumed to be dependent on the step n and may be 
a random variable. The LN model in the interpretation of 
Ref. 9 can be regarded as a special case of a multifractal 
model but with continuous distribution of the vorticity in 
space and LN distribution for IIfl,, that is mutually indepen- 
dent for each n. 

It is obvious that both for p(q) in (13) and for p(q) in 
(13') [and the modifications of it corresponding to the vari- 
ous multifractal models,'8320 [see, e.g., (A9) in the Appendix] 
p(l)=O by virtue of the condition (8) of scale invariance of 
(8,) assumed in these models. Therefore, in these models 
corrections to the exponents y2-y4 cannot arise in (3)-(5), 
but for (1) and (2) such corrections to yo, yl do and 
this leads to inconsistent representations of interrelated scal- 
ing laws such as (2) and (3) [(2) and (4)]. 

In this paper, we consider some ways of obtaining mu- 
tually consistent corrections to the scaling laws (1)-(5) cor- 
responding to preservation of the property of scale invari- 
ance of the Navier-Stokes equations for a# 1 in (6), (7). In 
Refs. 21 and  23, attempts were also made to obtain such 
consistent representations for the modifications (2), (3) on 
the basis of approaches that differ from that of the present 
paper. 

2. The observation of Landau and ~ i f s h i t z ~  noted above 
actually already indicates that in the theory of locally isotro- 
pic turbulence it is necessary to introduce, in addition to the 
parameter (E), additional physical quantities (one or several) 
that carry information about the large-scale properties of the 
turbulent flow. In this section, we propose to use, as the 
parameter in addition to (E), the mean energy e=(u2) of the 
turbulent flow. We note that Kraichnan's attempt24 to de- 
scribe turbulence by means of the single parameter e estab- 
lished the relative acceptability of such a description only for 
Lagrangian statistical characteristics of the turbulence, since 
neither the 513 law nor the other associated scaling laws of 
the theory of locally isotropic turbulence can be reproduced 
by such a description. On the other hand, not only the pos- 
sibility but also the necessity of describing turbulence (in the 
asymptotic limit of short evolution times t) by means of two 
parameters-the mean energy e and the mean square vortic- 
ity (enstrophy) f12=((curl  was established in Ref. 25. 
Then the role of E is played by E=efi ,  and the mutually 
consistent scaling laws corresponding to (2)-(5) have in the 
inertial interval the form (obtained from dimensional and 
scaling  consideration^)^' 

which is identical to (2)-(5) if z=0 and Z. is replaced by (8). 
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The relations (14)-(17) are consistent for all values of 
the free parameter z, the value of which can be determined, 
for example, in an experimental investigation of turbulence 
intermittency, in particular, from the rate of "separation" of 
Lagrangian particles. The parameters e and R (especially e,  
since the low harmonics make the largest contribution to its 
value) contain information about the components of the mo- 
tion in the turbulent flow with the largest scales, and the 
parameter z actually regulates their influence on the turbulent 
regime in the inertial interval of scales. Scale invariance of 
the hydrodynamic equations is then preserved for a in (6), 
(7) of the form 

In contrast to the invariant parameter e, the enstrophy R2 
in a three-dimensional turbulent flow can have singularities 
(regularized only by dissipative effects) that develop in the 
process of evolution in time as a result of the stretching of 
vortex filaments? Therefore, the use of a2 in (14)-(17) is 
limited to time intervals determined, for example, by the 
time of explosive growth of R2 (Refs. 26 and 27). 

At the same time, in the theory of locally isotropic tur- 
bulence there is implicitly assumed to exist a finite limit 

( E ) -  lim vR2, 
v-0 

which, as it happens, can be realized at the explosive singu- 
larities in the evolution of f12 (Refs. 26 and 27). In this 
respect, the use of the parameter ( E )  instead of R2 is more 
convenient. Then in place of (14)-(17) we obtain 

From comparison of (14')-(17') with (14)-(17) it is obvious 
that y=z holds, and the relation (18) keeps its form for the 
representation (14')-(17'). 

