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Perturbation theory in the resonance approximation is used to calculate new optical-pressure 
forces in the case of two-photon atomic transitions corresponding to Raman or two-photon 
resonance for two pairs of light waves with specially chosen polarizations moving in 
opposite directions. The forces are due to four-photon scattering of light by the atom and therefore 
have the fourth order in the electric field of the light waves. The new forces are rectified 
radiation forces and are stronger than the optical-pressure forces of second order in the electric 
field of light waves not in resonance with electric dipole transitions. This means that the 
new optical-pressure forces are the principal forces for the considered conditions when for the 
two pairs of opposite light waves only Raman resonance or two-photon resonance is 
realized. The new optical-pressure forces are odd functions of the velocity of the atom and for a 
definite sign of the detuning of the Raman or two-photon resonance act as friction forces. 
The dependence of these forces on the atom's velocity, the detuning from resonance, the relaxation, 
the angular momenta of degenerate levels, and the polarizations of the light waves is 
investigated. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The optical-pressure force for an atom in the electric 
field of monodirectional or oppositely directed light waves in 
resonance with an electric dipole transition has been studied 
extensively for several years (see Refs. 1-3 and the refer- 
ences cited there). Since this force is widely used to localize 
atoms by light fields and in laser cooling of atoms, particular 
attention is devoted to obtaining a rectified optical-pressure 
force that is constant or varies weakly over the wavelength of 
the light wave. To enhance the rectification effect of the ra- 
diation force, light waves of the same frequency4-6 or 
bichromatic light  wave^^,^.^ are used in the case of an electric 
dipole transition; a special model of an atom having an elec- 
tric dipole transition with change 1/2+3/2 or 1/2+1/2 of the 
angular momentum, for which a rectified radiation force ap- 
pears after averaging over half the wavelength, has also been 
considered?-l3 To this end, consideration is also given to 
three-level atoms with A configuration of nondegenerate lev- 
els (A atoms) that interact with two or several light waves in 
resonance with adjacent electric dipole transitions of a A 
a t ~ m . ' ~ - ~ '  The methods developed for A atoms are also used 
for atoms with K configuration of nondegenerate levels to 
calculate the optical-pressure force and its application for 
laser cooling of atoms.22*23 However, in Refs. 24 and 25 it is 
shown that allowance for degeneracy of the levels in the 
determination of the rectified radiation force leads to appre- 
ciable computational difficulties. At the same time, allow- 
ance for level degeneracy with respect to the projection of 
the angular momenta is fundamentally necessary if, in addi- 
tion to other characteristics, one is studying the vector prop- 
erties of the optical-pressure force.26 This circumstance is 
particularly important in the cases where the atom has optical 
polarization before entering the field of the light waves.27 

In contrast to previous investigations of the optical- 
pressure forces associated with resonance electric dipole 

transitions in which the parity of the atomic state 
changes,'-" in this paper we consider resonance two-photon 
transitions without change in the parity of the atomic state. 
We calculate the optical-pressure force for an atom in Raman 
or two-photon resonance with two light waves, and also with 
two pairs of oppositely directed light waves. The calculations 
are based on the standard for the optical- 
pressure force 

which was applied earlier to resonance electric dipole tran- 
sitions of an atom in the electric field E of light waves under 
conditions where the state of the atom is described by a 
density matrix p and its electric polarization is determined by 
averaging the operator d of the dipole moment. Application 
of this expression to an atom in the presence of only Raman 
resonance or only two-photon resonance revealed a number 
of interesting properties of the optical-pressure force F due 
to two-photon transitions from the ground level Eb to an 
excited level E,  without change in the parity of the atomic 
state. The solution to the problem was obtained in the reso- 
nance approximation by taking into account the level degen- 
eracy with respect to the projections of the angular momenta 
of the atom onto the quantization axis. 

In the domain of applicability of perturbation theory for 
two light waves with total electric field E, the nonresonance 
optical-pressure force F(2) of second order in the field E is 
stronger than the optical-pressure force F(4) of fourth order in 
the field E, despite the fact that the force is due to Ra- 
man or two-photon resonances. At the same time, each of the 
forces F ( ~ )  and fi4) can be decomposed into two essentially 
different parts, of which the first is an even and the second an 
odd function of the velocity v of the atom. Moreover, the 
even part is much greater than the odd part in the case of F (~ ) ,  
whereas for fi4) the two parts have the same order when 
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FIG. I. Level scheme for Raman (a) and two-photon (b) resonances. The 
solid vertical lines characterize two-photon transitions of the atom under the 
influence of light waves with frequencies w ,  and w,. The wavy lines de- 
scribe adjacent electric dipole transitions E,-+E, and E, - tE ,  between the 
excited levels E, and E, and the ground level Eb . 

where k 1  and k2 are the wave vectors, ycb is the damping 
rate of the optical coherence of the two-photon transition 
Eb-+E,, and A12 is the detuning from the Raman or two- 
photon resonance. If two pairs of oppositely directed light 
waves are used, then under certain conditions the sum of the 
terms even in v vanishes for the force F(') and the force I?(4). 
The remaining sum of the v-odd terms in F(') is negligibly 
small compared with the v-odd terms in I?(4). 

Thus, in the presence of only Raman resonance or only 
two-photon resonance in the field of two pairs of oppositely 
directed light waves, a new optical-pressure force F ( ~ )  arises 
due to Raman scattering of light by an individual atom-the 
only force that acts on the atom. This optical-pressure force 
is a rectified radiation force and, depending on the sign of the 
detuning from the Raman or two-photon resonance, can act 
as an accelerating or decelerating force for a moving atom. 

2. INDUCED ELECTRIC DIPOLE MOMENT OF THE ATOM 

We consider an atom with zero spin of its nucleus and 
possessing a two-photon transition of frequency 
web= (E, -  ~ ~ ) h - l .  Here Eb and E, are the energies of the 
ground state and an excited state, between which there is an 
intermediate level E, that occurs in adjacent electric dipole 
transitions E,-+E, and Ee+Eb,  as indicated in Fig. 1. In an 
arbitrary state, the atom is characterized by, in addition to the 
energy E, , the quantum number Jg of the angular momen- 
tum J, and its projection fiM, onto the quantization axis (the 
index g is used to label all levels of the discrete spectrum). 
This atom moves in the field of a finite number no of mono- 
chromatic light waves: 

where the complex amplitude a,, determines the intensity and 
polarization of the nth light wave. The direction of the wave 
vector k ,  is arbitrary. The frequencies w ,  and w, (ol>w2) 
satisfy the conditions of Raman resonance (Fig. la) 

I w ~ - w t - w c b I s ~ c b  (2) 

or two-photon resonance (Fig. lb) 

whereas each frequency w ,  and w2 separately is not in reso- 
nance and is not equal to w3 ,..., w , , ~  In addition, the fre- 
quencies o3 , . . . , w,,~ ,  and also their differences and sums, are 
also not in resonance. The doubled frequencies 2w,, of all the 
light waves (1) with n = I ,  ..., no are nonresonant, i.e., 
12 w,, - web/ Q ycb , and therefore two-photon absorption of 
photons of the same frequency will not occur without the 
presence of another wave. 

