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This paper studies the kinetics of free-polarization decay after saturation by a pulse of laser 
radiation of finite length in systems with spectral diffusion. The exact solution for the shape of the 
free-polarization decay signal that allows for the length of the exciting radiation pulse is 
obtained in the model of telegraphic noise. The solution is found to be valid for arbitrary values 
of the spectral exchange rate and the intensity of the saturating field. Finally, it is established 
that the shape of the free-polarization decay signal is essentially nonexponential and is 
characterized by modulation related to the spectral exchange in the system. 
O 1995 American Institute of Physics. 

I. INTRODUCTION 

In recent years the literature has seen a number of ex- 
perimental papers devoted to phenomena forming the basis 
of coherent nonlinear spectroscopy and saturation spectros- 
copy of solids: nutations,' free-polarization decay?-4 
photon echo? the burning out of etc. In all of this 
work shows the Bloch equations are found to be inapplicable 
for analysis of these effects. The reason is that the random 
modulation of the natural frequencies of the impurity ions in 
the solids are improperly taken into account by the Bloch 
equations. Modulation of the frequency of the transition gen- 
erated by the laser field is caused by random reorientation of 
the spins of the crystal lattice. This changes the local fields 
and, accordingly, the frequencies of the impurity ions. 

This paper is devoted to the effect of free-polarization 
decay after saturation in systems with random frequency 
modulation. To explain the experimental results of this 
effect: a large number of theoretical papers have used ran- 
dom Markov processes to model the modulation of the fre- 
quency of the transition excited by the field. In Refs. 8-14 
different versions of the theory of free-polarization decay 
were based on the assumption of rapid spectral exchange. 
Often this theory is called Gauss-Markovian. The diffusion 
model of variation of the transition frequency (correlated 
Markov modulation), which is based on the numerical solu- 
tion of the Fokker-Planck equation, was presented in Ref. 
15. The model of uncorrelated modulation of the transition 
frequency was discussed in Refs. 16 and 17: the same model 
was then used to obtain several exact solutions for the shape 
of the free-polarization decay signal.I8 Wodkiewicz and 
~ b e r l ~ ' ~  used the "telegraphic noise" model (anticorrelated 
Markov frequency modulation) to describe free-polarization 
decay. Later, in Ref. 20, an exact solution was obtained for 
the free-polarization decay signal in the telegraphic noise 
model and the limits of applicability were established for the 
theory developed in Ref. 19. Note that for the free- 
polarization decay signal the results of the simplified tele- 
graphic noise n ~ o d e l ' ~  coincide with those of the Gauss- 
Markovian 

theory,8-l4 which is apparently the reason why the two are 
sometimes assumed to be the same. The similar coincidence 
of the results of these two models for the shape of the ab- 
sorption and emission lines was reflected in Ref. 21, where 
the theory of rapid spectral exchange (the Gauss-Markovian 
theory) was referred to as the Born approximation. 

The difference between the experimental work of Szabo 
and ~ u r a m o t o ~  and that of DeVoe and ~rewer* is that in the 
former the length of the exciting radiation pulse 
(T= 200 ,us) is much shorter than population relaxation time 
(TI = 4200 ps). All the above theories were developed for 
the free-polarization decay signal after stationary saturation, 
i.e., they cannot be used to explain the results of Ref. 3. 

To analyze the experimental data, Szabo and ~ u r a m o t o ~  
used the theory of rapid spectral exchange and the tele- 
graphic noise model in which the saturating pulse length was 
taken into account. However, they were unable to describe in 
a satisfactory manner the experimentally observed depen- 
dence of the rate of free-polarization decay on the amplitude 
of the field of saturating radiation. Kilin and ~ i z o v t s e v ~ ~  
once more suggested using the telegraphic noise model to 
describe various transient coherent phenomena: for instance, 
free-polarization decay after pulsed saturation. They were 
unable to obtain an exact solution for the shape of the free- 
polarization decay signal but analyzed the experimental data 
using approximate calculations, as a result of which they 
concluded that the spectral exchange in the system under 
investigation is slow. The existing contradiction can be re- 
solved by comparing the results of approximate methods of 
calculating the free- polarization decay signal with the re- 
sults of a rigorous theory free from the restrictions and sim- 
plifications adopted in Refs. 3 and 22. 