3. We now consider the possibility of determining the 
corrections to the exponents yo- y4 in (1)-(5) by analyzing 
the dynamics of strongly interacting vortex charges. For this, 
we use the evolution equation obtained in Ref. 27 for the 
balance of the enstrophy R2 corresponding to the dynamical 
interactions of pairs of point vortex dipoles (i.e., the smallest 
possible vortex rings or spherical Hill's vortices). Indeed, in 
Ref. 27 the following equation was obtained for the dimen- 
sionless quantity u =R21R2(0): 

where the functions A(t) and B(t) have an explicit form 
determined by the exact solutions obtained in Ref. 27 for the 
dynamics of two interacting vortex dipoles. Here we define 
R2=$d'xw2(x,r), where w is the distribution of the vorticity 
corresponding to this vortex system. 

It is obvious from (19) that in the limit v-4  the quantity 
u can indeed have an LN distribution if the function A ( [ )  
corresponds to a Gaussian random process. 

With allowance for the equations of the vortex dipole 
dynamics?7 Eq. (19) can be written in a form corresponding 
to a certain new conservation law (for v=O): 

where l(t) is the separation between two vortex dipoles 
[ f O ~ f ( 0 ) ] ,  ~ ( d  is the absolute value of their Lamb mo- 
mentum (these momenta are equal in absolute magnitude but 
have opposite directions, corresponding to zero invariant to- 
tal momentum of the vortex pair). In (20), the geometrical 
factors a ( a  S l), b (b -+O),  and p ( p  = const) correspond to 
a regularizing "smearing" of the Dirac 6 function in the 
definition of the vortex field of a point vortex dipole. At the 
same time, a and b can be functions of t, so that, for ex- 
ample, (19) corresponds to (20) for a=const and b=b(t).  
Such a regularization, made in Ref. 27, is analogous to the 
method of regularization proposed by ~andau" in quantum 
field theory. In Ref. 27 the Sfunction is replaced by a regular 
smooth normalized function 8 whose support has radius b: 

where 0 is the Heaviside function; sd3x$x)= 1 (ao is deter- 
mined from this normalization condition); y =const; and r 
and 6 are spherical coordinates. For a x )  in (21), the value of 
p in (20) can, in particular, have the form 

In accordance with Ref. 27, 

so that the values of a and b in (20) can be functions of the 
time t. 

In contrast to the two-dimensional case, when for v=O 
the enstrophy R2 is invariant (i.e., u=l ) ,  in three- 
dimensional turbulence the enstrophy R2 does depend on t 
due to the effect of stretching of the vortex filaments? How- 
ever, as can be seen from (20), for v=0 and for the three- 
dimensional case there exists a similar but new invariant J 
for a turbulent regime formed from an ensemble of realiza- 
tions of pairs of dynamically interacting vortex dipoles: 

In the case when the "smearing" of the S function is spheri- 
call;. + symmetric [in particular, for y=O in (21)], i.e., 
6 4  S= So(r), we have p = I in (20) and (23) for all normal- 
ized functions &(r) of compact support. 
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Let us consider, for example, the case corresponding to 
asymptotic separation of the dipoles in the limit t-+co, when 
the invariant interaction energy 

of the vortices is negative, so that27 

(23') 

From (23') and (20) for all p, we obtain 

For v=O, the invariant J from (23) corresponding to (24) has 
the form 

which corresponds to unbounded growth of the enstrophy n2 
with increasing intervortex separation L(t) in the limit t t w .  

