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A study is made of the effect of the gravitation field in a cosmological model with expansion 
and rotation on the polarization of radiation. It is shown that the effect of rotation of 
the plane of polarization is observable in terms of real astrophysical measurements. Moreover, 
calculations confirm the data of Birch on the dipole anisotropy of the distribution on the 
celestial sphere of the relative angles between the directions of polarization and the principal axis 
of the image of a radio source at cosmological distances. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

~arlier '  we considered a large class of cosmological 
models with rotation and analyzed possible observable 
physical effects. In particular, using the Newman-Penrose 
formalism we investigated the rotation of the polarization 
vector in the shear-free G a e l  metric 

with nontrivial expansion 

and rotation 

Similar rotation-polarization effects have been studied 
in noncosmological metrics of rotating compact 

However, it is clear that the calculations in Ref. 1 do not 
give directly observable quantities for the angle of rotation of 
the polarization during motion along a light ray, since the 
rotation of the polarization vector f p  was considered relative 
to local coordinate frames, and the choice of these is obvi- 
ously arbitrary both along any ray as well as in the complete 
spacetime (1.1). At the same time, the gravitational field in 
which the radiation propagates influences the image of the 
s o ~ r c e . ~ - ~  

In order to eliminate the arbitrariness in the coordinates 
and separate an observable physical effect, it is necessary to 
compare the direction of the polarization vector with some 
reference direction that is specified in advance at each point 
of the ray. The very formulation of the problem suggests a 
natural choice: In real astronomical observations, the angle 
between the principal axis of the source image and the po- 
larization vector is directly measurable. This quantity does 
not depend on the choice of the coordinates, so that calcula- 
tion of the difference between the directions of the principal 

axis of the image and of the polarization at an arbitrary point 
of the ray makes it possible to distinguish the observable 
effect of polarization rotation in a cosmological model with 
rotation. 

In Ref. 8, an attempt was made to solve such a problem 
for the metric (1.1) by the "representative beam method." 
However, this method is based on the incorrect assumption 
that the properties of a beam of rays in a gravitational field 
can be specified arbitrarily without regard to the properties of 
the isotropic geodesics on the corresponding spacetime 
manifold. In particular, in the general case for the metric 
(1.1) (as also for more general models with rotation) it is not 
possible to require the vanishing of the optical scalar w on an 
arbitrary isotropic geodesic. 

In Refs. 1 and 9, we obtained exact solutions of the 
equations of isotropic geodesics in the cosmology (1. I), and 
this makes it possible to treat exhaustively the properties of 
all beams of rays propagating in a rotating universe. 

2. ISOTROPIC CONGRUENCES AND OPTICAL SCALARS 

In the geometrical-optics approximation, it is convenient 
to describe the evolution and deformation of the image of a 
source by means of the optical scalars introduced by ~achs." 
Below, we shall calculate these quantities for an arbitrary 
ray, and this will enable us to find the position of the princi- 
pal axis of the image at every point of an arbitrary isotropic 
geodesic. In a remarkable way, this immediately determines 
the angle in which we are interested, i.e., the angle between 
the principal axis of the image and the polarization vector, 
provided an accurate choice is made of the isotropic 
Newman-Penrose tetrad ( l , n ,m ,m) .  Namely, if we make the 
real vector l p  coincide with the wave vector kp tangent to the 
given isotropic geodesic, then the polarization vector f p  will 
lie in the spacelike plane spanned by the complex-conjugate 
vectors (nzP,izp). Further, we can rigidly tie f p  to one of 
these basis vectors (say mp). (Technically, this is not diffi- 
cult: Without affecting 1, by means of local Lorentz rotations 
we can always change each of the three vectors n,rn,m in 
such a way that they become covariantly constant along the 
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geodesic congruence 1.) Thus, the rotation cf the principal 1 e - n i ~  

axis of the source image determined by the "refracting" +-sin 8 cos ad,+- 
R 

sin 0 sin Q d ,  
properties of the gravitational field relative to a given isotro- 
pic frame automatically gives the required observable effect. 

We describe the construction of the isot~.opic frame. In 
1 + - cos 8dz , 
R I (2.5) accordance with what we have said above, we can proceed 

from an arbitrary Newman-Penrose frame arid by means of 
Lorentz rotations transform it to the required configuration. 1 1 
For definiteness, we take the isotropic frame used earlier in n='( Ro l+cos 0 ) [d , -Rdz ] ,  (2.6) 

Ref. 1 [see (6.2) in Ref. 11. Our main notatiori and terminol- 
ogy in the Newman-Penrose formalism are t&en from Ref. m=C I[@- sin 0 e-i,D i 
7, and therefore in what follows we restrict ourselves to just V2 k + ~ + ~  l+cos  0 Idt+ dx 
the minimum of explanations. 

