
Stochastic transport and fractional derivatives 
K. V. Chukbar 

Kurchatov Institute, 123182 Moscow, Russia 
(Submitted 21 July 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 108, 1875- 1884 (November 1995) 

A systematic derivation of macroscopic equations describing superdiffusion (8) and subdiffusion 
(20) over a wide range of physical processes is given on the basis of general microscopic 
characteristics of the motion of individual particles. It is shown that fractional derivatives are a 
necessary component of these equations, the time derivatives being of a different type 
from the derivatives with respect to the spatial variables. The simplest properties of the equations 
are investigated-specifically, how quickly a universal self-similar profile emerges from an 
arbitrary initial particle distribution. O 1995 American Institute c?f Physics. 

1. INTRODUCTION 

The main objective of this work is to inform the reader 
of the simple fact that there is no substitute for the math- 
ematical language of fractional derivatives for describing and 
studying the physical process of stochastic transport. Sto- 
chastic transport is now one of the most fashionable and 
popular fields of physics, making it possible to relate other- 
wise very disparate phenomena, such as dissipative transport 
of real particles, heat, light, magnetic fields, and so on, in 
ordinary space,' and the dynamics of point-representations of 
Hamiltonian mechanical systems in phase The basis 
for this is the general and universal property of "forgetting" 
or "information lossw-the property that characterizes the 
stochasticity of a process. 

In theoretical research on random transport, two methods 
or levels of description of the motion are ordinarily 
employed-microscopic and macroscopic. The first method 
concerns the law of motion of individual particles and the 
second method concerns an ensemble of particles. The two 
methods are certainly interrelated, and detailed understaned- 
ing of one makes it possible to determine the second-the 
random walk process is equivalent to the diffusion equation 
and vice versa: but for various aspects of the phenomena of 
interest to the investigator in each specific case, one method 
can be much more convenient than the other. Moreover, in 
both real experiments and simulations, as a rule, it is impos- 
sible to investigate both aspects of the phenomenon at the 
same time. 

For this reason, it is regrettable that the aforementioned 
duality of the approach to the most popular and classical 
example of stochastic transport is largely lost in the study of 
more complicated motions. Indeed, although attempts have 
been made from time to time to describe systems with 
power-law random displacements 

be used for such a description (see, for example, Refs. 6 and 
7), but they are introduced purely phenomenologically, in 
fact immediately after writing down Eq. (1). Without a de- 
tailed analysis of the motion of individual particles, this 
leaves the impression that the choice of the language of frac- 
tional derivatives is arbitrary and exotic. Moreover, the pro- 
posed equations are not even solved, i.e., even the conve- 
nience of this language remains unclear. 

In the present paper, we present a systematic and rigor- 
ous derivation of equations that describe stochastic but non- 
diffusion ( a  # 112) spreading of an ensemble of particles, 
without any preliminary information about fractional deriva- 
tives. The terms from this field of mathematics are first used 
only after such derivatives appear explicitly. The basic prop- 
erties of the derived equations, which are analyzed below, 
attest to the extreme simplicity of applying these equations in 
physical problems, similar to the simplicity and convenience 
of the classical diffusion equation. All problems are solved in 
the one-dimensional case (the extension to higher dimen- 
sions presents only technical difficulties which can be easily 
overcome). The derivation is not tied to any specific physical 
system, and is based on general models of microscopic mo- 
tion (I) ,  where it has long been a standard procedure, in 
comparisons with standard diffusion, to distinguish the more 
rapid superdiffusion (a> 112) and the slower subdiffusion 
( a <  112). 1,4,5 The starting point is a discrete model of clas- 
sical random transport, in which a particle executes equi- 
probable hops to the left and right over a distance Ax= I in 
the time At = I, such that at macroscopic times and scales 
( t 9  1, x 9  I )  the model yields the diffusion equation for the 
particle density4 

( 1  
For a real physical process (an actual random walker), it 

that have been investigated at the microscopic level in terms is always possible to find appropriate quantities Ax and 
of a macroscopic equation, such attempts have not, in gen- At ,  which differ from one phenomenon to another, but in the 
eral, conformed to a rigorous, systematic approach, as evi- general mathematical approach it is convenient to employ 
denced by the fact that this question is not discussed at all in dimensionless quantities. The physical media in which sto- 
the excellent reviews in Refs. 1,  4, and 5. In the last few chastic transport occurs are assumed to be uniform, isotropic, 
years, it has often been suggested that fractional derivatives and stationary in the sense that their properties do not change 
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in time or space. All simplifications are made for the sake of 
computational simplicity and clarity. Subsequent generaliza- 
tions are possible. 

