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Fluctuations in the shape of DNA-type molecules are described by expanding the elastic energy 
of the molecule in powers of the gradients of the components of a moving Frenet reference 
frame. A Fokker-Planck functional equation describing diffusion in conformation 
space (trajectories in the dynamical analogy) is derived. The correlation functions of the 
components of the moving Frenet reference frame are calculated. According to the 
fluctuation-dissipation theorem, the correlation function is equal (to within a coefficient) to the 
response function of the conformation of the molecule with respect to an external force. 
In the special case in which the equilibrium configuration of the molecule is a helix, we calculate 
the fluctuation contribution to the energy, which leads to an angular momentum that 
depends on the length and pitch of the helix (Casimir momentum, whose physical origin in this 
case is the fluctuations in the shape of a helix of finite length). O 1995 American Institute 
of Physics. 

1. INTRODUCTION 

It is well known that the DNA molecule, on the one 
hand, is a very complicated object that stores and transfers 
biological information and, on the other, is structurally fairly 
simple: it consists of two polynucleotide strands twistet into 
a double helix. The diameter of the double helix is 20 A, the 
distance between the neighboring pairs of bases along the 
helix is 3.4 A, and the double helix makes a complete revo- 
lution every ten pairs (i.e., the pitch of the helix is 34 A). The 
length of the molecule depends on the organism to which the 
DNA belongs, varying from lo4 to lo9 links. The parameters 
of the helix also depend on the chemical environment and 
the external conditions. The objective of many biophysical 
investigations is to determine these parameters. One such 
investigation is the impressive experiment of Ref. 1 ,  in 
which the stretching of the molecule induced by an external 
force was measured directly. The elasticity of the molecule 
yields another characteristic dimension, the so-called persis- 
tence length, which describes the stiffness of the molecule 
with respect to bending. Under normal conditions this length 
is of the order of lo3 A. 

The relatively simple mechanical structure of the DNA 
molecule makes it possible to neglect, to a first approxima- 
tion, small scales (of the order of the thickness or pitch of the 
helix) and to model the molecule as an elastic strand. The 
existence of the double-helix structure can be described by 
introducing an anisotropy of the elastic moduli (the charac- 
teristic bending modulus must correspond in magnitude to a 
persistent length of the order of lo3 A). The anisotropic elas- 
tic strand model has been studied by Marko and siggia; and 
a model that allows for the spontaneous torque that gives rise 
to superhelicity was studied in Ref. 3. These papers were 
concerned with the ground state, i.e., the equilibrium or qua- 
siequilibrium conformations, of the molecules. 

In the present paper we investigate theoretically the fluc- 
tuations in the shape of a DNA-type molecule modeled as an 
anisotropic elastic curve. For simplicity and focus, we con- 
sider the important special case in which the equilibrium 
configuration of the molecule is described by a helix (here 
and below, when we speak of the conformation of a mol- 
ecule, we have in mind the shape of an anisotropic elastic 
curve which in the approximation described above models a 
real DNA molecule). 

In the next section, we present the method of the moving 
Frenet reference frame. This method has a number of advan- 
tages over the more traditional application of Euler angles 
(see Ref. 2). In our method, the problem of finding stationary 
solutions reduces to the classical Kirchhoff problem of the 
equilibrium of an elastic strand. The latter problem is a 
Hamiltonian problem (the form of the problem is identical to 
Euler's equations of motion for a top); this makes it possible 
to use the well-developed methods of the theory of Hamil- 
tonian systems. 

In Sec. 3, we introduce the Fokker-Planck functional 
equation, which describes diffusion in the space of molecular 
conformations (or trajectories, in the mechanical analogy). 
This equation is used to calculate the equal-time correlation 
functions of the components of the moving Frenet reference 
frame (Sec. 4). In static fluctuations in the shape of the mol- 
ecules (the problem addressed in the present work), the pa- 
rameter that characterizes the distance along the equilibrium 
shape of the curve plays the role of time, but there is no 
causality principle for that coordinate. A perturbation of the 
shape at some point influences all points on the curve (rather 
than solely affecting later times, as happens in true dynami- 
cal problems). In the present case, therefore, the fluctuation- 
dissipation theorem reduces to an equality (to within a mul- 
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tiplicative factor) between the correlation function and the 
response function. 