The interaction of the moving atom with the light waves 
(1) can be described by means of the equation for the matrix 
elements pM of the density matri:. p in the JM represen- 

f g 

tation: 

where 

v is the constant velocity of the atom, VM and dMfMe are f e  
the matrix elements of the operators of the interaction V 
= - E d  and of the electric dipole moment d ,  d,, is the re- 
duced dipole moment (Ref. 28), yf, is the half-width of the 
spectral line of the atomic transition E f t  E, , f i  yf and h y, 
are the homogeneous widths of the levels Ef and E,,  and 
y,,, is the probability of spontaneous emission of a photon 
hw,, by the isolated atom for the electric dipole transition 
from the upper level E, to the lower level E, . The indices f ,  
g, k, and s label all possible levels of the discrete spectrum 
of the atom. Summation over repeated matrix indices is as- 
sumed everywhere. The final term on the right-hand side of 
Eq. (4) describes the arrival of the atom at the lower level E, 
due to spontaneous emission of a photon fiw,, at an upper 
level E,>E, .  It is nonzero only for transitions E,+E, in 
which the parity of the atomic state changes. 

The atom enters the field (1) at the point ro=O at the 
time to=O and with the passage of time O s t  moves in this 
field rectilinearly r=vt with constant velocity v. This enables 
us to set in Eq. (4) and in the interaction operator V 

Before entering the field ( l ) ,  the free atom was in the 
ground state with energy Eb and was described by the con- 
stant density matrix 
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This density matrix is the initial condition at to=O if Eq. (4 )  
is solved in the region O s t .  

We seek a solution of Eq. (4) in the region O s t  by suc- 
cessive approximation in the form of a perturbation series: 

where the first term describes the state of the atom before it 
enters the field ( 1 )  and is determined by (6).  The other terms 
of the series (7)  are small corrections that describe the state 
of the atom in the field ( 1 )  for OSt in, respectively, the 
linear, quadratic, cubic, and higher approximations in the 
field; at the initial time to=O, all the small corrections are 
zero. In addition, it is assumed that the field ( 1 )  is sufficiently 
weak that each successive term of the series (7) is less than 
the previous one. Therefore, the terms of higher order in the 
field (1) in the series (7) are omitted as small quantities that 
are not used in this problem. 

To solve Eq. (4) in the first approximation in the field 
( I ) ,  it is necessary in its right-hand side to use the density 
matrix (6) in the terms containing the field (1). In the con- 
sidered first approximation, the term that describes the ar- 
rival of atoms at a lower level due to spontaneous emission 
of a photon at an upper level does not contribute to the 
required solution ' ( ' ) ( t ) ,  since in the given approximation 
the field ( I )  gives rise to transitions Ef+E8 for f # g  with a 
change in the parity of the atomic state. If we take into ac- 
count the relation (5) and the zero initial condition for ' ( ' ) ( t ) ,  
we can write the solution in the first approximation in the 
field (1) for OSt as 

After a sufficiently long time has elapsed (14 yf8t), this 
solution reaches a stationary regime: 

This enables us to determine the linear electric dipole 
moment p ( ' ) = ~ r ( ~ ( l ) d )  of the atom induced by the field (1) 
through nonresonance electric dipole transitions: 

where 

In accordance with the method of successive approxima- 
tion, we substitute the density matrix found in the first ap- 
proximation in the terms on the right-hand side of Eq. (4)  
containing the field ( 1 ) .  After this procedure, we determine 
the density matrix '(')(t) in the second approximation in the 
field ( 1 )  by solving the resulting simplified equation. We as- 
sume that the Raman resonance (2) holds. Therefore, in the 
solution of the simplified equation in the stationary regime 
for 14 ycbt in the second approximation in the field (1) we 
retain only the resonance terms. Then the term in the simpli- 
fied equation with factor y,,, does not contribute, since it is 
not a resonance term. The upshot is that in the stationary 
regime we obtain Pg)M = 0 for all indices f and g, except 

f. 
for the values of the Indices that correspond to the case of 
resonance: 

In the nonresonance denominators in ( l o ) ,  the detuning 
wl-%-web from resonance, the Doppler shifts of the fre- 
quencies of the light waves, and the relaxation constant 
t i y g b  are omitted as small quantities compared with 
Iw1 - wc81 and 1 ~ ~ - 0 ~ ~ l .  This measure made it possible to 
use the equations 

The density matrix (10) which we found characterizes 
the optical coherence in the two-photon transition Eb+Ec, 
and therefore it cannot describe the emission or absorption of 
a photon by the atom, which is forbidden by the parity con- 
servation law. The nonlinear process of absorption of two 
photons of the field ( 1 )  and emission of a different photon is 
described by the density matrix p(3)(t)  of the cubic approxi- 
mation in the field ( I ) .  To determine p(3)(t) by means of the 
solution of Eq. (4) in the stationary regime in the third ap- 
proximation in the field ( I ) ,  we introduce the convenient 
notation 

where the matrix rM is equal to zero for all possible f and 
f n 

g except f = c and g = b, and also f = b and g = c. In addi- 
tion, it can be seen from comparison of (12) with (10) for 
f = c and g = b that the matrix rM , is a slow function of the 

f R  
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time, since it is proportional to exp[i(oCb-- w, + w2)r] with 
small detuning from resonance: lo, - w ~ - o ~ ~ ~ s  yc,b . BY vir- 
tue of the notation (12), we can sum over the indices f and g 
in the complete range of their variation when calculating the 
density matrix in the third approximation in the field (1) by 
solving the equation 

where f # g .  By virtue of (12), the solution of this equation 
can be represented in the compact form 

where we have used the convenient notation 

Here we have omitted in the nonresonance denominators the 
detuning ol- y-wcb from resonance, the Doppler shifts of 
the frequencies of the light waves, and i yfg , since they are 
small compared with I wkg + @,I. 