We submit the original tetrad [see (6.2) of Ref. 11 to the e - m ~  i sin 0 
three following successive Lorentz transformations. + --- 

R~ 'Y-R l+cos 0 e i  , (2.7) 
1) We first make a rotation of class 111, which leaves the 

directions of 1 and n unchanged: 
- - 

+ A  n+An, m + m ,  m + m ,  

where 
eemx i sin 0 +- 

R~ a ~ + ~  ~ + C O S  0 

Here Ro and 0 are constant parameters of the transformation, It is readily shown by direct verification that 1 is a geo- 

the meaning of which will be clarified later. desic congruence with affine parametrization, lvVv lp=O. 

2) We then make a Lorentz rotation of class 11, which We "OW clarify the meaning of the functions and constant 
transforms the field of vectors 1 into a geodesic congruence Parameters that occur in (2.5)-(2.8). For this, we recall the 

with nonaffine parametrization: construction of the exact solutions of the equations of isotro- 
pic geodesics in the metric (1.1) (see the detailed but some- 

where b and b* are complex-conjugate functions of the cos- 
mological coordinate time, 

sin 0 Ro -i,D 
b(t)=i  -- 

fi R e  . 
Here the function O(t) is determined as a :solution of the 
ordinary differential equation 

7 

J&+ sin o sin o 
dO m 

3) Finally, for the geodesic congruence I we make the 
parametrization affine by means of a Lorentz rotation of 
class 111: 

where 

After this series of transformations, the isotropic tetrad 
takes the final form 

= [  k + u  sin o sin o ] a, R 

- - 

what different derivation in Refs. 1 and 9). 
The key property is the existence of three ordinary, 

,$(i)= 1, 2, 3, and one conformal, ,$(0,, Killing vectors for the 
metric (1. I): 

We consider the geodesic equations kvVvkp=O, where 
kp=dxplds, kpkp=O, is the tangent vector to the curve 
xp(s) with affine parameter s. We specify the initial condi- 
tions as in Refs. 1 and 9; without loss of generality (the 
geometry is spatially homogeneous), we choose the position 
of the observer at the point P = ( t = t o ,  x=O, y=O, z=0)  
and characterize each geodesic that passes through P by 
spherical angles (O,+), which determine the initial direction 
of the ray in the local Lorentz basis of the observer at P :  

k%=(htkp)p=(l,sin 0 cos +,sin 0 sin +,cos 0). 

The Killing vectors (2.9) determine four first integrals: 

As is clear from what was said above, their values on the ray 
passing through P in the direction (O,+) are 

+ Jk+(T sin 8 sin $), q3= Ro cos 0. (2.1 1) 
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Here we have written Ro=R(to). From (2.10), we obtain the 
explicit form of the wave vector tangent to the given geode- 
sic: 

The integration of the expression (2.12) described in Ref. 1 
leads to the following exact solutions of the equations of 
isotropic geodesics: 

J3+ JET sin O sin O 
e-mx= (2.13) &+ Jk+(T sin 0 sin 4 ' 

sin B(cos O - cos 4 )  
Y =  (2.14) 

m(&+ sin e sin 4 )  ' 

where the function O is given by Eq. (2.3) with the initial 
condition @(to) = 4. 

It is easy to show that substitution of (2.13)-(2.15) in 
(2.12). gives (2.5). Thus, we have elucidated the meaning of 
the constant parameters 0 and Ro and the function O in 
(2.5)-(2.8): They specify the direction of the geodesic con- 
gruence (2.5) in the local frame of reference of the observer 
positioned at the point P. The congruence (2.5) contains the 
distinguished ray (which can be called the central ray of the 
given congruence)'sekn by the observer P in the direction 
(O,& on his celestial sphere. Varying the angle parameters, 
we obtain the complete family of geodesic congruences that 
describe radiation fluxes in an arbitrary direction. 