The aim of the present work is to derive general expres- 
sions for the shape of the free-polarization decay signal after 
saturation by a strong-field pulse of arbitrary length and to 
analyze the experimental data of Ref. 3 and the approximate 
calculations done in Refs. 3 and 22 with the model of anti- 
correlated frequency modulation. 
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2. FREE-POLARIZATION DECAY AFTER SATURATION BY A theoretical that interpret the results of the 
STRONG-FIELD PULSE experimental work of DeVoe and ~ r e w e r ~  have been done in 

Let us assume that the ensemble of the impurity ions of 
a crystal interacted with a monochromatic riadiation wave 
%= Eo exp{iwt} and then the radiation was ir~stantaneously 
switched off. After switch-off there appears t h ~  signal of de- 
cay of the free polarization that emerged during the time of 
action of the radiation pulse. Each impurity ion is modeled 
by a two-level system whose frequency E2(t) - E I (I) 
=WO+E(I) is a steady-state random process, with its mean 
value wo and equilibrium distribution cp(e) conserved in 
time (here El ( t )  and E2(t) are the energy 1evc:ls in the two- 
level system). 

Since the value oo is distributed across an inhomoge- 
neous contour cP(wo) caused by the dispersion of the crystal 
field, the shape of the signal is determined as follows: 

where A o =  wo- o is the detuning of the frequency of the 
two-level system, o is the frequency of the saturating field, 
cPo=cP(oo= w)=const, and u12(T+t,Ao) is the value of 
the off-diagonal element of the density matrix determining 
the polarization at the moment t that elapsed after field -- 
switch-off. The general expression for a12(T+ t,A w) has the 
form 

where the angle brackets stand for averaging over random 
realizations of the &(I) process, u12(T,Ao) is the initial po- 
larization generated by the saturating field, and T2 allows for 
the spontaneous decay of the excited level. 

Usually when finding R(t) one ignores the correlations 
of the fluctuations of the frequency of the two-level system 
before and after field switch-off. This makes it possible to 
decouple (2). The result is 

where 

is the correlation function of the frequency modulation. In 
Refs. 18 and 20 it was shown that ifexact expressions are 
used for the averages aI2(T,Aw) and K(r), the results for 
the shape of the free-polarization decay signal are valid out- 
side the limits of applicability of the theory of perturbations 
in the fluctuating frequency. The condition of applicability of 
a perturbation theory corresponding to the limit of rapid fre- 
quency modulation is 

- 
where e2 is the dispersion of the distribution in the frequency 
fluctuations, and T; is the spectral exchange rate. Most 

this approximation. 
Equations ( I )  and (2) are exact and determine the shape 

of the free-polarization decay signal in general form, but 
usually the averaging specified in Eq. (2) cannot be carried 
out. For this reason we specify the form of the random pro- 
cess &(I) and in Sec. 3 examine the case where the frequency 
of a two-level system is modulated by an anticorrelated Mar- 
kov random process. This specification of the type of the 
random process &(I) makes it possible to carry out the aver- 
aging in Eq. (2) and derive an exact expression for the shape 
of the free-polarization decay signal. 

3. ANTICORRELATED MARKOV FREQUENCY MODULATION 

If the frequency of the two-level system interacting with 
the laser field is modulated by a steady-state Markov purely 
disconnected process, then, according to sudden modulation 
theory?2 the averaging in Eq. (22) can be written in the fol- 
lowing form: 

where K(e,t) and u12(e,t) are the partial, or conditional, 
mean values whose arguments at the moment of field switch- 
off are both equal to E. 

It is convenient to proceed using the Laplace represen- 
tation. Applying the Laplace transformation to Eq. (6) in the 
variables t and T, we obtain 

where 

The frequency modulation function in the event of anti- 
correlated spectral exchange has been studied in detail in 
Ref. 23. Hence for K(e,pl)  we immediately write the final 
expression: 

where p o = p ,  + 1/T2-iAw. 
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To obtain the general solution for the free-polarization 
decay signal we only need to find the value of a 1 2 ( ~ , p )  that 
determines the polarization induced by the radiation field as 
a function of E .  To this end we use the kinetic equation of 
the Markov theory of sudden m~du la t ion .~~  Bearing in mind 
that under anticorrelated modulation the random quantity E 

can have only two values, a  and - a ,  and the conditional 
probability density of frequency variation from E' prior to 
the jump to E after the jump is f (E ' ,E) = aE 1 ,  -, , we can 
write the equation for the density matrix as follows: 

where 

u12= ug = p l 2  exdiot}, n  = pz2- p l l  is the difference in 
level populations, no is the equilibrium difference in the 
level populations of the two-level system, x=d12Eo is the 
Rabi frequency, d 1 2  is the transition's dipole matrix element, 
T1 and T2 are the longitudinal and transverse relaxation 
times caused by spontaneous decay, and 
q ( ~ )  = 0.56,,, + 0.5SE.-, is the static equilibrium frequency 
distribution. 