In Sec. 5 ,  the fluctuation contribution to the free energy 
of a DNA type of molecule of finite length is determined. 
The part of this contribution that depends on the length and 
pitch of the helix leads to the appearance of a specific fluc- 
tuation angular momentum. Physically, this phenomenon is 
similar to the Casimir effect, which is well known in 
physics.4 The classical Casimir effect is associated with a 
nloditication of the electromagnetic zero-point energy fluc- 
tuations in systems of finite size. In the present problem, we 
are concerned with fluctuations in the shape of a DNA-type 
molecule, and the finiteness of the system is manifested both 
in the finite length of the molecule and in the fact that the 
shape fluctuations are limited to fluctuations about the equi- 
librium helical conformation. In the situations studied here 
(helix consisting of an incompressible strand), the fluctua- 
tions can only change the pitch of the helix or, under condi- 
tions in which the equilibrium pitch is fixed, they can only 
lead to the appearance of a fluctuating angular momentum 
(Casimir momentum). 

2. DESCRIPTION OF MOLECULAR CONFORMATIONS 

We study a DNA-type molecule whose equilibrium con- 
figuration is superhelical, i.e., we treat the base structure of 
the double helix as a linear rod whose deformed state is 
superhelical (the conditions under which this assumption is 
justified were discussed in Refs. 2 and 3). The equilibrium 
configuration can therefore be described by the parametric 
equations of a helix: 

S S 
x = A r  cos -, y = A r  sin -, z = B s ,  

r  r  (1) 

where A  and B  are constants that characterize the helix, 
A ~ + B ~ =  1, p = A r  is the radius of the cylinder about which 
the helix is wound, and the coordinate s  along the helix itself 
paramete;izes its length. Instead of the constants A  and B ,  
we can also use the curvature K and the torsion W of the 
helix? 

The energy and other physical properties of such a linear 
DNA-type molecule are most naturally formulated in terms 
of a local Frenet reference frame5 v , ,  v 2 ,  and v 3 ,  where 
vl is the tangent vector of the curve r ( s ) ,  which specifies the 
configuration of the axis of the molecule, and v2  and v3  are 
vectors directed along the principal deformation axes of an 
elastic rod, such that 

For a helix, for example, 

where the superscript zero indicates the equilibrium configu- 
ration. 

Fluctuations in the shape of the molecule are described 
by the matrix Su;,  , where the first index refers to the vector 
of the local Frenet reference frame, and the second refers to 
the projection on the coordinate axis. To characterize shape 
fluctuations quantitatively, however, it is necessary to have 
an expression for the energy required to produce a given 
fluctuation (Yuij .  Indeed, we are dealing here with the de- 
scription of deformations of a spontaneously twisted, aniso- 
tropic elastic rod. In classical mechanics, the deformation 
energy of such a rod is given in a natural manner by the 
vector w that describes rotation of the coordinate axes along 
the rod.6 The elastic energy of an anisotropic rod can be 
represented as a series expansion in w, the leading terms of 
which take the form6 

The total elastic energy is 

where L is the length of the rod. The matrix aik is the sym- 
metric matrix of the elastic moduli of the rod, and the vector 
b describes the spontaneous deformation of the stationary 
configuration of the molecule. Physically, spontaneous defor- 
mation can result, for example, from the adsorption of a 
DNA molecule on the nucleosomes (usually modeled by a 
cylindrical surface). 

To find the relationship between the vector o and the 
molecular shape-fluctuation matrix 6 v i i ,  Note that the varia- 
tion in the local reference frame along a strand (rod) is given 

Moreover, we can set up the equation describing the varia- 
tion in the local reference frame as a chiral field theory (see 
Ref. 7, Chap. 8), as we did for a membrane.* 

We introduce the matrix X i ,  

The chiral current constructed according to this matrix has 
the form 

The matrix J must have the structure 

3 

Jkj=  - C Wi'ijk > 
I =  l 

where eijk is the Levi-Civita antisymmetric tensor. 
An arbitrary infinitesimal variation of the reference 

frame is given by the transformation (for a non-stretchable 
curve, the only admissable transformations of the Frenet ref- 
erence frame are rotations): 
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where 

&I is a matrix describing the infinitesimal rotation specified 
by the vector 6v.  Accordingly, variations take the form 

where [. . . , . . .] is a commutator and V is the covariant de- 
rivative operator (compare the analogous procedure for 
membranes in Ref. 8). 

Using Eqs. (4), we can express the variation 6w in terms 
of the covariant derivative 6 v  and write the energy associ- 
ated with the fluctuation 6v in the form 

where a i j  is the matrix of elastic moduli. For the helix (I), 
the covariant differentiation operator has the form 

where 0 2 =  w ~ + K ~ .  Recall that we also assume that the 
elastic strand making up the helix cannot be stretched, i.e., L 
is constant. 

