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Intensity correlations in the scattering of light by acoustic phonons or polaritons in the case of 
weak absorption are considered. The relationship between the bunching parameter of the 
scattered light and the bunching parameter of the scattering quasiparticles is calculated 
perturbatively in the interaction representation. The cases of thermal and coherent 
statistics of the phonons (respectively, polaritons) are considered separately. For the case of 
arbitrary statistics of the scattering quasiparticles, it is shown that the bunching parameter for them 
can be measured by means of a Brown-Twiss experiment for light scattered into the anti- 
Stokes region. Scattering by two uncoupled phonons is considered separately. @ 1995 American 
Institute of Physics. 

1. INTRODUCTION 

In quantum optics, the statistics of light fields radiated in 
various linear and nonlinear optical processes has been well 
studied. In particular, there has been study of the photon 
statistics') for different forms of scattering: elastic,'-3 spon- 
taneous and stimulated r am an^-^ and parametric and 
hyperparametric596 scattering. In our view, a question particu- 
larly worthy of attention is that of the relationship between 
the statistics of the scattered radiation and the statistics of the 
scattering phonons, polaritons, or other quasiparticles. In- 
deed, if such a relationship does exist, then by investigating 
the statistics of the scattered light it will be possible to learn 
significantly more about the phonon-like excitations than can 
be done simply by measuring the scattering intensity. In Ref. 
7, a study is made of the relationship between the phonon 
and photon statistics for the case of Stokes Raman 
scattering-the Mandel factor of the scattered light is calcu- 
lated for the case when the photons are in an energy, or 
squeezed state. From the point of view of studying the sta- 
tistics of the scattering excitations, it would appear to be 
more informative to investigate the bunching parameter of 
the Stokes and anti-Stokes radiation and also the correspond- 
ing cross correlation moments. The fact is that in a number 
of cases the bunching parameter of the scattered light (mea- 
sured in Brown-Twiss experiments) is simply equal to the 
bunching parameter of the scattering quasiparticles. This is 
indicated by the result obtained in Ref. 6 for scattering by 
thermal phonons. In this case, the bunching parameter of the 
scattered light is equal to the bunching parameter of the 
phonons (g=2). However, is this the case for arbitrary sta- 
tistics of the scattering quasiparticles? Indeed, is it possible 
at all to speak of phonon-like excitations with nonthermal 
statistics? 

In this paper, we attempt to answer the first question. For 
the simplest case of scattering by particles with negligibly 
small absorption (acoustic phonons, polaritons), we calculate 
the bunching parameter of the scattered light in terms of the 
bunching parameter of the scattering quasiparticles. We show 
that unambiguous conclusions about the bunching of 

phonons or polaritons can be deduced from the fourth mo- 
ments of the field of the scattered light. 

As an answer to the second question-f whether 
phonon-like excitations with nontrivial statistics are 
possible-we give two examples. In the case of coherent 
pumping of the phonon or polariton modes of a medium, the 
corresponding excitations will obviously not be in a thermal 
state but in a nearly coherent state. Even more interesting 
should be the statistics of phonon-like excitations in the pres- 
ence of lattice anharmonicity. For example, the decay of 
coupled two-phonon states (biphonons) into single phonons 
will increase the bunching parameter for the corresponding 
single-phonon mode. In the equilibrium case, this increase 
will probably not be significant. However, if the biphonon is 
artificially populated, then the binary phonon bunching in the 
first-order spectrum may be appreciable. At the same time, 
the bunching parameter must depend on the anharmonicity 
constant responsible for the formation and decay of the bi- 
phonons. We note also that, as is shown in Ref. 8, phonon 
polaritons may exhibit nonclassical statistics, but only in ex- 
periments that permit detection of only the phonon (or only 
the photon) "component" of the polaritons. 

