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The theory of the light-induced drift (LID) is considered for the case of a nonlinear variable-sign 
dependence of the LID velocity on the optical thickness under conditions of 
nonmonochromatic excitation. It is shown that such a dependence of the LID velocity leads to 
the formation of one or two separating dissipative solitons. The problem of the number 
of particles captured in dissipative solitons from an initial distribution of particles of an absorbing 
gas is solved. O 1995 American Institute of Physics. 

Light-induced drift  LID)'.^ is one of the strongest and 
most pronounced manifestations of the interaction of light 
with matter. The essential feature of the effect is the devel- 
opment of a macroscopic flux of particles of an absorbing 
gas that interact with monochromatic radiation and undergo 
collisions with particles of a buffer gas. Because of the Dop- 
pler effect, the excitation of particles of the absorbing gas is 
selective with respect to the velocities, and oppositely di- 
rected fluxes of particles of the absorbing gas in the excited 
and ground states arise. In the buffer gas, these two fluxes 
are subject to different levels of friction, and they are not 
compensated for because of the difference between the cross 
sections for collisions of excited and unexcited particles with 
the particles of the buffer gas. As a result, a macroscopic flux 
of the absorbing gas develops. The present status of the prob- 
lem is reflected in the monograph of Ref. 3. 

The macroscopic equations that describe LID are essen- 
tially non~inear?~-~ and there is therefore much interest in 
the analysis of the nonlinear effects in the theory of LID. 
There have already been studies of effects such as the "op- 
tical piston" (Ref. 2), dissipative so~itons?.~.~ and the occur- 
rence of autooscillations in a gaseous mixture under the in- 
fluence of LID under conditions of a variable-sign 
dependence of the LID velocity on the temperat~re.~.~ 

The primary reason for the formation of dissipative soli- 
tons is the nonlinear dependence of the drift velocity u ( N )  
on the optical thickness N  (see the definition of this quantity 
in Sec. 2). In the earlier studies of Refs. 5, 6, and 9, the LID 
effect was investigated for u ( N )  with constant sign: u(N)>O 
[or u(N)<O] .  In Ref. 4, a study was made of the excitation 
by nonmonochromatic radiation of an absorbing gas of only 
one species of particles with hyperfine splitting of the ground 
state. It was established that under conditions for which op- 
tical pumping of the components of the hyperfine structure 
arises the dependence of the velocity u ( N )  on the optical 
thickness N has an essentially nonlinear nature with variable 
sign, as shown schematically in Fig. 1. In the region 
O< N<  N ,  , the drift velocity is negative and changes sign at 
the point N, ,  after which it remains positive. 

In this paper our main goal is to analyze the LID effect 

in the case of such a variable-sign dependence of the drift 
velocity of the absorbing gas on the optical thickness. Such a 
dependence of u ( N )  leads to a qualitatively new scenario of 
soliton formation. In this paper we will show that the 
variable-sign dependence of u ( N )  on N  (Fig. 1) may lead to 
decay of an original bunch of absorbing particles into two 
dissipative solitons. 

It was shown in Refs. 6 and 9 that under conditions of 
weak nonlinearity (optically thin gas) all particles from the 
original bunch are captured in the soliton. The problem of 
the number of absorbing particles captured in a dissipative 
soliton was not settled for the case of an arbitrary depen- 
dence of u ( N )  on N .  This problem is solved and analyzed in 
detail in the present paper. 

2. BASIC GAS-DYNAMIC EQUATIONS 

T6 analyze the LID effect, we write the gas-dynamic 
equations for the density p ( x , r )  of the absorbing gas. In this 
paper we restrict the discussion to a one-dimensional de- 
scription, making the assumption that all quantities depend 
only on the one longitudinal coordinate x  and the time t ,  We 
assume the direction of the x  axis to coincide with the direc- 
tion of propagation of the radiation (from the left to the 
right). 