The required induced electric dipole moment of the atom 
in the cubic approximation in the field (1) is 

In the first term on the right-hand side of the last equa- 
tion, we redenote the summation indices in such a way as to 
factor out the common factor as follows: 

We can now take advantage of the fact that in accor- 
dance with (lo), the density matrix p;),,, is nonzero only 

k 8 
for k = c  and g = b  or k = b  and g = c .  This enables us to 
represent the vector (13) in a different manner: 

where 

In order to sum over the projections of the angular mo- 
menta in (14) with allowance for (10) and (15), we use the 
Wigner-Eckart theorem and the rules for contracting 3 j  
~ ~ m b o l s ? ~ , ~ ~  and we also use the method of calculation de- 
veloped in Ref. 30. This enables us to obtain for arbitrary 
vectors A,, A,, and A3 the general expressions 

where 

The 6 j symbol used here is defined in Refs. 28 and 29. 
By means of the general expressions (16) and (17) we 

can calculate the induced electric dipole moment (14) of the 
atom in the cubic approximation in the field (1). Omitting the 
simple but laborious calculations, we find 

~(w;; i )ex~[i(kL~ir-  wi;ir)])+c.c., (18) 

where 
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1 
X(l-) (w)= - [ B f ( - o ) + B $ ( -  w ) ] ,  

2 

In the nonresonance denominators in (24) and (25), we 
have omitted the detuning from resonance, the Doppler shift 
of the frequency, and the relaxation constant, whereas in the 
resonance denominator in (23) we cannot omit these quanti- 
ties. The expressions (18)-(25) are valid for all directions of 
the vectors k l  , .. . ,kno. 

For the two-photon resonance (3),  the arguments can be 
made similarly, but in each step of the calculations we en- 
counter expressions that differ from the case of Raman reso- 
nance in some details. The upshot is that the induced electric 
dipole moment of the atom in the cubic approximation in a 
field ( 1 )  satisfying the requirement of two-photon resonance 
(3) takes the form 

where 

(+) - (+I )=% (+)  -(+)I Pnj,(wn12 (,+)(~!zTi)a,(a2an) +X2 (wn12 a2(ana1) 

+ X ~ ' ( ~ ~ : z ) > a ~ ( a ~ a 2 ) ,  (27) 

( - )  -(-))=.&)(a(-))a* Pn12(wn12 
( - )  - ( - ) )a$ (a  a*) 

1112 1(a?an)+X2 (wrr12 n I 

+ ~ ( ~ - ) ( & k ; $ ) a ~ ( a ~ a ? ) .  (28) 

Here 2:) (w) and &-) with m = 1,2,3 are equal to the quan- 
tities given in (21) and (22) after the replacement in them of 
B,(w) with ~ = 0 , 1 , 2  by 

- 1 
B ~ ( w ) =  (2Jb+ 1 )h n , * ( ~ ) n ~ ( ~ l )  

where in writing down the nonresonance denominators for 
l l z ( w )  and IIK(wl) in (29) we have used in place of ( 1 1 )  the 
equations 

It can be seen that the transition from the Raman reso- 
nance (2) with the expressions (18)-(25) to the two-photon 
resonance (3) described by the expressions (26)-(30) can be 
made by means of the substitutions 

The obtained induced electric dipole moments of the 
atom (18) and (26) for the Raman resonance (2) and two- 
photon resonance (3) are identical in the case no=3 to the 
corresponding vectors that describe the density of the dielec- 
tric polarization of an atomic gas obtained in the study of 
Raman scattering in Ref. 30 if in them we omit the atomic 
collisions and use the obvious equations 

which contain the quantities (24) and (25). In addition, the 
densities N b  and N, of the resonance atoms in the levels Eb 
and E ,  in Ref. 30 must be replaced by 1/(2Jb+l) and 0 .  At 
the same time, it is necessary to choose f (v ') = qv '  -v )  as 
the distribution function of these atoms with respect to the 
velocities v' in Ref. 30. The identity that we have noted 
exists, despite the differences in the equations for the density 
matrix and in the subsidiary conditions. 

The identity of the vector (18) for no=3 with the vector 
of the dielectric polarization of the atomic gas in the case of 
Raman scattering in Ref. 30 indicates that the vector (18) 
describes four-photon Raman scattering of light by a single 
atom, which reduces to absorption of photons hw, and h% 
of the two pumping waves in the presence of a test wave 
with frequency on and to the emission of photons h w s i  or 
hw;,;, respectively, of anti-Stokes and Stokes waves. This 
four-photon nonlinear process develops in the two-photon 
transition Eb+E,  if the condition of Raman resonance (2) is 
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satisfied. Similarly, the identity of the vector (26) for no=3 
with the vector of the dielectric polarization of the atomic 
gas in the case of four-wave scattering of light in Ref. 30 
shows that the vector (26) describes four-photon scattering of 
light by a single atom. This scattering takes the form of the 
absorption of photons h o l  and hw2 of the two pumping 
waves in the presence of a test wave with frequency w,, and 
emission of a photon h&iTj or h ~ ! , ~ i ,  respectively, of anti- 
Stokes and Stokes waves. The given four-photon nonlinear 
process is possible only in the two-photon transition Eb-'E, 
in the presence of the two-photon resonance (3 ) .  

Note that in a gas with given density of active atoms 
Raman scattering is a coherent process and, in accordance 
with Maxwell's equations, is optimal in the direction in 
which the dispersion relation holds: 

( o ( * ) ) 2 8 ( o ( * ) )  = (k(*)c)2 ,  

where E(o(?)) is the real permittivity of the given gas. In 
contrast, the emission of one atom in four-photon scattering 
of light takes place with a definite probability in all direc- 
tions and depends on the rate of change of the vectors (18) 
and (26) as a function of time, with allowance for 
k ~ T ~ r = k ~ ~ ~ v t = k ~ ~ i r = k i ~ ~ v t ,  which describe the Doppler 
shifts of the frequencies of the light waves. 