Thus, in this paper we use perturbation theory to calcu- 
late the fourth moments of the fields (the intensity correlation 
functions) of inelastically scattered light in terms of the mo- 
ments of the field of the scattering quasiparticles. The prob- 
lem is solved in the approximation of a fairly large mean free 
path of the scattering excitations, and so this approach is 
valid only for scattering of light by acoustic phonons and 
polaritons with not too strong absorption. We also consider 
separately the case when measurements are made of the in- 
tensity correlation between anti-Stokes scattering by a 
phonon-like excitation and Stokes scattering by two un- 
coupled such excitations. The bunching parameter in this 
case is found to be 3. 

2. THEORETICAL MODEL 

We consider scattering of light by phonons or polaritons. 
As a result of scattering, a pumping photon can be trans- 
formed into a Stokes photon with production of a phonon (or 
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polariton) or into an anti-Stokes photon with absorption of a 
phonon (or polariton). In the interaction representation, these 
processes are described by an effective phenomenological 
Hamiltonian of the form 

where 

Here V is the volume of the sample in which the scattering 
takes place; EL:) and EL;) are the operators of the positive- 
and negative-frequency parts of the field; more specifically, 

is the positive-frequency operator of the field that includes 
only frequencies wai less than the pumping frequency wo for 
the Stokes component (a=s) and greater than wo for the 
anti-Stokes component (a=a); a, is the annihilation opera- 
tor of a boson: a photon (a=s,a) or phonon-like excitation 
(a=p) with wave vector k ,  and frequency o a .  The index i 
labels the different modes for all three fields. 

The phenomenological coupling constants ,ya are related 
to the quadratic susceptibility for the case of scattering by 
polaritons and to the elasto-optical tensor for the case of 
scattering by acoustic phonons. 

We consider the case when the scattering efficiency is 
not too great, so that the pumping can be regarded as given. 
In addition, we assume that it is classical, specifying its field 
in the form of a plane monochromatic wave propagating 
along the z axis: 

We do not take into account four-photon processes qua- 
dratic in the pumping, making the assumption that the pump- 
ing is weak. We ignore the damping of the acoustic phonons 
(or polaritons) not associated with the scattering of the light. 
We also ignore the effect of scattering of the light by the 
boundaries of the sample. 

We write the solution of the Schrodinger equation 

dl *) 
i f i  -=.B~$). 

dr 

which determines the evolution of the quantum state 11)) of 
the system, using second-order perturbation theory:4 

with the evolution operator 

The final, and most complicated, term in (2.5) can be ex- 
pressed in terms of the previous term by defining 

Then in accordance with the normalization condition 

(*(f)l*(t))=(*(to)l*(to))9 (2.7) 

we have 

The sign of approximate equality has been used in (2.6) be- 
cause terms of higher than second order in the small quantity 
,yo2F&, have been omitted. 

The limits of integration to and t  determine the times at 
which the pumping is switched on and off. For continuous 
pumping, we have t O + - ~  and ~-+CQ, and integration over 
the time gives 

These relations ensure energy conservation in the stationary 
case in each scattering event. The modes s i  and p j  for the 
Stokes process, and also the modes a i  and p j  for the anti- 
Stokes process, are related to each other pairwise. 

We now go over to integration of the Hamiltonian (2.1) 
over the volume V. Let the nonlinear medium be unbounded 
in the transverse directions of its thickness 1 ,  the entrance 
and exit faces of which are perpendicular to the z axis. Then 
in the diffractionless approximation integration over the 
transverse coordinates gives 

and this ensures fulfillment of the conservation law for the 
transverse momentum at the microscopic level in each el- 
ementary scattering event. 
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Integration with respect to the longitudinal coordinate 
gives 

where the longitudinal wave detunings are 

Asii=ko-k,viz- kpj,, Aaij=ko-kai,+kPiz. (2.12) 

We specify the initial state of the system in the form 

where the product is over the vacuum Stokes and anti-Stokes 
modes and also over the polariton modes in an arbitrary 
state. For simplicity, we consider only one triplet of modes 
a i ,  si ,  p i  (assuming, for example, that the moments of the 
fields are measured by detectors with high spatial and fre- 
quency resolutions). We shall omit the index i throughout. 