For the discussion that follows it is convenient to use the 
following representation: 

X =  % x ( a )  + x ( - a ) ] ,  xA= $ [ ~ ( a )  -x(- a ) ] .  ( 1  1 )  

Then Eqs. (10) assume the form 

Applying the Laplace transformation to these equations 
yields 

X , ( ~ ) = U [ ~ + ~ ~ +  i / ~ , ] -  l i 1 x ( p ) .  (14) 

Using Eqs. (13) and (14),  we can now easily determine the 
values of the elements of the partial density matrix in ( I  I ) :  

If we now use the explicit form of L o ,  i l ,  and A, we 
arrive at the following expression for a 1 2 ( ~  ,p ) :  

where 

Performing the integration with respect to E specified in (7) 
and combining the result with Eqs. (9) and (16), we obtain 

c ? . l 2 ( ~ I ~ l  , A o )  = K ( P l ) a l 2 ( p , A o )  

+ K ' ( P , ) ~ ~ ( P , A ~ ) ,  (17) 

where 
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After performing the inverse Laplace transforniation with re- 
spect to p l  and integrating with respect to Aw, we obtain, 
according to the general relation ( I ) ,  the following expres- 
sion for the shape of the free-polarization decay signal: 

"OX 
R ( P , ~ ) =  -.rr@o exp { K ( t ) [ R 1 ( : p ) K l ( p , t )  

2PD 

where 

Equation (18)  is exact and determines the shape of the signal 
of free-polarization decay after saturation by a strong-field 
pulse in the presence of anticorrelated frequency modulation. 
It is valid for a saturating field of arbitrary intensity and an 
arbitrary rate of modulation of the transition frequency. Note 
that by performing the passage to the limit 

R S ( t ) =  lim p R ( p , t ) ,  
P-0 

we arrive at an expression obtained earlier for the shape of 
the free-polarization decay signal in the event of stationary 
saturation." Naturally, this result can be compared with the 
one obtained in this paper in the limit of T S  T l  , thus making 
it possible to follow the transition to the stationary saturation 
regime. 

FIG. 1 .  The shape o f  the free-polarization decay signal in the case o f  rapid FIG. 2. The shape o f  the free-polarization decay signal in the case o f  slow 
spectral exchange: 0.1, ,y= 50 kHz, TI = 4200 p s  and ye= 15 ps. spectral exchange: c r 2 . r f =  10, ,y= 5 kHz, TI = 4200 ps, and ye= 15 ps. 
Curve I corresponds to T=200 ps,  curve 2 to T = 2 W  ps ,  and curve 3 Curve I corresponds to T=200 ps ,  curve 2 to T=2000 ps,  and curve 3 
depicts the decay o f  free polarization after stationary saturation. depicts the decay o f  free polarization after stationary saturation. 
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If in the adopted model we ignore the correlations of the 
frequency fluctuations in the two-level system before and 
after field switch-off, as was done by Szabo and ~ u r a m o t o ~  
and Wodkiewicz and ~ b e r l ~ , ' ~  then, according to Eqs. (3) 
and (4), we get 

nox 
R(p,t)= -.rrao exp 

~ P D  

Comparing Eqs. (20) and (18), we see that the second term, 
proportional to ~ ( t ) ,  occurs in the exact solution because of 
the correlations of the frequency fluctuations in the two-level 
system before and after field switch-off. Below we demon- 
strate the difference between the exact solution (18) and the 
approximate solution (20). 

Note that the expressions for the elements of the density 
matrix averaged over the realization of the random process in 
the telegraphic noise are identical to the results of 
the non-Markovian theory of perturbations in a random fre- 
quency detuning ~ ( t )  (see Refs. 11 and 14). In view of this 
the expression for the shape of the free-polarization decay 
signal in the rapid spectral exchange limit (5) - coincides with 
Eq. (20), where we must put ~ ( t ) = e x p ( - ~ ~ r d }  (see Ref. 
23). 

4. THE SHAPE OF THE SIGNAL OF FREE-POLARIZATION 
DECAY AFTER SATURATION 

There are two independent parameters in the final ex- 
pression for the signal shape, a and 7,. The usual approach 
in selecting these quantities unambiguously when interpret- 
ing the results of experiments in the field dependence of the 
decay rate is to employ the experimental data on the rate of 
photon-echo decay. In the anticorrelated frequency modula- 
tion model, the shape of the echo signal is determined by the 
following expression:24 

where A = d m .  ' I 2  We see that the echo signal is ex- 
ponential for rapid spectral exchange (5) and for slow spec- 
tral exchange (a2?:+ 1 ). The velocity of the echo signal for 
these cases is 

Thus, if the echo signal is exponential, knowing ye we 
can determine either a2 tc ,  assuming the presence of rapid 
spectral exchange, or 1/27,, assuming the presence of slow 
spectral exchange. 