The density p(x , t )  of the particles of the absorbing gas 
satisfies the continuity equation 

where the flux j of the absorbing gas is described by 

Here D is the diffusion coefficient of the absorbing particles. 
The drift velocity u ( N )  depends nonlinearly on the radiation 
intensity, which in turn is uniquely determined by the optical 
thickness N  of the 
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FIG. 1 .  Dependence of the drift velocity u ( N )  on the optical thickness: N ,  
is the minimum, N ,  the maximum, and N ,  the point of change of sign of the 
function u ( N ) .  

The definition of the optical thickness N used here differs 
from the widely adopted concept ( a N )  (Ref. 4) by the ab- 
sence in Eq. (3) of the photoabsorption cross section. 

Substituting (2) in (I) ,  we obtain the equation 

or, bearing in mind that in accordance with (:3) 

we obtain for the optical thickness N ( x , t )  the equation 

Using Eq. (3), we specify the boundary conditions for Eq. (6) 
in the form 

N ( ~ , t ) l ~ = - m = O ,  

The total number of absorbing particles, 
Ntot=N(m,t)=const ,  is an invariant of Eq. (6). 

The boundary conditions (7) enable us to rewrite Eq. (6) 
in the form of the generalized Burgers equation 

3. NEGATIVE DRIFT VELOCITY 

We begin the analysis of Eq. (8) with the case of a nega- 
tive drift velocity: u(N)<O [we defer consideration of the 
region u(N)>O to Sec. 51. For the time being, we shall con- 
sider only N ,  for which O < N < N 2 ,  where N ,  is the point at 
which u ( N )  changes sign (Fig. 1). For such a choice of the 
sign of the drift velocity u ( N ) ,  the drift of the particles is 
toward the light beam, i.e., from right to left in the negative 
direction of the x axis. 

Let the original distribution p ( x , t )  of the particles of the 
absorbing gas have the form of a bunch with bounded lon- 
gitudinal dimension and total area 

FIG. 2. Geometrical illustration of  Eq. (12). The case u(N)GO.  

If N t o t G N l ,  where N ,  is the point of minimum of the func- 
tion u ( N )  [see Figs. 1 and 2, in which the region u(N)<O is 
shown separately], then the absolute magnitude of the drift 
velocity 1 u ( N )  I increases monotonically over the thickness 
of the bunch, and therefore the trailing edge of the bunch 
drifts with higher velocity than the leading edge (the bunch 
as a whole drifts from right to left). In the absence of diffu- 
sion spreading, this drift-induced enhancement of the density 
resulting from the difference between the drift velocities of 
the leading and trailing edges of the bunch would lead to 
unbounded compression of the original distribution of the 
particles of the absorbing gas. However, the competition be- 
tween the diffusion spreading and the drift compression leads 
after a certain time to a stabilization of the spatial distribu- 
tion of the particles and to the formation of a dissipative 
~ol i ton .~  The dissipative soliton will be described by a self- 
similar solution of Eq. (4) of the form p = p ( x -  v t ) ,  where v 
is the velocity of the dissipative soliton as a whole. It is to be 
expected that under our condition N t o , S N l  all the particles 
from the original bunch will be captured in the dissipative 
soliton. For Nl<Nto t<N2,  the absolute magnitude l u ( ~ ) I  of 
the drift velocity will increase with increasing N only as long 
as N < N l  ; it reaches its maximum at N =  N l  and then begins 
to decrease over the thickness of the bunch for N > N ,  . We 
shall see in Sec. 4 that for such a nonmonotonic dependence 
u ( N )  a dissipative soliton with area less than Ntot can be 
formed. 

We shall seek a self-similar solution of Eq. (8) with the 
boundary conditions (7) that is formed at sufficiently large 
times in the form 

Substituting (9) in (8), we obtain the equation 

where we have introduced the function 

It is easy to show that ( 1 0 )  is equivalent to the equation 
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where N(0) is the value of N(z) at z=0 [in what follows, we 
take the origin z=0 at the point of maximum of p(z); at the 
same time, N(O)= NtOp. is found in accordance with the ex- 
pression (20), which will be obtained below]. The velocity 

of the dissipative soliton is found directly from Eq. (12) and 
from the boundary condition for the self-similar solution 
N(z)=N(x-vt): 