In accordance with (2.1)-(2.3), (2.5), (2.6), and (2.10)- 
(2.13), the first approximation of perturbation theory gives 

where 

We find the mean number of photons per mode in the 
Stokes and anti-Stokes beams: 

~~=(n~)=(*(t)Ia:a , l  *(f)) 

= ~ ~ ~ ~ ~ ) ~ ~ ~ ~ ~ ~ ~ 0 , 0 ~ s ( ~ ) ( ~ ~ -  us- op)  

We now go to the second approximation of perturbation 
theory, which is described by double application of the 
Hamiltonian (2.1) to the state (2.13). Because it is lengthy 
we shall not write out fully the result of the calculation of the 

last term in (2.5). We merely note that it contains not only 
vacuum states but also the following two-phonon states in 
which we are interested: 

f l~ : (a ,3~12)~/0)~1) ,  9 (2.18) 

fl~:(ap)~10).~12)01)p 9 (2.19) 

~ s ~ a ( a ~ a p + a p a ~ ) l l ) s l l  )ul)p. (2.20) 

It is these states that determine nonvanishing second mo- 
ments of the intensity correlation functions, the calculation 
of which will be made below. 

3. CORRELATION OF THE INTENSITIES IN THE SCAlTERED 
LIGHT AND ITS RELATIONSHIP TO THE STATE OF THE 
SCATTERING QUASIPARTICLES 

Using the wave function obtained in the previous sec- 
tion, we find the intensity correlation functions for the scat- 
tered light. We begin by defining the normalized correlation 
coefficient of the Stokes and anti-Stokes beams: 

A nonvanishing contribution to this correlation function is 
made by the component (2.20) of the state (2.5). With allow- 
ance for (2.16) and (2.17), we have 

Here the averaging is over the initial state of the phonon (or 
polariton) mode I ), , and the colon denotes normal ordering. 

If the phonons (polaritons) possess thermal statistics, 
then 

and 

The graph of the dependence of K:? on (n,) is shown in 
Fig. 1. For (np)%l, we have Kj:)+2, in agreement with the 
results of Ref. 6. 

For phonons or polaritons in a coherent state 

and 

The corresponding graph is also shown in Fig. I. For 
(npo)+l,  we have K$:'=l ,  i.e., K::) is half the value for 
thermal phonons. 

In the case of an arbitrary bunching parameter 

of the phonon system, we can write 
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4. SCATTERING BY TWO UNCOUPLED PHONONS 

FIG. 1 .  Normalized correlation coefficient of Stokes and anti-Stokes scat- 
tering as function of the mean number of polaritons (phonons) in the mode 
for thermal (T) and coherent (C) statistics of the scattering excitations. 

Thus, for a large number of phonons (polaritons) in the 
mode, the correlation coefficient Ksa is equal to the coeffi- 
cient Kpp , the bunching parameter of the scattering quasipar- 
ticles. 

On the other hand, for (npo)<l, i.e., in the case of 
vacuum phonons (polaritons), Kas diverges as (114) (npo). 

We now turn to the determination of the correlation co- 
efficients Kss and Kaa (the bunching parameters for the 
Stokes and anti-Stokes light), which can be measured, for 
example, using the Brown-Twiss scheme. For the first coef- 
ficient, the component (2.18) makes a nonvanishing contri- 
bution; for the second, the component (2.19) does. As a re- 
sult, we obtain 

The last result is very striking. The bunching parameter of 
the anti-Stokes light is equal to the bunching parameter of 
the scattering quasiparticles irrespective of the mean number 
per mode. This result is readily understood if one recalls that 
the production of an anti-Stokes photon is always accompa- 
nied by the annihilation of a phonon (or polariton). 