Thus, we have the following situation. The elastic en- 
ergy of the molecule can be most naturally and simply ex- 
pressed in the form of an expansion in the components of the 
"angular velocities" o. However, these components are not 
independent, since under arbitrary transformations, the 
Frenet reference frame must revert to a Frenet reference 
frame. To allow for this condition, we must express the an- 
gular velocities w explicitly in terms of the components u of 
the Frenet reference frame. For a non-stretchable strand 
(which is a good approximation to a real DNA molecule), the 
matrix J can be expressed in terms of the rotation matrix 

which can in turn be parametrized by admissable variations 
of the components of the Frenet reference frame (rotations, 
for a non-stretchable strand). 

3. FOKKER-PLANCK EQUATION 

We consider fluctuations in the shape of a curve to be 
Brownian motion in the function space of configurations. 
Physically, this picture corresponds to the assumption that 
the total interaction of a molecule with the ambient medium 
leads to purely relaxational dynamics of the fluctuations in 
the shape of the molecule (with some effective kinetic coef- 
ficient), and the role of the environment itself is played by a 
source of stochastic Langevin noise. Since we consider a 

continuous curve, mathematically this means that the Brown- 
ian motion occurs in function space. In a similar manner, we 
study in the same space the vector of random forces y ; ( t )  
which we assume to be Gaussian: 

Here t is the time and D is the diffusion coefficient. Here we 
have made the simplifying assumption that the correlation 
function of the random forces is a delta function of the co- 
ordinate ( 6 ,  t ,,,r= 6 ( s  - s ' )  in the continuous notation). The 
existence of a finite correlation length can alter quantitative 
results, but the derivation of the Fokker-Planck equation it- 
self is still valid. 

As usual, we introduce the conditional probability 

W [ v j  , t l ; v ;  ,r"], 

which is the probability density that the curve at time r" is 
characterized by the vector field v : ,  which specifies the 
variation of the Frenet reference frame under the condition 
that at time t ' ,  the corresponding vector was vj . Note that 
W is a functional. The function W satisfies the standard com- 
position law9 

x DV,I,W[V,~I ,t'';~,tr, ,tt"]. 

We derive the Fokker-Planck equation for the probability 
distribution W by Kolmogorov's method (see Ref. 10). This 
method entails introducing two characteristic averages over 
the noise: the first is associated with the regular displacement 

and the second is associated with the noise 

The right-hand sides of these identities are given along the 
curve by functionals that are time-dependent as well. The 
functional A specifies the regular part of the motion, and 
~ ' j  specific the stochastic part. 

Using the definitions (7) and (8) and the composition 
law, we can obtain the standard form of the Fokker-Planck 
equation, which for the present case of shape fluctuations 
takes the form 
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This form of Eq. (9), which in physical terms is essen- 
tially transparent, is quite complicated. It can be simplified 
somewhat by representing B i j  in the form: 

where D is the constant conformational diffusion coefficient, 
which appears in the correlation function of the random 
forces. For the special case of the functional Bii given above, 
the Fokker-Planck equation (9) can be cast in the form 

if we find a functional Z satisfying the equation 

We now find the explicit form of the functional Z for the 
elastic curve problem. Consider the functional 
Z =  exp(-EIT), where T is the temperature. According to the 
meaning of the functional Af,[v,] as being associated with 
the regular part of a Langevin motion (in the conformation 
space) we have 

where y is the effective transport coefficient in the Langevin 
equation for v, , and describes the relaxation of fluctuations 
in the shape of the molecule as a result of interactions with 
the ambient medium. 

By definition of the functional Z we obtain, taking into 
account Eqs. (1 1) and (12), the following equation for Z: 

where in writing down the last equality we made use of the 
Einstein relation 

Equation (13) has the steady-state solution 

and for configurations close to the steady-state configuration, 

4. CORRELATION FUNCTIONS AND RESPONSE FUNCTIONS 

To find the response function we must apply a weak 
external force to the system (in the case at hand, the external 
torque rn plays the role of such a force, coupled to v). Ac- 
cording to Eq. ( l l ) ,  adding the interaction with the external 
torque to the system energy results in the following modifi- 
cation of the functional A:,~[V] in the Fokker-Planck equa- 
tion: 

As a result of this substitution, the Fokker-Planck equation 
( 10) acquires the form 

Recall that in the static regime 

Z= const  exp( - El T) =So 
We seek a solution of Eq. (14) in the form 

where the small correction f is associated with the action of 
the external torque m. From Eq. (1 4) we have 

On the other hand, the presence of an external torque m 
results in a nonvanishing response (v), even in the steady 
state (dwldt = 0). Using the fact that the mean value of v is 
zero in the steady state, we obtain 

The last equality is the fluctuation-dissipation theorem 

which relates the response function 

to the correlation function 

Gij  ($1 , s2)=(uj  ( s I ) u ~ ( s ~ ) ) .  