We must draw particular attention to the fundamental differ- 
ence between this equation and the boundary condition for 
N(x,t) [N(m,t)=N,,] [Eq. (7)]. It will be shown below that, 
in general, No< N,,, ; i.e., only the fraction 

of particles out of the total number N,,, (7) of absorbing 
particles is captured in the soliton. The difference between 
the boundary condition for the self-similar solution N(z) 
from the boundary condition for the total solution N(x, t) (7) 
should not give rise to surprise, since 

The difference GN(x, t) between N(x,t) and N(z) describes 
the "substrate" of particles not captured in the soliton. By 
virtue of the diffusion spreading, the local concentration 

of the uncaptured particles tends to zero as t -+m [but not 
GN(x,t) I. 

Thus, for a concrete dependence u(N) [under the condi- 
tion u(N)<O] Eqs. (11)-(14) and (5) make it possible to find 
a self-similar solution of Eq. (8) for N(z) = N(x - v t) satis- 
fying the boundary conditions 

Since the obtained solution of the generalized Burgers 
equation (8) will have the form of a "smeared step" moving 
to the left with velocity v [Eq. (9)], the spatial distribution of 
the density of the absorbing gas found in accordance with 
(9, 

will have the form of a solitary wave (dissipative soliton), 
whose velocity is found in accordance with the same formula 
( 14). 

In what follows, we shall consider only the already 
formed self-similar solution describing the dissipative soli- 
ton, and we shall not analyze the actual process of formation 
of the dissipative soliton from the initial data p(x,O). 

4. MAXIMUM AREA OF SELF-SIMILAR SOLUTION. AREA OF 
THE LEADING EDGE 

Suppose that at the initial time t =O a distribution p(x,O) 
with total area N,,, (initial bunch of particles of the absorbing 
gas) is specified. What fraction of the particles in the original 
bunch will be captured in the soliton when u(N)<O (Fig. 2). 

To solve this problem, we rewrite Eq. (12) with allow- 
ance for (5) and (14) in the form 

Since the density p(z) of the absorbing particles cannot be 
negative, it follows from Eq. (15) that 

To elucidate the meaning of this equation, we investigate the 
function v (N) (1  1); we therefore rewrite Eq. (1 1) in the form 

The "velocity" v(N) has an extremum: 

at the point N= N, if N, satisfies the equation 

Figure 2 is a geometrical illustration of the important equa- 
tion (17). It can be seen that Eq. (17) has a root N, lying to 
the right of the point of minimum of the function u(N) 
(N,> N ,) . In accordance with this equation, N, can be found 
from the condition of equality of the areas (1) and (2) in Fig. 
2. This means that 

and, accordingly, 

This means that N, is a minimum of the function v(N). 
Then if No>N, (we recall that No is the area of the already 
formed dissipative soliton), then for N,< N< No we find that 
v(N)<v(No), and the condition (16) is not satisfied. It fol- 
lows that the inequality (16) is equivalent to the inequality 

The meaning of this important inequality is that the total area 
No of the self-similar solution obtained in Sec. 3 has an 
upper bound N, determined by Eq. (17) and cannot exceed 
it. 
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The inequality (1 8) means that not all the particles in the 
absorbing cell can be "captured" in the dissipative soliton. 
Indeed, if at the initial time there were injected into the cell 
Ntot>N, absorbing particles per unit area of the cross section 
of the cell, then only N ,  of the particles ( N o = =  N , )  would be 
captured in the dissipative soliton. The remaining particles 
(to the right of the soliton), having a lower velocity, would 
remain outside it. In the opposite case, when N , , S N , ,  all 
the particles of the initial distribution p(x,O) will be captured 
in the soliton, i.e., No= N,,, . 