3. OPTICAL-PRESSURE FORCE IN THE FIELD OF TWO 
LIGHT WAVES 

If an atom is in the electric field E of the light waves ( I ) ,  
then in accordance with the well-known it is 
acted upon by the optical-pressure force 

where the electric dipole moment P=Tr(pd) of the atom is 
induced by the same field E. In this problem, the density 
matrix p in the field E is calculated perturbatively with al- 
lowance for four terms of the series (7), but the vector P is 
equal to the sum of two terms describing the emission or 
absorption of photons: 

where in accordance with (9) the vector P(') describes the 
process of absorption and emission of one photon of the field 
(1) under nonresonance conditions with respect to the elec- 
tric dipole transitions E b + E g .  In contrast, the vector P ( ~ )  
describes a complicated four-photon nonlinear process of 
scattering of the light by a single atom in the presence of 
Raman resonance (2)  or two-photon resonance (3)  for a two- 
photon transition. 

We consider first of all the simplest case of two light 
waves (1) with no=2 that satisfy the requirement (2)  or (3) .  
In the calculation of the optical-pressure force F ( ~ )  in the 
second order in the electric field E of the nonresonance light 
waves ( 1 )  we then find that the double sum over the indices 
of the light waves ( 1 )  in (32) with P=P( ' )  contains by virtue 
of (9) exponentials with frequencies 2 w 1 ,  w ,  t 9, and 2w2, 
and also two terms that do not depend on r and r. To elimi- 
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nate the rapid oscillations with the frequencies 2 w 1 ,  wl+-w2,  
and 2w2, we average the required force over the time as 
follows: 

where the time interval t 2 -  t l  is determined by the inequali- 
ties 

Here w I  - o2 is the lowest of the frequencies that occur in the 
considered double sum in (32).  In this case, the terms of the 
force (32) containing the harmonic function with frequency 
difference wl-w2 acquire after the averaging (33) the small 
factor 

and will be omitted. For the same reason, we omit the terms 
of the force (32) that contain harmonic functions with fre- 
quencies greater than o, - 0 2 .  As a result of the averaging 
over the time (33), only the two terms that do not depend on 
r and t  are unchanged. Thus, after the averaging over the 
time (33) the force (32) will be a rectified radiation force in 
the second order in the electric field E of the nonresonance 
light fields (1); specifically, 

where the brackets (...) are omitted and we have adopted the 
notation 

Here c2) and c2) are even and odd functions of the velocity 
v of the atom. The force (34) takes into account the effect of 
the light waves ( 1 )  on all the nonresonance electric dipole 
transitions in the second order in the electric field of these 
light waves. 

We calculate the optical-pressure force (32) in the fourth 
order in the field ( 1 )  in the presence of Raman resonance (2) ,  
for which the vector P = P ( ~ )  is determined in (18). In the case 
no=2, the role of the test wave for Raman scattering by the 
atom is played by one of the two given light waves with 
index n = 1 or n =2 ,  and therefore P ( ~ )  contains exponentials 
with four different frequencies: 

In this case, it is convenient to transform expression (32) 
with P = P ( ~ )  to a different form that contains imaginary parts 
of the complex quantities: 
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where the scalar products of the vectors exist only in the 
terms within the curly brackets. The double sum in (36) con- 
tains two terms that do not depend on r and r ,  and also 
rapidly oscillating terms having the characteristic frequen- 
cies 

In this connection, we average the force (36) over the 
time in the same manner as (33) as in the calculation of the 
force (34). After the averaging of the force (36) only the 
constant terms, which do not depend on r and t, will then 
remain unchanged, and therefore the force (36) is trans- 
formed into the rectified radiation force 

in which the vectors ~ g l ( o ~ )  and P\T~(%) are determined in 
(19) and (20), and the indices of these vectors are equal to 
the indices of the corresponding frequencies in (35). 

To simplify the following calculations, we use Eqs. (1 1). 
We then obtain the useful relation 

Further, for the complex amplitude an of all the consid- 
ered light waves (1) we introduce the notation 

where An= 2 1 ,  IknA, is a unit complex polarization vector, R, 
is a constant real amplitude, and a;, is a constant phase shift. 
In addition, we assume that the wave vectors k, , . . . ,k are 

"0 

collinear with the Cartesian axis z. For circular waves (1) the 
polarization vectors will then take the form 

where 

in which lx , I,, and I, are unit vectors along the Cartesian 
axes x ,  y, and z .  At the same time, A,= 1 and A,= - 1, re- 
spectively, for right- and left-circular polarization. The polar- 
ization vector of a linearly polarized wave in (1) with ampli- 
tude (39) can also be written in a different form: 

ln=l, cos q,+ly sin rp,, n =  1 , . . . ,no,  (41) 

where cp, is the angle measured from the x axis clockwise if 
we look along the z axis. 

After this procedure, the rectified optical-pressure force 
(38) for Raman resonance (2) takes the form 

where 

8 1 2 = ~ 1 - ~ 2 - ~ c b .  (43) 

In its physical nature, the force (42) is associated with 
four-photon Raman scattering by the atom, and it therefore 
has different properties compared with the force (34). The 
dimensionless quantity C12 depends essentially on the angu- 
lar momenta of the degenerate levels and the polarizations of 
the light waves. Depending on the directions of kl and k2, it 
contains IIlK(o,)12 with different K. For example, for parallel 
k, and k2 and different circular polarizations (40), we have 
IklAllk2A2 = 1 and 1k1,,l,*22"2=0, and therefore (43) contains 

only II12(w,)12. At the same time, for orthogonal linear polar- 
izations in (43) we must set 

and then the dimensionless C12 contains only the sum 
lIIl(o)12+lI12(w,)12, and the moduli of the quantities nK(w,) 
with ~ = 0 , 1 , 2  or their ratios can be determined from Raman 
scattering in both the and n o n ~ t a t i o n a r ~ ~ ~ - ~ ~  
regimes. Experimental methods of determining these quanti- 
ties are presented in Ref. 31. The theoretical calculation of 
IIK(ol) is a laborious problem, because it must deal with the 
reduced dipole moments of the atom. 