It is helpful to note the symmetry relation 

Gjj  ( S I  >s2)=Gji(s2,sl) .  

The identity (15) is the analog of the fluctuation-dissipation 
theorem in our case. Since in the Kirchhoff problem the spa- 
tial coordinate plays the role of time without being con- 
strained by causality (a torque applied at the point s will 
affect a point s' on either side of s), the fluctuation- 
dissipation theorem establishes the identity (up to the factor 
11T) of the response and correlation functions. 

Our next problem, then, is to calculate the correlation 
function Gi j (s , s l ) ,  which according to Eq. (15) also deter- 
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mines the change in the conformation of the molecule in- 
duced by the externally applied torque m. Interestingly 
enough, the nonvanishing off-diagonal elements .!I;, are re- 
sponsible for the important biological significance (Ref. I I, 
see also Ref. 2) of superhelicity effects (i.e., twisting of the 
curve on the basis of our model) as it bends (i.e., accompa- 
nying a change in the curvature). In our case of arbitrary 
anisotropy a;, and twisting wo of the original helix, the ex- 
pressions obtained for Gi, are very complicated. Accord- 
ingly, we concentrate our efforts on a very important special 
case. 

We assume that the conformation of the molecule con- 
sidered on some scale L is such that o has the form 

where the vector S o  is small, and oo is the global minimum 
for the energy density E given by Eq. (2): 

where a -  ' is the inverse of the matrix a = [aij]. The vector 
S o  is the variation of o near o o ,  which according to Eq. 
(4) can be expressed in terms of the vector v: 

We can write the expansion of the elastic energy of the rod in 
terms of v as 

The first variation 6'F vanishes, since o corresponds to a 
minimum. It can easily be shown by direct calculation that 
the second variation takes the form 

Neglecting third- and higher-order terms, and assuming 
boundary conditions v(s = 0 )  = v(s = L) = 0, we obtain the 
elastic energy of the rod (molecule): 

The calculation of the correlation function 
(u ;(s l )v  j(s2)) has thus been reduced to a calculation of the 
Gaussian functional integral 

where the second variation of the energy is given by Eq. 
(18). According to the standard rules, this reduces to solving 
the equation 

with vanishing boundary conditions. The latter problem can 
be solved with the aid of the Fock-Schwinger proper time 

(see Ref. 10, Chap. 2), but the exact formulas so obtained are 
very coniplicated, and we therefore restrict our attention here 
to perturbation theory. 

To sin~plify the calculations, we consider an isotropic 
rod: 

a .  . = a  6.. 
(1 1 1  ' 

Then Eq. (21) assumes the form 

+w$(sl ,s2)= 6 ( s1  -321, 

where wo is the matrix corresponding to the vector o o :  

[woli,= - E i j k W k .  

We have dropped the scalar factor a ,  so that the correlation 
function is now related to the Green's function by 

We now assume that lo o l  is small, and we take as the 
zeroth-order approximation the Green's function 

G$= SijGo(s1 ,s2), 

which satisfies the equation 

with vanishing boundary conditions. The Green's function 
Go(s l  ,s2) satisfies the explicit f o r m u ~ a ' ~  

+(L-sl)s26(sl  -s2)19 

where 

is the Heaviside unit step function. 
The equation (22) can be rewritten in integral form, 

where I= 6ij is the unit matrix. The above equation for the 
Green's function G(s2 ,S I )  can be solved iteratively. As a 
result, we obtain to tirst order in w 
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Equations (15) and (24) constitute the fluctuation- 
dissipation theorem for our system in the approximation of 
small o, i.e., small twisting and bending of the molecule. 

5. CASlMlR TORQUE 

In this section we calculate the contribution of fluctua- 
tions in the shape of a single molecule in the superhelical 
configuration to the free energy. This is reminiscent of the 
classical Casimir effect4 associated with fluctuations of the 
electromagnetic field (or zero-point fluctuations). The energy 
of zero-point fluctuations in the melting of inert-gas crystals 
seems to have first been studied by Bennewitz and simon.12 
simonI3 subsequently clarified the important role of zero- 
point fluctuations in the equation of state of helium: the im- 
portance of the zero-point energy of the helium atoms means 
that helium solidifies only under pressure, even at very low 
temperatures. A similar situation occurs in two-dimensional 
systems, in helium films adsorbed on graphite, where the 
zero-point energy is important for the formation of two- 
dimensional phases.'4 In all of the cases enumerated above, 
the zero-point energy depends strongly on the geometric 
characteristics of the system; for example, the volume of the 
system, as in the case of helium, or boundaries, as in the case 
of the classical Casimir effect. The symmetry of the medium 
may also be important, as in films of adsorbed atoms14 (see 
Ref. 15, which deals with the interplay between crystal sur- 
face reconstruction and zero-point energy). 