At the microscopic level, "Levy flights" provide the 
most faithful mathematical model of fast particles.'349%ere 
the discreteness of the hops in time is preserved, but the 
spatial motion becomes continuous. The spatial motion is 
characterized by a distribution function f(x),  equal to the 
probability distribution of a displacement at the next hop 
from a given point to the coordinate x. Therefore f (x)  is a 
nonnegative-definite, even (as a result of the isotropy of the 
medium) function, which is identical at all points in space (as 
a result of its uniformity), and J'zf(x)dx= 1. Levy flights 
inherently describe functions with an infinite mean-square 
displacement: 

Thus, the outlying "tails" o f f ,  which as a rule are assumed 
to be power-law functions, are responsible for superdiffu- 
sion. In what follows, to bring some degree of definiteness to 
the numerical coefficients, the following class of functions is 
used in the intermediate calculations: 

where r ( a )  is the gamma function. Since the final answer 
depends only on the power-law "tail," it will be universal 
and identical however different the behavior of various sys- 
tems (various f )  at microscopic scales x- 1. The "flights" 
occur for p s  1. One physical example of such a process is 
the transfer of resonance radiation in a tenuous gas (or 
plasma) (see the Biberman-HolsteYn equation in Ref. 8): for 
a Doppler line contour, say, P-- 112, and for a Lorentzian 
contour, p= 114. 

It is easy to see that the equation describing the dynam- 
ics of the particle density for arbitrary f has the form 

n(x,t+ 1)-n(x , t )=  

Expanding the function n(x,t) (which is continuous at mac- 
roscopic times and scales) in a Taylor series in x and t, and 
noting that f(x) is even, it is easy to see that for finite 
(x2), Eq. (5 )  reduces to the diffusion equation with diffusion 
coefficient D = (x2)/2, and in the case (3) it remains an inte- 
gral equation. 

To study this regime in greater detail and to derive the 
desired mathematical formula, it is convenient to take the 
Fourier transform with respect to x, which transforms the 
convolution integral on the right-hand side of Eq. (5) into a 
product of Fourier transforms 

where for f given by Eq. (4), 

and Kg is the modified Bessel function of the second kind. 
Since the ultimate objective is to derive a macroscopic trans- 
port equation describing the motion of a particle ensemble 
over large scales x 9  1 (k< 1 ), in Eq. (6) f k - ,  can be ex- 
panded in a series near k=0 ,  and only the first nonvanishing 
term need be retained. This yields 

In the latter case, dropping the remaining terms obviously 
leads to an unphysical instability for small scales (k>  1); 
however, this instability can be easily eliminated by intro- 
ducing any correction (since we are not interested in motion 
on small scales) that is small for k 4  1 but gives the correct 
sign for large k. For example, lnlkl can be replaced with 
ln[lkll(lkl+ I)]. 

The second of Eqs. (7), written in ordinary space as 
(compare to Eq. (5)) 

corresponds to superdiffusion. The expression on the right- 
hand side is a fractional d e r i ~ a t i v e . ~  In multidimensional 
form, it is a fractional power of the Laplacian AO. It is usu- 
ally defined in terms of its Fourier transform (7). Naturally, 
manipulations with it are especially convenient in this repre- 
sentation, where they are technically identical to the case of 
a classical (local) diffusion operator. The general solution of 
Eq. (8) 

can be written in ordinary space in the form 

where the Green's function of Eq. (8) is self-similar and is 
equal to 

I 
Q ( E ) = -  1 exp[- - cos K@K. (11) 

z- o r (  1 + p )  - P, 22P K2Pl 
The Green's function itself can be found from the micro- 

scopic description of the (in complete correspon- 
dence with the self-sufficiency (but not convenience) of any 
level of description indicated in the introduction), but the 
macroscopic approach (10) shows much more clearly, for 
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example, the characteristic property of stochastic transport 
that in the limit t + a ,  when the profile G(x) beomes very 
smooth, 

This emergence into a self-similar (universal) regime is a 
manifestation of the property of "information loss" in a sto- 
chastic process (as compared to the case of the ordinary dif- 
fusion equationi0). It is related to the fact that, as one can see 
from Eq. (9), in the limit t 4 m ,  the Green's function "cuts 
off" all initial harmonics with k # 0, and that annihilation of 
overtones is responsible for the asymptotic approach to a 
universal one-parameter profile. A significant difference from 
classical diffusion is that the corresponding self-similar pro- 
file is not Gaussian, but has instead a power-law "tail": 