The force (42) can be decomposed into two terms: 

F(4) = F((4) + F(4) , 

where 

(45) 
The first, (44), and second, (49 ,  terms of the force f i 4 )  

are even and odd functions of the velocity v of the atom. The 
direction of the first term (44) is determined by the vector 
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k,-k2. In contrast, the second term (45) is parallel or anti- 
parallel to k,-k,, depending on the signs of A,, and the 
projection of the velocity v onto the direction k, -k2. Thus, 
the second vector term (45) is collinear to k,-k2 and, de- 
pending on the sign of A,,, can be either a decelerating or 
accelerating force for an atom moving with velocity longitu- 
dinal with respect to k,-k,: 

In the case of the two-photon resonance (3), the general 
expressions (32), (33), and (39)-(41) remain, and for P ( ~ )  we 
can use the expression (26) with no=2. Repeating the argu- 
ments as for Raman resonance, we obtain the optical- 
pressure force (32) in the presence of two-photon resonance 
(3) in the form 

Since the atom is acted on by the two light waves (1) 
with indices n =  1 and n=2, the vector (26) contains expo- 
nential~ with four different frequencies: 

Therefore, the double sum in (46) over the indices n and n' 
contains two constant terms, which do not depend on r and t,  
and several rapidly oscillating terms, for which the lowest 
frequency is 01-02. This makes it possible to average the 
double sum (46) over the time, (33), as for Raman resonance. 
As a result, the force (46) is reduced to the sum of two terms: 

where the vectors fi,i(-o,) and P\;i(-q) are determined 
by (28) with n= 1, 2, and the indices of these vectors are 
equal to the indices of the corresponding frequencies in (47). 

For the two-photon resonance (3), we have by virtue of 
Eqs. (30) the relation 

which makes it possible to represent the rectified optical- 
pressure force (48) in the compact form 

where 

A 1 2 = ~ I + ~ 2 - ~ c b .  (50) 

The rectified optical-pressure force (49) is due to four- 
photon scattering of the light waves by the atom in the pres- 
ence of the two-photon resonance (3). It can also be decom- 
posed into two terms: 

where 

- - 2(k1 + k2)h~~bC12A,2((kl + k2)v) 

[(A12+(kl+k2)v)2+ ~ : b 1 [ ( & 1 2 - ( ~ 1 + ~ 2 ) ~ ) ~ +  Y:~I ' 

(52) 
The term (51) is an even function of v, and the other term 
(52) is an odd function of the velocity v. It can be seen that 
the forces (44) and (45) for Raman resonance (2) go over 
into the forces (51) and (52) for two-photon resonance (3) 
after the substitutions 

4. OPTICAL-PRESSURE FORCE IN A FIELD OF FOUR LIGHT 
WAVES 

In accordance with the perturbative expansion (7), the 
forces (42) and (49) of fourth order in the field (1) are less 
than the forces (34) of second order in the field (1) in the 
ratio 

where for an estimate of the quantities we have assumed 
RI-R2, W , - W ~ ~ - O ~ ,  % S W , ,  and ybg- ycb.  The inequal- 
ity (54) is due to the term c2) of the force (34), which is 
even with respect to the velocity v of the atom, since for 
nonresonance light waves it exceeds the odd term c2) in the 
ratio 

However, the terms even in v in the forces (34), (42), 
and (49) are undesirable in problems of the laser cooling of 
atoms and the localization of atoms by light fields. These 
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terms can be eliminated by using four light waves (I) with 
no=4= which form two pairs of oppositely directed waves 
as follows: 

where the difference o, - o, and the sum W, + o, satisfy the 
conditions of Raman (2) or two-photon (3) resonances, 
whereas the frequencies W, and 2on with n = 1,2,3,4 are non- 
resonant with respect to all the atomic transitions between 
levels of the discrete spectrum of the atom. The phase shifts 
a,, with n= 1,2,3,4 of the given light waves are arbitrary. In 
accordance with (40), each pair of oppositely directed circu- 
lar waves (55) and (56) has the same circular polarizations, 
right-circular for A, = h2=A3=A4= 1 and left-circular for 
Al=A2=A3=A4=-1. These polarizations of the oppositely 
directed circular waves are chosen to make the sum of the 
v-even terms in the force F(') of second order in the field (1) 
with no=4 vanish. For this purpose, one can also use the 
orthogonal linear polarizations (41) for two pairs of oppo- 
sitely directed waves with the same frequency: 11.13 
=I2-14=0. 

When the requirements (55) and (56) are satisfied in the 
presence of Raman resonance (2), a solution of Eq. (4) can 
be obtained by the method presented in Sec. 2. The previ- 
ously obtained density matrix (8) is unchanged, and the reso- 
nance component of the density matrix p(')(t) has the form 

where the numbers 1, 2, 3, and 4 are equal to the indices n 
and m of the amplitudes and frequencies in the general ex- 
pression 

Further calculations in the presence of the Raman reso- 
nance (2) lead to the following induced electric dipole mo- 
ment of the atom in the third order in the field (1): 

where the first two terms in (57) are determined by the ex- 
pressions (18)-(25) with no=4. The remaining six terms in 
(57) can be obtained from the first two with allowance for 
the expressions (18)-(25) if in the vectxs P:~J, kki;, a l ,  a2, 
a:, @ and the frequencies oiij we make the following 
three index substitutions: 1) 1 4 3  and 2 4 4 ,  2) 1+1 and 
2 4 4 , 3 )  1+3 and 2+2. 

In accordance with the general expression (32) with 
no=4 and P=P(~)  (57), the required force F(4) of fourth order 
in the field (1) with no=4 contains numerous terms of a 
double sum over the indices n and n' similar to the terms in 
(36). These terms can be divided into three essentially differ- 
ent groups. The first group contains constant terms that do 
not depend on r and t that were obtained by multiplying the 
exponentials in (57) with the characteristic frequencies 

by the corresponding exponentials of the light waves (1) with 
no=4 having the form 

The second group of terms was formed by multiplying 
the exponentials in (57) with characteristic frequencies 

by the exponentials (59) of the same light waves (1). As a 
result of this multiplication, there appear in the force F ( ~ )  
terms which do not contain the frequencies (60) multiplied 
by t but which depend on the coordinates through the factors 
exp(+2ik,r) and exp(f-2ik2r). This second group of terms 
is undesirable, since it hinders rectification of the radiation 
force F(4). Fortunately, they can be eliminated if the polar- 
izations of the circular waves are, with allowance for (55) 
and (56), chosen as follows: 
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In the case of linearly polarized waves, we choose the 
polarization vectors [Eq. (41)] with the same aim such that 

For the polarization vectors (61) or (62), the terms of the 
second group vanish by virtue of the equations 

The third group of terms contains rapidly oscillating har- 
monic functions with frequencies (37). Performing the time 
averaging (33) of the required force in the same way as in the 
calculation of the force (34), we see that the terms of the 
third group can be ignored. Thus, a contribution to the force 
F(~)  is made by only the constant terms of the first group that 
do not depend on r and t; taken together, these terms consti- 
tute the following rectified radiation force: 