It is obvious from (25) that u and 8-v R2 can have the 
LN probability distribution if l n ( ~ I  is a random Gaussian 
variable. Since E, is also proportional to R2, we have for (e:) 
the relation (lo), in which m and 2 have the form 

It is clear from (26) that the conditions (8) and (11) [which 
are usually assumed in the LN model (see Ref. 9)] are not 
satisfied in the limit t - w ,  since 

For vfO, the representation (26) is not changed qualita- 
tively. In particular, for the case b=const and an unknown 
function a=a (r) the solution of Eq. (24) has the form 

since ~ 2 ~ = ( ~ ~ a ~ / 4 8 . r r b ~ ) ( l +  O ( y ) ) ,  where 
to= (2 .rr1;/25)~1)"~ is the characteristic time of approach 
(collapse) of the vortex dipoles, after which they separate 
unboundedly, Reb=bglvtoa: is the internal Reynolds num- 
ber determined by the ratio of the time of viscous spreading 
of the internal structure of the vortex to 
to[bo=b(0),ao=~(O)). Note that we have 

2 2 2  Reb=(bolloao)Re, where bo<lo, Re=uololv, and 
uo= lolto . Thus, for t 4  to Reir3 the representation (26) is 
unchanged for finite v# 0 as well, while for tBto  ~ e ; ' ~  we 
have u - - ( t ~ t ~ ) - ~ . ~  and the exponent 315 in (26) must 
be replaced by -3110. 

We now consider the case when, conversely, cY=const, 
and the unknown function determined from (24) is the 
"smearing" radius b(t). Then the solution of (24) has the 
form 

Therefore, as for (27), the exponent 315 in (26) is changed 
(here to - 13/10) only for t% to ~ e i ~ l ' ~ .  

Thus, in the limit v--10 ( r e to  Re;I3) the turbulent diffu- 
sion coefficient K and the variance r2 of the cloud of impu- 
rity for the modification of the LN model of intermittency 
considered in this section have a mutually consistent form: 

where (29) and (30) are obtained from (10) and (26) for 
q =  113 and q=  1 in the limit of large t ( t S  to). For finite v 
and t - t ~  (tBto R e 3 ,  we obtain from (27) and (28) in place 
of (30) 

Thus, without the conditions (8) and (11) we can obtain 
consistent corrections to (2) and (3) even in the LN model 
due to the fluctuation effects of the turbulence intennittency. 
At the same time, scale invariance of the hydrodynamic 
equations is preserved for a# 1 in (6) and (7), since for (29) 
and (30) we have a=4/3. 

Note that the numerical value 315 of the correction to y2 
in (3) corresponding to (30) agrees with the analogous value 
of the correction obtained in Ref. 23 (when tst ,)  for 
ppO.17. In turn, as recent experiments5 have shown, we 
have p p 0 . 2 .  In Ref. 29, the experimentally observed depen- 
dence r2= t 3 + ~ ,  where z lies in the interval 0.15SzS0.45, 
was noted, while for the multifractal model of Ref. 21 the 
value of z (for p ,  =0.5, p2= 1, x=0.125) was found to be 
negative [in Ref. 21, we have z=-0.28 in the same way as 
happens in (31) when allowance is made for finite vf01.l) 

In the Appendix, we give a modification of the multifrac- 
tal model (described in Ref. 18) in which it is possible to 
reconcile the corrections to (2) and (3) even when the con- 
dition (8) of scale invariance of (8,) is maintained. 

I thank A. M. Yaglom for interest in the work. 

APPENDIX 

It will be shown below that in the usual multifractal 
model of turbulence intermittency it is possible to obtain 
agreement of the time and space representations of the scal- 
ing laws of turbulent diffusion if we bear in mind (12),# (1): 
and recall that the coefficient of turbulent diffusion Z? is ex- 
pressed in terms of the derivative of (1): (and not of (12), , as 
is usual), i.e., 

where (...) denotes averaging over the ensemble of realiza- 
tions of the turbulent flow, r is the radius vector connecting 

1099 JETP 81 (6). December 1995 S. G. Chefranov 1099 



two fluid particles in the flow, and (...), denotes statistical 
averaging over the distribution of the probabilities of the 
fluctuations of the dissipation rate of the turbulence energy E. 