(Notably, as P 4  1, its amplitude and the power of x ap- 
proach finite va~ues .~)  This can also be calculated from the 
inverse Fourier transform (1 I), i.e., once again starting from 
the microscopic description$5 but it is simpler to see from 
the macroscopic equation (8). Indeed, as x-+m, the power- 
law kernel can be taken outside the integral, and particle 
conservation can be invoked: 

after which Eq. (12) is obtained immediately. Thus, the linear 
time dependence of the tail is related to the "constancy of 
the particle flux on large scales"" -the finite probability of 
particles to hop from the "core" of the distribution immedi- 
ately to the "tail." 

It is also interesting to note that the somewhat subtle 
property of the loss of positive-definiteness of the Green's 
function (1 1) for unphysical values P> 1 can also be easily 
proved from Eqs. (7) and (8), since by separating out the 
Laplacian 

the function lkIzP with P> 1 can be transferred into the class 
of functions with p< 1, but with a negative sign. Since in 
ordinary space the operator d2/dx2 does not change the sign 
of a power-law function, after repeating the macroscopic 
derivation of (12) we immediately find that the tail of G is 
negative (albeit for P>2 we again end up in the region 
where its values are positive). Even these examples of the 
mathematical simplifications attest to the usefulness of the 
macroscopic approach. It can be even more useful in specific 
physical problems. 

In concluding this section, we point out that the conver- 
gence of n to a self-similar profile can be improved by in- 
troducing one more parametrization-a displacement 
G(x-xo): expanding the Green's function in Eq. (10) in a 
Taylor series in x and writing $xn(x,O)dx=Axo, it can be 
shown that if the integral $x2n(x,0)dx is finite, 

The case of a Gaussian Green's function is different, in that 
the next term in the expansion-the initial width tz(x,t)- 
can also be compensated by an additional displacement in 
time G(t  + to). l o  Here this is not the case: the corresponding 
operation is possible only if the initial distribution n(x) has a 
symmetric power-law tail Ix128- i .  Moreover, since in this 
region it is necessary to work with functions with diverging 
moments, there is no reason to believe that x2 averaged over 
n(x,O) will be finite. In general, according to the consider- 
ations indicated above, the rate at which the self-similar re- 
gime emerges is determined by the behavior of nk(0) in the 
limit k+O: if n k ( 0 ) = ~ + i ~ x o k +  ~ l k l "  ... with 5<2, 
then the correction term in Eq. (12) will decrease as 
o(~-*P '~) .  

3. SUBDIFFUSION 

"Traps" provide the most faithful microscopic model of 
slow stochastic particle transport; these appears to have first 
been proposed in Ref. 12 (see also Refs. 1, 4, and 5). Here, 
the spatial hops are discrete and the temporal dynamics is 
continuous; specifically, there exists a distribution function 
f ( t )  which is equal to the probability distribution of hops 
occurring to neighboring points within a time t after the ini- 
tial point is reached. It is nonnegative-definite, it does not 
depend on x, and $rf(t)dt= 1. The concept of a "trap" cor- 
responds to an infinite mean expectation transition time, 

The power-law tail o f f  is therefore responsible for subdif- 
fusion (compare the preceding section), and to make specific 
calculations, in what follows we choose f to be of the form 

Traps appear for y s  1. A physical example here is charge 
transport in amorphous materia~s:~ where y= 112. 

The calculations for this regime are more complicated 
than for superdiffusion. Since the particles located at a given 
point in space "remember" well when they arrived at that 
point, here it is necessary to introduce a characteristic time 
r (time of arrival at the point) and particle density distribu- 
tion N at a given point over this time: 

It is also convenient to use a different notation for the prob- 
ability that the particles "survive" (i.e., do not hop to neigh- 
boring points) to time T: 

In these terms 
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Here Q(x,t) is the particle flux from a given point to neigh- 
boring points (the factor 112 results from the fact that the 
probability of a hop to the right is equal to the probability of 
a hop to the left), and NO(x,r)  is the initial distribution func- 
tion at the given point (initial condition). Next, for simplicity 
(see Introduction) we assume that No= no(x) S+(T),  where 
6,  is the "shifted" Dirac delta function with the normaliza- 
tion condition $ ; S + ( ~ ) d r =  I .  It then follows from Eq. (15) 
that 

which, after n(x,t) is expanded in a Taylor series at macro- 
scopic times and scales, reduces at finite (T) to the diffusion 
equation with D =  1 / ( 2 ( ~ ) )  (the integral operator on the 
right-hand side is replaced by l), and in the case of Eq. (14) 
it remains an integral equation. 