What we have said enables us to obtain the final expres- 
sion for the number No of particles trapped in the soliton: 

We find the area of the leading edge of the dissipative soliton 
[from z=-co to the point of maximum of d z ) ] .  Since we 
have not in any way yet chosen the origin, we choose the 
origin of x in such a way that the "top" of the dissipative 
soliton [the maximum in the graph of p ( z ) ]  lies at the point 
z = 0  [then in the expression (13)  N ( 0 )  = NtoJ.  Substituting p  
in the form ( 9 )  in Eqs. (8) and (4), we obta111 

It is readily noted that the first equation is the condition 
of absence of a flux: 

in the rest frame of the dissipative soliton. Since at the top of 
the soliton ( z = 0 ,  N = N t o p )  dpld;:l , ,o=O and 
d2pldz21,,o<0, we have in accordance with (19)  

where 

is the area of the complete leading edge of the dissipative 
soliton, and NtoP< N , .  For given total area No of the dissi- 
pative soliton, Eq. (20)  enables us to find the area of its 
leading edge: N,,=Ntop(N0). 

5. SELF-SIMILAR SOLUTION AND ITS AREA IN THE CASE 
OF A POSITIVE DRIFT VELOCITY 

We now return to Fig. 1, which illustrates the variable- 
sign dependence u ( N ) .  In Secs. 3 and 4, we have considered 
the case u ( N ) < 0 ( O S N S N 2 ) .  In this section, we concen- 
trate our attention on the region u(N)>O.  For simplicity and 
greater clarity of the following discussions, we assume that 
u ( N ) > O  not when N > N 2  [ N 2  is the point at which the func- 
tion u ( N )  changes sign; see Fig. 1 1  but when N a O ,  and that 
this dependence has the form shown in Fig. 3. We hope that 

FIG. 3. Geometrical illustration of Eq. (30). The case u(N)pO. 

the identical notation for the maximum of the function u ( N )  
in Figs. 1 and 3 will not lead to confusion [in both figures, 
N 3  is the maximum of the function u ( N ) ] .  In the case of a 
positive drift velocity, the particles of the absorbing gas drift 
to the right in the positive direction of the x axis, which 
coincides with the direction of propagation of the radiation. 

If the area N,,, of the original bunch of particles de- 
scribed by the distribution p(x,O) is less than N 3 ,  the drift 
velocity u ( N )  increases monotonically over the thickness of 
the bunch. Since at the same time the trailing edge of the 
bunch drifts more slowly than its leading edge, the drift leads 
only to an acceleration of the diffusion spreading of the 
original bunch of particles in the region N < N 3 .  Thus, for 
NtOtSN3 there is no "drift compression" and a dissipative 
soliton is not formed. 

A mechanism of drift compression of the bunch of par- 
ticles arises in the case NtOt>N3,  when the drift velocity 
u ( N )  decreases across the thickness of the bunch in the part 
of it in which the optical thickness N ( 3 )  satisfies the in- 
equalities N 3  < N S  N ,  . One can say that the point of maxi- 
mum of the function u ( N )  (the point N 3 )  is a kind of thresh- 
old for the area of the original distribution of the particles, 
below which formation of a dissipative soliton does not oc- 
cur when u  ( N )  30. 

Using the scheme of arguments from Secs. 3  and 4, we 
show that the area of the dissipative soliton formed at suffi- 
ciently large times is less than Ntot by a certain amount N , .  
From the original bunch of particles of area Ntot ,  a dissipa- 
tive soliton of smaller area N,= Ntot-N,  is formed, and the 
remaining particles lag behind the dissipative soliton, since 
they move with lower velocity. The area under the "sepa- 
rated" distribution of the particles will be N , .  Indeed, we 
shall see that the velocity fi of the dissipative soliton is 
greater than the drift velocity u ( N )  of the particles that are 
not captured in the soliton. 

The case u ( N )  2 0  differs qualitatively from the one con- 
sidered previously in Secs. 3  and 4. Indeed, in the case 
u ( N ) > O  the particles moving to the left of the dissipative 
soliton lag behind it. In contrast to drift with u(N)<O,  a 
dissipative soliton drifting to the right [ u ( N ) a O ]  is illumi- 
nated by radiation weakened by the photoabsorption by the 
particles that are not trapped in it. 