Direct calculations of the spin coefficients (see the defi- 
nitions in Ref. 7) lead to the results 

m k  sin 0 cos O +-- 
sin 0 sin O - 

u 
J-+sin 0 sin o 

Ro m + k + u  
+ i  --cos 0 

R~ 2 9 (2.18) 

I sin 0 sin 8 

Ro m k e 2 i t  sin 0 

I + dj& sin 0 sin O 

+ i  sin @[cos 0-2 cos2 @(COS 0- I)]),  (2.19) 

m k  sin 0 sin O 1 I 

m k  sin 0 sin O 1 I 
+ i  -- 

2R k + a  , (2.23) 

1 + && sin sin 011 
iY k m 1 

P=xvlTE 
1 + J k + u  sin 6 sin O 

sin 19 sin O \ 

1 + JP-- sin 0 sin O 
k + a  

Here and in what follows, the dot denotes a derivative with 
respect to t. We hope that the use of a for the constant in 
(1.1) and for the spin coefticient will not cause confusion. 

As can be seen from (2.18) and (2.19), Sach's optical 
scalars O = -Re p, w= Im p, and a contain a nontrivial de- 
pendence on the rotation parameters of the metric (1.1). Note 
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that in view of (2.16) it is not possible by any Lorentz trans- 
formations of the frame (2.5)-(2.8) that do not affect the 
geodesic congruence 1 to make any of the optical scalars 
vanish. At the same time, by a class I rotation, 

it is possible to annihilate the spin coefficient T. The trans- 
formation (2.26) is remarkable in that it le;tves invariant 
K=O, E = O  and also does not change the optical scalars: 
p-tp, w+a. We shall not calculate the function a explicitly; 
it can be determined as solution of the differential equation 
I,d,a++=O. We shall denote the frame obtained from 
(2.5)-(2.8) after the transformation (2.6) by c:l,n,m,m), as 
before. 

3. ROTATION OF THE POLARIZATION 

Thus, we have as a result constructed a field of isotropic 
frames (I,n,m,m) with the following properties: 1) the spin 
coefficients satisfy K=E=T=O; 2) (therefore) the congru- 
ence 1 is geodesic with affine parametrization; 3) [also by 
virtue of l)] the vectors n,m,m are covariantly constant 
along the isotropic geodesics 1. This last gives the key to the 
solution of our main problem. Namely, let the observer at P 
detect radiation in the direction (O,$) on his local celestial 
sphere. For analysis of the observations, we then choose the 
congruence (2.5) with central ray 1 = k connecting the point 
P with the center of the radiation source S. At an arbitrary 
point, for example, at P, we make the polarization vector fp  

coincide with mP; this ensures that fp=mp holds every- 
where on the ray I = k. Thus, the change in the orientation of 
the image of the source will, by the construction of the frame 
(I,n,m,m), be described by the angle between the polariza- 
tion vector and the direction of the principal axis of the im- 
age. 

It is well known that the characteristics of' the image of 
an object (orientation, shape, size) are determined by the 
optical scalars. We suppose that we cut out from the congru- 
ence (2.5) a thin beam of rays with central geodesic l=k. 
Suppose that at the point xp(sl) with value of the affine 
parameter s = s on the central ray xP(s) the cross section of 
the beam is the two-dimensional area with boundary 

with parameter range O s r g s 2 ~ .  More concretely, we shall 
be interested in the case of an elliptical image. Without loss 
of generality, we can assume that at xp(sl) the ellipse with 
principal semiaxes a and b is oriented in such way that the 
directions of the semiaxes are given by the real vectors 
e I = (m + m ) l d  and e2 = (m - m)li\/Z. Then 

1 a + b  . a -b  
l ( q ) =  (T e lv+ - 2 e-iv 

For motion along the central ray, the shape, size, and orien- 
tation of the cross section of the beam (i.e., the image of the 

object) change. One can show" that at the neighboring point 
with affine parameter s2  = s + as the boundary is given by 
the expression 

from which we find 

g-5' = 5+ sg, sg= -(pg+ a ~ * ) S s .  (3.2) 

Note that the transformation (2.26) does not change the spin 
coefficients p and a ,  so that in the isotropic frame we have 
constructed these quantities are given by the expressions 
(2.18) and (2.19), respectively. 

It is convenient to write the ellipse obtained at s2 from 
(3.1) in the form 

where the complex quantities M = I M 1,21eiX1.2 characterize 
the deformation and rotation of the image. 

Comparing (3.1), (3.3), and (3.2), we find 

a-b  ( l+@Ss--  IM21= , a + b  a - b  Re a&),  

As can be seen from (3.4) and (3.5), the deformation and 
change in the orientation of the image are related. Similarly, 
the optical scalars o=Im p and a contribute to both effects. 
We are interested mainly in the rotational effects. 