To analyze the shape of the signal of free-polarization 
decay after saturation by a finite-length pulse, we used the 
algorithm for numerical inversion of the Laplace transforma- 
tion suggested by ~ t e h f e s t . ~ ~  The algorithm has been tested 
in reconstructing Laplace images of various types and yields 
good results. Moreover, we checked the reliability of numeri- 
cal inversion by comparing the results for the case of 
T%-TI, where the stationary saturation regime is realized 
and the exact analytical solution for the shape of the free- 
polarization decay signal is known.20 

Figures 1 and 2 depict the signal shapes calculated for 
different lengths of the saturating pulse. For comparison the 
shape of the signal of free-polarization decay after stationary 
saturation is also given. We see that as the saturation pulse 
becomes longer, in the limit T+TI,  the free-polarization 
decay signal becomes similar in shape to the signal of decay 
after stationary saturation; we use this fact to check the cal- 
culations. Here the picture is similar for both rapid exchange 

FIG. 3. The shape of the free-polarization decay signal after pulsed satora- FIG. 4. The shape of the free-polarization decay signal after pulsed satura- 
tion (T=200 ps ) :  u2rf= 10, TI=4200 p s ,  and ye= 15 p s .  Curve I corre- tion (T=200 ps ) :  u2r;= 10, T,  =4200 p s ,  ye= 15 p s ,  and x = 5  kHz. 
sponds to ~ = 0 . 5  kHz, curve 2 to 5 kHz, curve 3 to 50 kHz, and curve 4 to Curve I corresponds to exact calculations by (18). and curve 2 to approxi- 
100 kHz. mate calculations by (20). 
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(Fig. I )  and slow exchange (Fig. 2). Note that the condition 
T% y, for T , > T  is not sufficient to justify the use of the 
expressions for the shape of the signal of free-polarization 
decay after stationary saturation, as Boscaino and La Bella 
did in Ref. 4. 

Figure 3 clearly shows the effect of the field strength of 
the saturating radiation on the kinetics of the free- 
polarization decay. As the Rabi frequency increases, the de- 
cay of the induced-polarization signal increases and the os- 
cillations related to the presence of spectral exchange in the 
system are suppressed. 

To illustrate the differences between the i:xact solution 
(18) and the approximate solution (20), Fig. 4 depicts the 
free-polarization decay signals calculated by the appropriate 
formulas. We see that in calculating the free-polarization de- 
cay in the case of slow spectral exchange one rnust allow for 
the correlations of the frequency fluctuations in the two-level 
system before and after field switch-off. Nole that as the 
Rabi frequency grows, the difference between the approxi- 
mate and exact calculations diminishes because of the effect 
of field broadening, which suppresses the oscillations of the 
free-polarization decay signal. 

The shapes of the free-polarization decay signals have 
been calculated for the conditions specified in Ref. 3. This is 
done in order to show that the exact solution for the free- 
polarization decay signal in the telegraphic noise model 
yields a nonexponential decay signal, in contrast to the ex- 
perimental data3 and the approximate calculations done in 
Ref. 22. Thus, Kilin and Nizovtsev's approximate s0lution,2~ 
which yields an exponential decay for the induced polariza- 
tion, cannot serve to explain the experimental ~esults of Ref. 
3. Apparently, the simplifying assumptions used in Ref. 22 
led to qualitative changes of the kinetics of the free- 
polarization decay signal. 

5. CONCLUSION 

Thus, we have arrived at an exact solution for the shape 
of the signal of free-polarization decay after sitturation by a 
radiation pulse of finite length under anticorrelated spectral 
migration. We have found that outside the region of fast 
spectral exchange the free-polarization decay signal has a 

characteristic nonexponential shape related to spectral diffu- 
sion. We have also shown that it is important, when calcu- 
lating the free-polarization decay signal, to allow for the cor- 
relations of frequency fluctuations before and after the 
saturating field had been switched off. Finally, our analysis 
makes it possible to conclude that the telegraphic noise 
model cannot be employed in describing spectral diffusion if 
we wish to explain the experimental data of Ref. 3. 
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support of the International Center of Fundamental Physics 
in Moscow. 
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