We give the simplest method for solving the problem we 
have posed. We introduce the new function 
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where p ( z )  = p (x -  vr)  is the required self-similar solution, 
and N satisfies the boundary conditions 

N(z) l  ,,-, = N , ,  N ( z ) ~ , = + , = o ,  p ( z ) l ,=+ ,=o ,  

where N ,  is the total area of the already formed dissipative 
soliton. Equation ( 8 )  will have the form 

where we have introduced N,=N,,,-N,. . The geometrical 
illustration of Eq. (30)  is given in Fig. 3. The value of N ,  for 
given Ntot is determined from the condition of equality of the 
areas of the regions (1) and ( 2 )  in Fig. 3. It is easy to see that 
Nr<N3 and NtO,>N3 in Eq. (30) ,  where Ng is the point of 
maximum of the function u ( N ) .  Since N r < N 3 ,  it follows 
that 

We seek the self-similar solution of Eq. (22) ,  

and therefore N ,  is the maximum of the function V ( N )  (23) .  
This means that (27)  is equivalent to the inequality 

which is formed at sufficiently large times. 
Accordingly, we introduce the function 

and, thus, N ,  is formally a lower bound of the area of the 
dissipative soliton for given N,,  , and N,=N,-N, is the 
minimum value of the area of the distribution of the particles 
from the original bunch that do not enter the dissipative soli- 
ton. Thus, if at the initial time a bunch of particles p(x,O) 
with area N,,  is "injected" into the absorbing cell, then out 
of this bunch a dissipative soliton with area N , = N , ,  is 
formed and the fraction N ,  (30)  of particles lag behind it. 

Thus, Eq. (30)  establishes the dependence of the number 
N ,  of the particles that remain outside the dissipative soliton 
per unit area of the cross section of the absorbing cell on the 
total "number" of particles. The area of the dissipative soli- 
ton is 

As we did in Sec. 4,  we can obtain from Eq. (22)  an analog 
of (12) ,  

where the velocity of the dissipative soliton is 

Since p ( z )  = - d i l d z  and using expression (25), we rewrite 
Eq. (24)  in the form 

and the velocity of the dissipative soliton is 

The density p(z )  of the absorbing gas cannot be negative, 
and therefore 

As is readily seen from (31)  and (30) ,  in the case of un- 
bounded increase of N,, the value of N,(N,J decreases to 
zero, and N ,  approaches N,, . Accordingly, the velocity (32)  
of the dissipative soliton also decreases with increasing N,.  
It can be seen that there is a significant difference between 
this dissipative soliton when u(N)>O from the soliton when 
u(N)<O. For the latter, the area is bounded by N ,  [Eq. (17)]  
and is not changed when Ntot>N,.  

It follows directly from Fig. 3 and Eqs. (31)  and (30)  
that u ( N )  for N 2 < N < N ,  (the region of particles not cap- 
tured in the dissipative soliton) is less than the soliton veloc- 
ity 6 = u ( N r ) ;  i.e., the soliton moves more rapidly. 

As we did in Sec. 4, we find the point of extremum N =  N ,  of 
the function V ( N )  (23)  by expressing Eq. (23)  in a different 
form: 

At the point of extremum we have 

6. ASYMPTOTIC EXPRESSIONS FOR THE LEADING EDGE 
AND "TAIL" OF THE DISSIPATIVE SOLITON Therefore, N ,  satisfies the equation 

In this section, we find the dependence p ( z )  in the as- 
ymptotic regions of the dissipative soliton-in the region of 
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the leading edge (1219 1, z<0) and "tail" (z3> I). We use the 
expressions of Sec. 4, i.e., we shall consider only the case of 
negative drift velocity: u(N) <O. 

We rewrite Eq. (19) in the folm 

In the region of the "tail" (z% I), the area 

differs from the total area 

of the dissipative soliton by the small amount 

This amount decreases with increasing z. This enables us to 
expand the function u(N) in a series 

We can then rewrite (33) in the form 

If v - u(No) #O, then in Eq. (34) we can ignore the term 
with SN, and then its solution is obviously (within a constant 
factor) 

v - u(N0) 
P - P  0 )z] .  

where v - u(No) >O, z%- 1. 
It follows from the results of Sec. 4 that v-u(No)>O 

for No<Nc and v-u(No)=O for No=Nc,  i.e., for maxi- 
mum area of the dissipative soliton. 