We consider the representation for 1 in terms of E and r 
(we shall then omit the subscript E of (...)A: 

where the time of relative diffusion is assumed to be inde- 
pendent of E ,  and in contrast to el [or E,  in (7) and (8)] 
is the value of E averaged over a sphere of radius (1) at a 
fixed instant of time. The value of (1) itself can be deter- 
mined by averaging the left- and right-hand sides of (Al) 
over the probability distribution of the fluctuations of E ,  

which depends parametrically on ( I ) .  For this, by analogy 
with (12), we use the relation 

which differs from (12) only by the replacement of 1 by ( I ) .  
From (Al) and (A2), we readily obtain the representation 

from which it is obvious that (1)2 # (12) and the law of time 
evolution for k has the form 

To obtain the space representation of K ,  it is necessary to 
average the corresponding scaling law k = ~ f ; f ( l ) ' " ~  over the 
fluctuations of with allowance for (A2). Then, taking into 
account the fact that (1) does not depend on q 1 )  [i.e., 
(f ( ( l ) ) )= f((1)) for any function f], we obtain 

For the function p(q) ,  we have in accordance with Ref. 18 
the conditions 

If the space, and time, representations of K [(A5) and 
(A4)] are to be mutually consistent, we must in addition to 
(A6) require fulfillment of a new condition on the form of 
the function p(q): 

which has not previously been considered in intermittency 
models. For analogous consistency of the representations for 
dn'- ll?ldrm- I ,  we obtain instead of (A7) 

where ni= 1,2, ... . For m = 1, (A8) is identical to (A7). The 
case m =2, which corresponds to the correlation function of 
the Lagrangian velocities, also has physical meaning. 

For m = 1 and m =2, the condition (A5) is satisfied, for 
example, by a function p(q )  of the form 

( 1og2(gT+g':) - l,, q>213, 

where 

and g + g2 = g l  + g2 = 2. In (A9), p(q)  satisfies the condi- 
tions (A6),  since for q22/3 the function (A9) is identical to 
the representation for p(q)  in the multifractal model of in- 
termittency [see the expression (30) in Ref. 181. Of course, 
(A9) is not the only possible representation of p(q)  that 
satisfies (A6) and (A7), i.e., ultimately the form of p(q)  
depends on the particular form of the model of turbulence 
intermittency. 

Thus, we give one further example for which it is pos- 
sible to obtain consistency of the space and time representa- 
tions of the scaling laws of turbulent diffusion. In particular, 
for the g,=0.6 and g2=1.4 adopted in Ref. 18, we obtain 
from (A9) and (A3) the estimate 

(1)2-t3+0.1543 (A 10) 

which for (1) - r already agrees quantitatively with the ob- 
servational data of Ref. 30 (see above r2-t3+', 0.15<z 
<0.45 in Ref. 30). Experimental observations of passive La- 
grangian particles (in Ref. 31, these were balloons of neutral 
buoyancy) can be used to determine more accurately the cor- 
rections in the scaling laws (1)-(5) and their mutual consis- 
tency. 

Since regions with pronounced enhancement of dissipa- 
tion can be related to collapse effects and coalescence of 
localized vortex singularities, it will be of interest to deter- 
mine the parameters that occur in the scaling laws of turbu- 
lent diffusion [as was done above, see (29)-(32)lby analyz- 
ing the separation of particles of real admixtures (having 
different coefficients of molecular diffusion, see Ref. 32) in a 
field of vortex singularities of different m ~ l t i ~ o l a r i t i e s . ~ ~ * ~ ~ ~ ~ ~  

''In Ref. 29, z =  -43 ,  and this differs little from r= - 13/10 in (32). In Ref. 
29, this estimate was obtained from dimensional and scaling considerations 
from the idea of  the realization of a local cascade transformation of angular 
momentum that is invariant for the system of point vortex dipoles consid- 
ered in Ref. 27. 
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