The algorithm that we have considered for solving the 
problem of the scattering of light by phonons (polaritons) 
enables us to take into account not only four-photon pro- 
cesses quadratic in the pumping but also other, more compli- 
cated processes. All that is changed is the actual form of the 
Hamiltonian (2.1); all the subsequent sequence of operations 
remains the same. As an example, we consider the process of 
scattering by two uncoupled phonons. In this case, the effec- 
tive Hamiltonian is transformed to 

We calculate the correlation coefficient for anti-Stokes scat- 
tering by a phonon and Stokes scattering by two uncoupled 
phonons. We use here the single-mode approximation, i.e., 
we identify precisely the triplet of modes (ai, 2si, and pi) 
that satisfies the conditions of wave and frequency matching. 
In this case, it is important that both phonons participating in 
the anti-Stokes processes belong to a single mode. A single 
application of the Hamiltonian (3.1) to the vector of the 
original state 

gives the following components of interest to us: 

If we apply the Hamiltonian twice, then besides other 
components, we obtain 

from which it immediately follows that 

For "thermal" phonons, we have 

The graph of this dependence is shown in Fig. 2. For 
(n,,,)% 1 ,  we have ~:;),=33 (in contrast to ~::)=2). This cir- 
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5. CONCLUSIONS 

FIG. 2. Normalized coefficient of the correlation between two-particle 
Stokes scattering and single-particle anti-Stokes scattering as function of the 
mean number of polaritons (phonons) in the mode for thermal (T) and 
coherent (C) statistics of the scattering excitations. 

cumstance can evidently be used to investigate second-order 
phonon spectra if it is thereby possible to distinguish coupled 
two-phonon states from uncoupled states. 

For phonons in a coherent state, 

For (npo)%-1 ,  the coefficient K:$:, like K::), is equal to 
unity. 

Finally, for (npo)G 1 we have Ka2,= 1/2(npo) irrespec- 
tive of the state of the phonons, which in this case is always 
close to the vacuum state (Fig. 2). 

We note that in an experiment it is rather difficult to 
separate scattering by two uncoupled phonons that both be- 
long to one transverse mode (their wave vectors differ little). 
Indeed, many pairs of phonons with the most varied wave 
vectors can contribute to the scattering-it is merely neces- 
sary that their vector sum correspond to the distinguished 
anti-Stokes mode. Nevertheless, one may attempt to establish 
a nonequilibrium occupation of a phonon mode with a dis- 
tinguished wave vector, for example, as was done in Ref. 9. 

Thus measurement of the fourth moments of light scat- 
tered by polaritons or acoustic phonons makes it possible to 
determine the bunching parameter of the scattering quasipar- 
ticles. If the number of phonons (polaritons) per mode is 
much greater than unity, the measurement can be made both 
with Stokes or anti-Stokes radiation in accordance with the 
Brown-Twiss scheme or by investigating the cross correla- 
tion of the intensities between the Stokes and anti-Stokes 
radiation. However, in the case when the mode of phonon- 
like excitations is weakly occupied (and it is this case that is 
interesting for the investigation of nontrivial phonon statis- 
tics), only the intensity correlation function for anti-Stokes 
scattering (3.8) measured using the Brown-Twiss scheme 
gives the correct value of the bunching parameter of the pho- 
non (polariton) system. 

This paper should be seen as a theoretical addition to the 
study of Ref. 9, in which the fourth moments were measured 
experimentally for the scattering of light by acoustic 
phonons. Moreover, the basic idea of these studies-that 
bunching of the phonon system can be deduced from bunch- 
ing of the scattered light-is also due in equal degree to the 
authors of Ref. 9. 

We thank D. N. Klyshko for helpful discussions and 
comments. 
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 ere and in what follows, the expressions "photon statistics" and "photon 
correlation" mean that correlation functions of the form 
K =  (ninj)=(a:aiaf  a j ) ,  where a i  , a ,  are the annihilation operators for 
modes i and j, are measured or calculated. 
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