Therefore, for No= N, Eq. (34) will have the form 

Differentiating this equation with respect to z, we obtain 

where 

 ha^ be showni0 that Eq. (36) for v - u(No) =O (No= N,) 
h M e  g-al solution 

2 
p(z>= 

y(z- c ) ~ '  

where C is an arbitrary constant. For z B  1, we obtain the 
required asyn~ptotic expression for the "tail": 

Thus, if the area of the soliton is less than the maximum 
(No<N,), the dependence p(z) in the "tail" (2% I) is given 
by (35). If, however, No=N,, then the asymptotic behavior 
for zB l  is determined in accordance with expression (37). 

We now consider the behavior of p(z) for z<0,1z19 1 at 
the leading edge of the soliton. In this region, N=O, and 
therefore we have the expansion 

since u(O)=O and N in this case is a small quantity, we 
obtain approximately 

We thus obtain, within a constant factor," 

where v<O and z<0, 1 ~ 1 ~ 1 .  
Comparing (38) with (35) or (37), we see that, in gen- 

eral, there is asymmetry of the dissipative soliton (a differ- 
ence between the steepness of the leading and trailing edges). 
However, if v = u(No)/2 and No # N, , then expressions (38) 
and (35) give a symmetric dependence p (z) both for z%-1 
and for z<0, 1z1%-1. 

The above arguments, which lead to expressions (37) 
and (38), are also valid in the case of negative drift velocity 
[u(N)<O]; it is merely necessary to take into account the 
fact that in this case the area of the dissipative soliton is 
always maximal (see Sec. 5) and the dissipative soliton 
moves to the right. 

7. FORMATION OF TWO DISSIPATIVE SOLITONS 

In the previous sections of this paper, we have investi- 
gated the self-similar solution describing the dissipative soli- 
ton separately for u(N)SO and for u(N)>O. Combining the 
results obtained in these sections, we investigate qualita- 
tively the dependence of the self-similar solution on the total 
area N,,, of the original distribution of the gas particles in the 
general case of a variable-sign dependence of the drift veloc- 
ity u(N) (Fig. 1). 

In Secs. 3 and 4, we have considered this case in detail. 
As we already know, a dissipative soliton that moves to the 
left with velocity v [Eq. (14)] is formed after a certain time 
from the original distribution of the particles. If NtotSN, (see 
Fig. 4), then the area of the formed dissipative soliton is less 
than N,,, 'and equal to N,. If, however, N,,<N,, then the 
area of the dissipative soliton is equal to the area N,,, of the 
original distribution of the particles of the gas. 
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FIG. 4. Asymptotic regions of the dissipative soliton [u(N)aO]: m e  lead- 
ing edge (a) and "tail" (b) respectively, for the cases N,<N, and No=N, 
(or, equivalently, N,< N, and N,,aN,). 

As in the previous case, only one dissipative soliton with 
maximum area N,, which moves to the left with velocity v 
[Eq. (14)] is formed. The only difference is that in the region 
N2<N<Ntot the drift velocity u(N) is positive, and this por- 
tion of the original bunch of the particles will drift to the 
right. However, as is shown in Sec. 5, this does not lead to 
the establishment of a self-similar "formation" that moves to 
the right. 

3) N 3 ~ ~ t 0 t  

This case is the most interesting one, since two dissipa- 
tive solitons moving in opposite directions are formed from 
the original bunch of gas particles. Indeed, the drift velocity 
u(N) changes sign over the thickness of the original bunch 
of gas particles. The region OSNSN2 [u(N)sO] was stud- 
ied in Secs. 3 and 4, and the region N>N2 was considered 
with a slight simplification in Sec. 5. In our case, a dissipa- 
tive soliton moving to the right with velocity C (25) is 
formed, and its area N, is equal to Ntot-N, [Eq. (30)l. 

In the region of negative drift velocity, a dissipative soli- 
ton drifting to the left is formed (see the cases considered 
above). 

Thus, under the influence of the radiation, when 

the original bunch of gas particles is "torn apart" into two 
parts, from which, after a certain time, two dissipative soli- 
tons are formed that move in opposite directions, each with 
its own velocity. 