Here it is convenient to employ an integral transform, as 
in the superdiffusion regime-but now the Laplace trans- 
form, not the Fourier transform, and in time, not space. Then 
it follows from Eq. (17) that 

where, according to Eq. (15), 

(T(a,b) is the complement of the incomplete gamma func- 
tion). In the desired macroscopic description, only values 
p G  1 are important, and Eq. (18) reduces to 

P 1 d2n, -n =-- 
y - l  2 dx2  +no l (y -  11, r > l ,  

The subdiffusion regime describes a second variant which 
has the following form in the physical coordinates (compare 
Eq. (17)) 

which is the desired equation. The left-hand side contains the 
fractional derivative d ~ l r l t ~ , ~  but of a different type than in 
the preceding section. Generally speaking, the extension of 
differential operators to fractional powers can be made by 
various methods, and the Fourier and Laplace transform lan- 

guages employed here give different expressions (other vari- 
ants are also known in mathematics9). This asymmetry of the 
spatial and temporal variables in physics is not surprising, 
since it is a manifestation of the causality principle. The 
rigorous derivation of the macroscopic equations which was 
presented in the present paper automatically takes into ac- 
count this simple circumstance-in contrast to the phenom- 
enological approach in Ref. 6, where it was proposed that the 
same types of fractional derivatives in x and t (of the type 
(20)) be used to describe nondiffusion stochastic processes. 

Moreover, in Refs. 6 and 7, because of the qualitative 
nature of the arguments employed there, the last term on the 
right-hand side of Eq. (20), whose role is by no means 
merely formal-since it is responsible, for example, for the 
nonequivalence of systems with the same values of a dis- 
cussed in the concluding sect ion4ropped out of the corre- 
sponding equations. 

It is no more difficult to perform operations with Eq. 
(20) that to perform similar operations with Eq. (8). After 
Fourier transforming with respect to x, its solution assumes 
the form 

which in physical variables once again looks like Eq. (10) 
with a self-similar Green's function (compare the derivation 
based on the microscopic d e ~ c r i ~ t i o n , ' ~ )  

2 r 1 y  / exp [zUy- \ i m l t l z ] d z ,  " ( t )=  ZTiY 

(21) 

where the integral in the complex z plane extends over a 
contour running from the fourth quadrant into the first quad- 
rant consisting of two rays at polar angles cp= -+ ~ y l 4 .  As 

-)m, deforming this contour and passing it through the 
saddle point 

we obtain (compare Ref. 13) 

In this variant of stochastic transport, we are once again 
dealing with emergence into a self-similar regime 

for which, as before, in the general case the convergence 
cannot be improved by shifting the origin of the time t 
(though, as one can see from the preceding discussion, the 
moments of G are finite here). 
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4. CONCLUSION 

It has been shown in this paper that in a systematic nlac- 
roscopic description of stochastic processes, one must deal in 
a definite order with equations containing fractional deriva- 
tives, the derivatives being different in the super and subdif- 
fusion variants-Eq. (8) and (20), respectively. It is no more 
difficult to work with these equations than with the standard 
diffusion equation, since the integral terms become local as a 
result of Fourier and Laplace transforms. The proposed 
method admits very simple and clearly understandable gen- 
eralizations to multidimensional cases and the presence of 
combined spatial and temporal "blurring" of the hops. We 
merely note here the curious inequivalence of physical pro- 
cesses (characterized simultaneously by Eqs. (4) and (15)) 
with the same value of a (i.e., identical self-similarity) but 
different P and y. For example, stochastic transport with 
a=/?= y= 112 is not classical diffusion. For such processes 
the Green's function (and, therefore, the asymptotic solution) 
has different power-law "tails" t y l l ~ 1 2 p f '  in the limit 
l x l + ~ . ~  The most direct and clear way to see this is to 
repeat the derivation of (12) in the general case (the frac- 
tional derivative with respect to t of a power-law function is 
trivial to obtain and was calculated by ~ u l e r ~ ) .  The apparent 
contradiction with the fact that the repeated application of 
the operation d112/dt'12 to the equation 

should transform this equation into Eq. (2) is removed by the 
presence of the term (.nolt'12) on the right-hand side, which 
prevents such a transformation (compare the preceding 
section)-another argument in favor of a rigorous derivation 
of the equations. 
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