+k3(~i:2)(03)a?)+k2(~$;2)(~2)$)1~ (63) 

where the indices of the vectors P(') are equal to the indices 
of the characteristic frequencies (58). The force (63) can be 
decomposed into parts even and odd with respect to the ve- 
locity v. However, by virtue of the choice of the light waves 
(55) and (56) the sum of the v-even terms vanishes, and there 

remain only the v-odd terms, which form a radiation force 
that plays the role of a decelerating or accelerating force, 
depending on the sign of the detuning from Raman reso- 
nance. For the chosen polarization vectors (61) and (62), it 
has the form 

where the dimensionless quantity C,, is determined by the 
expression (43), in which we have made the substitution 

For circular waves with the polarization vectors (61), we 
obtain 

whereas for the linear polarizations (62) we find 

For small longitudinal velocities, i.e., for 

the radiation force (64) takes the form 

In the case of four light waves (55) and (56), which where the dimensionless quantity C14 is given by the expres- 
satisfy the two-photon resonance (3), the arguments are the sion (50), in which the substitution (65) is made. For the 
same as for Raman resonance. As a result, we obtain an chosen circular polarizations (61), we obtain 
optical-pressure force in the fourth order in the field ( I )  with 
no=4 which contains only terms odd with respect to v and 
which has the form c l 2 = ~ 1 4 ,  c 1 4 = ~ 1 2  

ih4)= - 4(k1 +k2)fi~:b~12A12((kl +k2)v) At the same time, for the linear polarizations (62) we have 

{ [ ~ 1 2 + ( ~ l  +k2)v~2+ ~ ? b } { [ ~ l 2 - ( ~ 1 + ~ 2 ) ~ 1 ~ +  ~:b} 

4(k1 -kz)fi~:bel&,2((k1 -k2)v) C l2=c I2 ,  c I 4 = c l 4 .  (74) + - 
{[A12+(kl-k2)v12+ ~:b){[~12-(~1 -k2)v12+ ~ ? b }  ' 

(72) For low longitudinal velocities (70), the force (72) is 
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The forces (64) and (71) transform into the forces (72) 
and (75) under the substitutions 

k 2 - + - k 2 .  ~ 1 2 + ~ 1 2 .  ~ 1 2 + C 1 2 ,  C I ~ + C I ~ ,  
which largely repeat (53). 

The first term in (72) describes a sum of identical con- 
tributions of two oppositely directed pairs of light waves 
with indices n = l ,  2 and n=3, 4, for which ol+%=w3 
+ W ~ - W , ~  and k ,  +k2= -k3-k,.  Therefore, the first term in 
(72) is due to the emission and absorption by the atom of two 
photons with total frequency o, +w2- ( k ,  +k2) .v or two pho- 
tons with total frequency w3+ w4-(k3+k4) - V  in the coordi- 
nate system attached to the moving atom. Similarly, the sec- 
ond term in (72) is the sum of identical contributions of two 
oppositely directly pairs of light waves with indices n = 1 ,  4 
and n=3,  2, for which w ] + w ~ ' w ~ + ~ + " o ~ ~  and 
kl+k4=-k3-k2=kl -k2 .  It can be seen that the second 
term in (72) is due to the emission and absorption by the 
atom of two photons with total frequency 
o, + 0 4 - ( k ,  + k4) .v  or two photons with total frequency 
*+o+-(k3+ k2)-V,  where k4= - k2 and k3= - k l .  The same 
interpretation of the terns can be given for the optical- 
pressure force (64) in the case of the Raman resonance (2) .  

Since for the chosen light waves (55) and (56) the 
optical-pressure forces of second, G 2 ) ,  and fourth, G4), or- 
ders in the field E contain only parts that are odd with re- 
spect to v, their ratio is given in order of magnitude by the 
inequality 

where IAI2lk ycb. 
This means that for the four light waves (55) and (56) 

the nonresonance optical-pressure forces F(') of second order 
in the field ( 1 )  are unimportant and are to be omitted. Then 
the principal optical-pressure force in the case of Raman, ( 2 ) ,  
or two-photon, (3), resonance is the v-odd rectified radiation 
force of fourth order in the field ( I )  given by the expressions 
(64) and (72). 

5. RESONANCE STRUCTURE OF THE RECTIFIED 
RADIATION FORCE 

In the case of the two-photon resonance (3),  we set 

k I + k Z = I Z ( k I + k 2 ) ,  o I = 3 w 2 ,  v , = I ~ v .  

Using (73), (74), and (66)-(69), we can therefore represent 
the optical-pressure force (72) in the dimensionless form: 

4 
F,=xy 

where 

F , = I , F ~ ) I F ~ ~ ,  F 1 2 = 1 6 h k 2 y , b ~ 1 2 ,  

x=k2uz l~cb  9 Y = ~ I ~ J Y ~ ~  r ~ = C 1 4 / C 1 2 .  

For the circular polarizations (61), we obtain 

whereas for the linear polarizations (62) 

where the parameters IIIK(wl)/IIo(ol)l with K= 1, 2 can be 
found from experiments on Rarnan scattering, as was done in 
Ref. 32 with allowance for the equation IIK(wl ,w2)=II,(wl) 
for Raman resonance and IIK(ol,-oz)=IIK(o,) for two- 
photon resonance. In the experiment of Ref. 33, the ratio 
III,(o)/I12(o)l was determined from the depth of the beats of 
the nonstationary Raman scattering. 

Figures 2 and 3 show the dependences of the optical- 
pressure force (76) on the velocity v, for some values of the 
parameters y and z. These dependences can be used to in- 
vestigate the contribution of two-photon resonances. It can 
be seen from the figures that the radiation force contains four 
two-photon resonances: one for each pair of light waves with 
indices n=1,2, n=3,4, n=1,4, and n=3,2. In the rest frame 
of the atom, the frequencies of the light waves are on - knvz 
for n= 1,2 and on+ knu, for n=3,4. If we take into account 
the adopted equations k ,  = 3 k 2 ,  k3 = 3 k 4 ,  k2 = k4 ,  and 
A12<0, then in accordance with the energy conservation law 
the four following equations correspond to the four two- 
phonon resonances in Figs. 2 and 3: 

where v,= ? lv,l. Each of these equations characterizes a 
process of absorption (or emission) of two different pairs of 
photons. The two outer peaks in Figs. 2 and 3 describe the 
behavior of the optical-pressure force in the neighborhood of 
the resonances (78), while the two inner peaks characterize 
this force in the neighborhood of the resonances (77). At 
large detunings from two-photon resonance, 1 ~ ~ ~ 1 %  ycb , the 
height of the inner peaks in Fig. 2 is almost independent of z ,  
whereas the height of the outer peaks is proportional to 212. 