8. RESULTS OF NUMERICAL CALCULATIONS 

To illustrate the process of formation of two dissipative 
solitons, we solved Eq. (8) numerically, taking into account 
expression ( S ) ,  for an absorbing cell with bounded length. 
We introduce the dimensionless variables 

and dimensionless "density" of particles of absorbing gas 
and dimensionless optical thickness: 

where xo=Dluo,  and to=~ lu : .  
We redefine the dependence of the drift velocity on the 

optical thickness as 

where uo is a factor with the dimensions of a velocity which 
arises upon transition to (41). We have chosen a model de- 
pendence of the dimensionless drift velocity in the form (42), 
since it gives a qualitatively correct approximation of the 
variable-sign dependence of the drift velocity u(N) (Ref. 4). 
In addition, it correctly reflects the quadratic dependence of 
the drift velocity on the optical thickness in the limiting 
cases of Doppler or homogeneous broadening even for small 
values of the optical thickness. 

With allowance for (40)-(42), Eq. (8) will have the form 

The dimensionless particle density P(l,r) of the absorbing 
gas is found in accordance with the formula 

which is obtained from (5) by going over to the variables 
(40) and (41). Here c=N,,, l(xop(L/2,0)). We augmented 
Eq. (43) with bounda~y conditions at the ends of the cell with 
dimensionless length I = Llxo : 

In choosing the boundary conditions (45), we assume that 
the dimensionless length 1 of the cell is sufficiently great for 
dissipative solitons to form from an initial distribution 

with width 5,. We assume that 1/2jo%-1, and the integration 
in the finding of n,,, can be performed between the limits --co 

and +m (the error that is introduced is certainly less than the 
accuracy of the numerical calculation). 

The results of the numerical calculations of the dimen- 
sionless density P( l , r )  of the absorbing gas using Eqs. (44) 
and (43) with allowance for (42) and (45) are given in Figs. 
5 and 6 for the parameter values a=31250, n2=0.32, /? 
=6.25,5= 1/(10&). 

Figure 5 gives the initial stage in the "breakup" of the 
original distribution (46) in a cell with I=  1. Figure 6 shows 
the evolution of the same initial distribution of the dimen- 
sionless particle density of the absorbing gas (46) for the 
same values of the parameters but for step along the time 
axis A ~ 0 . 0 1  and 1=10. It can be directly seen how two 
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FIG. 6. The formation of two dissipative solitons. The values of the param- 
eters are the same as in Fig. 5 but the time step is A ~ 0 . 0 1  and the dimen- 

FIG. 5. The formation of two dissipative solitons in the initial stage. The sionless cell length is 1= 
time step is A ~ 0 . 0 0 1  and the dimensionless cell length is I =  1. The nota- 
tion is given in the text. 

stable dissipative solitons moving in opposite directions are 
formed. As long as the boundary conditions (45) do not in- 
fluence the dissipative solitons by virtue of their bounded 
spatial size, our numerical solution in the bounded cell mod- 
els the propagation of dissipative solitons in an unbounded 
medium. 

In conclusion, we briefly discuss the possibility of ex- 
perimental observation of the breakup of a bunch of particles 
into two dissipative solitons. The first experimental 
investigations12 on the formation of dissipative solitons by 
light-induced drift have now been made. The absorbing gas 
in the experiment of Ref. 12 was optically dense sodium 
atomic vapor. The buffer gas was Xe at pressure 8 tom Atu- 
tov et al.,I2 confirmed both the formation of dissipative 
~ o l i t o n s ~ . ~ . ~  and their coalescence (inelastic collision).699 In 
this paper, it has been shown that the opposite effect- 
breakup of an initial bunch of particles into two dissipative 
solitons-is possible. 

A necessary condition for the existence of this effect is a 
variable-sign dependence of the LID velocity u ( N )  on the 
optical thickness N  (Fig. 1). Such a variable-sign dependence 
u ( N ) ,  theoretically predicted in Ref. 4, occurs in the case of 
illumination of an optically dense gas (aN>10) with white 
light. Here a is the absorption cross section. As was shown 
in Ref. 4, a variable-sign dependence u ( N )  is characteristic 
of vapors of the alkali metals under conditions of optical 
pumping. 
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