We give the expression for the rotation angle 7 of the 
principal axis of the image relative to the polarization vector: 

We find the total value by integrating along the central ray 
from the source S to the observer P. However, for the sub- 
sequent physical analysis it is sufficient to consider approxi- 
mate estimates of the observable effects. We use the 
Kristian-Sachs expansion methods: in which all geometri- 
cal quantities are represented in the form of series in powers 
of the affine parameter s. We recall, in particular, that the 
distance r between P and S, which is evidently determined 
by the size of the source, is related to the affine parameter s 
by the expansion 

r 1 R,, kpk" 
(3.7) 

where ufi is the Cvelocity of the observer, and B p  describes 
the value of an arbitrary quantity B at the point of observa- 
tion P. For functions of the cosmological time calculated at 
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P, i.e., at the time of observation r =  t o ,  we shall also use a 
notation with index 0, for example, scale factor Ro=R(to), 
Hubble factor H ~ =  ( R I R ) ,  , etc. 

It follows from (2.18) and (2.19) that in the direction of 
the rotation axis (0=0) the optical scalars are 

and, thus, the effect of the rotation of the plane of polariza- 
tion becomes "pure" and maximal. 

As we showed in Ref. 12, cosmological rotation is mani- 
fested predominantly in the direction 0=0; however, in the 
models (1.1) with parameters 

rotational effects are important for all directions on the ce- 
lestial sphere. Therefore, in what follows we shall consider 
the case (3.9). 

Taking into account (3.7) and (3.9), we finally obtain 
from (3.6), (2.18), and (2.19) for the angle of rotation of the 
plane of polarization relative to the principal axis of the im- 
age of the source the expression 

where, as in Ref. 1, we have omitted the higher powers of the 
Kristian-Sachs expansion in r. We note remarkable agree- 
ment with the previous results [cf. (7.1) of Ref. 11. The dis- 
agreement with the conclusions of Ref. 8 is explained, as we 
have already noted, by the incorrect assumption of that the 
properties of the so-called representative beam that forms the 
image of the source can be specified arbitrarily. Without con- 
sidering this question in detail, we note, however, the follow- 
ing. An isotropic frame (l1,n' ,m' , m l )  with the desired 
properties can be obtained by means of a local Lorentz rota- 
tion, for example, from (l,n,m,m) (2.5)-(2.8). The require- 
ment of geodicity of the new congruence I' and covariant 
constancy of the triplet n ' ,m ' ,m ' is equivalent to the condi- 
tions that the spin coefficients be trivial: K' =0, E'=O, T I  =O. 
These six equations (three complex equations) in general ex- 
haust the freedom of the Lorentz transformations, which de- 
pend on six functions. Thus, in the general case it is possible 
to make an additional "adjustment" of the frame 
(ll,n',m',m') to achieve, for example, vanishing of the op- 
tical scalar wl=O. In fact, in Ref. 8 there is no explicit con- 
struction of either the isotropic tetrad or the representative 
beam with the declared properties. 

4. CONCLUSIONS 

Thus, the main result of our paper is the confirmation of 
the previous conclusion of the existence in the cosmological 
models (1.  I) of the effect of rotation of the polarization vec- 
tor of the radiation of a (radio) source with respect to the 
principal axis of its image. The resulting dipole anisotropy 
(3.10) in the distribution of the rotation angle confirms the 
observational data of Birch.I3,l4 

It is important to note that the condition (3.9) is not 
necessary. It is simply that in this case the effect has a purely 

dipole nature and can be conveniently compared with Birch's 
observations. It is clear from (2.18) and (2.19) that the dipole 
component is also dominant in the effect if (3.9) is not sat- 
isfied, but certain distortions are superimposed on this com- 
ponent and they ultimately lead to a more complicated pic- 
ture of the observed angular distribution. Thus, our result 
should not be regarded as an argument "for" or "against" 
the observational data of Refs. 13 and 14. In contrast, the 
results of Birch and new astrophysical observations will ul- 
timately help to choose a correct cosmological model with 
rotation and estimate its parameters (k,u,nt). 

We make some concluding remarks. 
If the source originally has a circular profile, then obvi- 

ously (3.6) becomes meaningless. In this case, (3.1) becomes 

but at s+ Ss the observer will still see the ellipse (3.3). In- 
stead of (3.4) and (3.9, we find 

and, therefore, the angle of rotation of the polarization vector 
with respect to the observed principal axis of the source is 

1 T arg a 
ST=--was+-+- 

2 2 2 '  

As we see, for spherical sources the picture of the effect seen 
by the observer at P does not differ qualitatively from the 
one described above. 

The distortion of the image is also interesting in rotating 
cosmological models. However, in the metric (1.1), and a 
fortiori in the case (3.9), it is not significant, as an additional 
analysis of the expression (2.19) shows. 
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