6. CONCLUSIONS 

The obtained optical-pressure forces (42), (49), (64), and 
(72) for Raman, (2) ,  and two-photon, (3) ,  resonance depend 
strongly on the relaxation constant ycb of the two-photon 
transition E,--+ E b .  For a single atom in the weak field ( I ) ,  it 
is due to radiative processes or the time of flight of the atom 
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FIG. 2. Optical-pressure force (76) as function of the velocity v, for 
A,,= - 8 ycb . The unit for the ordinate is F,,. The dashed, dotted, and solid 
curves correspond to z = l ,  z=5, and z=10. 

through this field. In the case of the stationary regime leading 
to the expressions (42), (49), (64), and (72), the relaxation 
constant ycb has a radiative origin. At the same time, for the 
ground level Eb in the weak field (1) we obtain yb=O, and 
therefore the relaxation constant ycb= yc/2 attains a rather 
high value if between the levels Eb  and E, there is at least 
one level E, in adjacent electric dipole transitions Ec-tEe 
and Ee+Eb,  which increase the value of yc (Figs. l a  and 
lb). In accordance with Ref. 35, we find such examples in 
the calcium atom z ~ a  with levels E ~ ( ~ ' S ~ ) ,  E,(~'P:), and 
E , ( ~ ~ S ~ ) ,  where E,=3.91 eV and yc=108 s-', and also in 
the barium atom k28~a with levels E ~ ( ~ ' s , ) ,  E , (~~D; ) ,  and 
E , ( ~ ' D ~ ) ,  where Ec=4.64 eV and y c = 5 ~ 1 0 7  s-'. 

In this paper we have considered one pair of oppositely 
directed waves with frequencies (2) or (3) and also two pairs 
of oppositely directed waves with frequencies and polariza- 
tions (55) and (56). Since the doubled frequencies 20, with 
n = 1, 2, 3, and 4 are nonresonant, the atom does not absorb 
two photons of the same frequency without the presence of a 
test wave with a different frequency, and therefore a corre- 
sponding contribution to the obtained optical-pressure force 
is absent. In the case of one pair of oppositely directed waves 
in the presence of Raman resonance (2), the optical-pressure 
force (36) contains interference terms, which depend on the 
coordinates of the atom by virtue of phases of the form 
(w, tw2)t -(kl+k2)-r corresponding to the frequencies (37). 
However, after the averaging over the time (33) these terms 
acquire a small factor that enables us to omit these terms. As 
a result, we obtain the rectified radiation force (42). For the 
two-photon resonance (3), the arguments are similar. In the 
case of two pairs of oppositely directed waves (55) and (56), 
the situation is more complicated, since the terms of the 
optical-pressure force can be decomposed into three different 
groups. The first group contains terms for which the phases 
cancel each other in the arguments of the exponentials. This 
group of terms leads in the case of the Raman resonance (2) 

FIG. 3. Optical-pressure force (76) as function of the velocity v, for z=6. 
The unit for the ordinate is F ,, . The dashed and solid curves correspond to 
AI2= -6  ycb and A,,= - IOycb. 

to the rectified radiation force (63). The second group of 
terms contains factors exp(+2ikl .r) and exp(*2ik2-r) 
without the light frequencies in the arguments of the expo- 
nential~. However, the coefficients of these exponentials van- 
ish if the polarizations of the waves are chosen in the form 
(61) or (62). The third group contains interference terms 
which depend on the coordinates of the atom because of the 
phases of the light waves that correspond to the frequencies 
(37). After the averaging over the time (33), the third group 
makes a negligible contribution which can be omitted. If 
after this procedure we choose the amplitudes of the oppo- 
sitely directed waves to be the same, R , = R, and R3 = R, , 
then we obtain the rectified radiation force (64), which is odd 
with respect to the velocity of the atom. A similar situation 
occurs in the approximation of perturbation theory quadratic 
in the field ( I )  for two oppositely directed waves with 
R = R2 , the same circular polarizations, and frequencies 
o1 = y in resonance with an electric dipole t ran~it ion.~~ 

In the presence of only one resonance of two-photon 
absorption, i.e., for 

we can use two oppositely directed waves with k l=  -k2, 
RI = R2, and specially chosen polarizations. The optical- 
pressure force for the given two-photon transition will then 
be the principal force acting on the atom. In this case, the 
calculations differ from those considered in Secs. 2-4 and 
constitute a separate problem with the following feature. As 
was shown in Ref. 36 (see also Ref. 2), in the case of satsi- 
faction of the condition (79) in the field of a standing wave 
the atom can absorb two photons from the first or second 
wave and also one photon from each of the oppositely di- 
rected waves separately. Since in the nonrelativistic region in 
the center-of-mass system the frequencies of the oppositely 
directed waves are w,-kl.v and q-k, .v ,  the sum of these 
frequencies wl+w2 for kl+k2=0 is in the resonance (79), 
regardless of the velocity v of the atom. Therefore, the pro- 

1094 JETP 81 (6), December 1995 A. I. Alekseev and G. Yu. Tikhonov 1094 



file of the two-photon absorption line in a gas has a narrow 
peak that does not depend on Doppler broadening. However, 
this absorption without Doppler effect in the field of the 
standing wave does not contribute to the optical-pressure 
force, since the aton1 simultaneously absorbs momentum hkl 
from one wave and momentum hk2=-hk, from the other 
wave, which leads to a vanishing optical-pressure force in 
the case of absorption without Doppler effect. In this case, a 
nonvanishing contribution to the rectified optical-pressure 
force is made by each of the oppositely directed waves sepa- 
rately when the polarizations of these waves are specially 
chosen. Such terms do not occur in the optical-pressure force 
(49), since the two oppositely directed waves which we con- 
sidered did not satisfy the two-photon absorption resonance 
(79). 

It would be interesting to apply the optical-pressure 
force (64) in Raman resonance (2) to molecules with 
vibrational-rotational transitions, which have been used al- 
ready in the investigation of Raman scattering in molecular 
gases.37731 Similarly, the optical-pressure force (72) in the 
case of the two-photon resonance (3) can be measured for 
molecules with vibrational-rotational or electronic- 
vibrational-rotational transitions, which have been studied in 
the spectroscopy of two-photon 

The widest selection of necessary level configurations 
corresponding to the requirements (2), or (3), or (79) exists 
among atoms with hyperfine structure of the levels due to 
interaction of the electron subsystem with the nuclear spin. 
However, the calculation of optical-pressure forces for an 
atom with hyperfine structure of its levels in the indicated 
cases contains various features that require separate study. 

'v. G. Minogin and V. S. Letokhov, Pressure of Laser Radiation on Atom 
[in Russian] (Nauka, Moscow, 1986). 

'V. S. Letokhov and V. P. Chebotaev, Nonlinear Laser Spectroscopy of 
Ultrahigh Resolution [in Russian] (Nauka, Moscow, 1990). 

3 ~ .  P. Kazantsev, G. I. Surdutovich, and V. P. Yakovlev, Mechanical Eflecr 
of Light on Atoms [in Russian] Nauka, Moscow, 1991). 

4 ~ .  P. Kazanchev and I. V. Krasnov, Zh. Eksp. Teor. Fu. 95, 104 (1989) 
[Sov. Phys. JETP 68, 59 (1989)l. 

'R. Grimm, Yu. B. Ovchinnikov, A. I. Sidomv, and V. S. Letokhov, Phys. 
Rev. Lett. 65, 1415 (1990). 

6 ~ .  A. Grinchuk, I. A. Grishina, E. F. Kuzin et al., Kvantovaya Elektron. 
(Moscow) 21,314 (1994) [Quantum Electron. 21, 000 (1994)l. 

7 ~ .  Grimm, Yu. B. Ovchinnikov, A. I. Sidorov, and V. S. Letokhov, Opt. 
Commun. 84, 18 (1991). 

'YU. B. Ovchinnikov, R. Grimm, A. I. Sidorov, and V. S. Letokhov, Opt. 
Spektrosk. 76, 210 (1994) [Opt. Spectrosc. 76, 192 (1994)l. 

9 ~ .  Dalibard and C. Cohen-Tannoudji, J. Opt. Soc. Am. B 6, 2023 (1989). 
lop. Ungar, D. Weiss, E. Riis, and S. Chu, J. Opt. Soc. Am. B 6, 2058 

(1989). 
"V. Finkelstein, P. R. Bemian, and J. Guo, Phys. Rev. A 45, 1829 (1992). 
''A. V. Bezverbnyi, A. M. Tumaikin, and N. L. Kosulin, Laser Physics 2, 

1010 (1992). 
"R. Grimm, J. Soding, Yu. V. Ovchinnikov, and A. I. Sidorov, Opt. Com- 

mun. 98, 54 (1993). 
145. Javanainen, Phys. Rev. Lett. 64, 519 (1990). 
"v. G. Minogin, Opt. Commun. 77, 19 (1990). 
1 6 ~ .  I. Sidorov, R. Grimm, and V. S. Letokhov, J. Phys. B 24, 3733 (1991). 
17s. Chang, B. M. Garraway, and V. G. Minogin, Opt. Commun. 77, 19 

(1991). 
I'M. G. Prentiss, N. P. Bigelow, M. S. Shahriar, and P. R. Hemmer, Opt. 

Lett. 16, 169 (1991). 
1 9 ~ .  Korsunsky, D. Kosachiov, B. Matisov, and Yu. Rozhdestvensky, Phys. 

Rev. A 48, 1419 (1993). 
'OD. V. Kosachev and Yu. V. Rozhdestvenskil, Zh. Eksp. Teor. Fiz. 106, 

1588 (1994) [JETP 79, 856 (1994)l. 
"M. S. Shahriar, D. P. Katz, A. Chu er al., Laser Physics 4, 848 (1994). 
"T. T. Grove and P. L. Gould, Laser Physics 4, 957 (1994). 
2 3 ~ .  Matisov, V. Gordienko, E. Korsunsky, and L. Windholz, Zh. Ijksp. Teor. 

Fiz. 107, 680 (1995) [JETP 80,000 (1995)l. 
2 4 ~ .  R. Berman, Phys. Rev. A 43, 1470 (1991). 
25P. R. Berman, G. Rogers, and B. Dubetsky, Phys. Rev. A48, 1506 (1993). 
Z 6 ~ .  I. Alekseev, Zh. Eksp. Teor. Fiz. 104, 3603 (1993) [JETP 77, 719 

(1993)l. 
"A. I. Alekseev, Zh. ~ k s ~ .  Teor. Fiz. 106, 1319 (1994) [JETP 79, 714 

(1994)l. 
"D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskil, Quanrum 

Theory of Angular Momentum (World Scientific, Singapore, 1988) [Russ. 
original, Nauka, Moscow, 19751. 

2 9 ~ .  I. Sobelman, Atomic Spectra and Radiative Transitions (Springer Ver- 
lag, Berlin, 1979) [Russ. original, Nauka, Moscow, 19771. 

I. Alekseev, Zh. Eksp. Teor. Fiz. 97, 783 (1990) [Sov. Phys. JETP 70, 
437 (1990)l. 

3 1 ~ .  A. Akhmanov and N. I. Koroteev, Methods of Nonlinear Optics in the 
Spectroscopy of Light Scaflering [in Russian] (Nauka, Moscow, 1981). 

3 2 ~ .  I. Alekseev, V. N. Beloborodov, and 0. V. Zhemerdeev, J. Phys. B 20, 
3571 (1987). 

3 3 ~ .  A. Akhmanov, V. D. Bedenin, E Sh. Ganikhanov et a/.,  Opt. Spektrosk. 
64, 503 (1988) [Opt. Spectrosc. (USSR) 64, 301 (1988)l. 

3 4 ~ .  I. Alekseev and V. N. Belobodov, J. Mod. Opt. 41, 1015 (1994). 
3 5 ~ .  A. Radtsig and B. M. Smimov, Parameters of Afoms and Atomic Ions 

[in Russian] (Energoatomizdat, Moscow, 1986). 
3 6 ~ .  S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, Pis'ma Zh. ~ k s ~ .  

Teor. Fiz. 12, 161 (1970) [JETP Lett. 12, 113 (1970)l. 
 aman an Spectroscopy of Gases and Liquids, edited by A. Weber (Springer- 

Verlag, Berlin, 1979) [Russ. transl., Mir, Moscow, 19821. 

Translated by Julian B. Barbour 

1095 JETP 81 (6), December 1995 A. I. Alekseev and G. Yu. Tikhonov 1095 