The Casimir effect is now regarded as resulting from the 
interdependence of the zero-point energy and the widely un- 
derstood topological structure of a system,I6 and it is pre- 
cisely the fluctuating nature of the oscillations, which can 
behave like thermal fluctuations at a temperature far above 
T=O, that is important. As shown in Ref. 17 (see also Refs. 
18 and 19), fluctuations in the polarizability of macroscopic 
bodies lead to interactions among those bodies. The same 
idea was applied in Refs. 20 and 21 to investigate the melt- 
ing of ice. A similar approach was employed to study forces 
in liquid crystals and membranes.22p23 

As we show below, the energy of the vibrations of a 
DNA-type molecule depends on its dimensions, which are 
specified by its scale L and geometry-in the present case a 
superhelix given by the vector o. The Casimir effect thus 
occurs in the sense indicated above, and the torque 

which is dictated by fluctuations in the shape of the helix, 
plays the role of the Casimir force. 

We now consider fluctuations in the shape of a molecule 
near its configuration given by the vector a= o (17). The 
energy of the molecule in this case is given to second order 
by Eq. ( 1  8). We now assume that the elastic modulus tensor 
is isotropic, aii= a 4,. Hence, the energy of the fluctuations 
is given by 

where 

and 

To estimate the contribution to the free energy, which is 
given by 

we employ Feynman's which in our notation 
takes the form 

F,uct~(So)o+(S- So)o, 

where the mean (So)o is defined as 

(So)o= const Dv(s)exp(- So IT) I 
and 

To calculate these means we take Fourier transforms 

where wn= a, + ib, and since v is real, we have wn = w!, . 
The Fourier representation for So has the form 

Having carried out the rotational transformation with the 
constant matrix R ,  the vector o0  can be put in the form 

and in the new coordinates the expression for So takes the 
form 

So' C (v:+10Jo12)w,,w: 
I , = - "  

Hence, 

(So)=const. Da,  Db,, exp(-SOIT). I 
To calculate (So) explicitly we can use the formula 

We represent it in the form 
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Finally, Note that the calculation of ( 6  2~ - So)o in the Fou- 
rier representation considered here reduces to a Gaussian in- 
tegral of the type 

which vanishes. We therefore obtain for the energy of the 
fluctuations 

F",,C,S ( S o ) o  . 
For small energy fluctuations, Feynman's inequality24 gives 
very good estimates; we therefore set 

and for large L we have 

Ffluct" TLI % I .  
For the Casimir torque we obtain 

Mflucto: TI % I .  
In the present case, of course, the formula presented 

above holds if the fluctuation (Casimir) contribution to the 
energy does not exceed the elastic (Kirchhoff) contribution: 

Significantly, one of the physical mechanisms of super- 
helicity (i.e., ) o ,J # 0)  is adsorption of a DNA molecule on 
nucleosomes, which on the basis of our model is described 
by the vector b. Using Eq. (17) for o o ,  we obtain from Eq. 
(25) 

( b ( 3 ~ .  (26) 

Equation (26) takes a perfectly natural form, demonstrating 
that when the torque b  is large enough (i.e., in the limit of 
strong adsorption), our results hold over arbitrarily large 
scales. 

6. CONCLUSIONS 

Our problem has been to analyze the physical conse- 
quences of the model cliscussed (which, in turn, might be 
compared with experimental data for real systems), and to 
develop a method for studying such models theoretically. We 
have shown how classical mechanics and statistical physics 
"work" in the proposed model of a DNA-type molecule. 
From the standpoint of mechanics, e DNA molecule is a new, 
heretofore unstudied object with anisotropic elasticity [the 
tensor n jk  in the expression for the energy (2) or (5)] that is 
subject to a spontaneous distributed torque [the vector b  in 
Eq. (2)]. The mechanics of such objects were constructed in 
Sec. 2. 

Statistical physics applied to one DNA-type molecule 
describes the distribution of the possible conformations of a 
single molecule. This differs from traditional problems in the 

statistical physics of polymers in the existence of no more 
than a few stationary configurations of the molecule, with all 
possible conformations being small fluctuations near this sta- 
tionary configuration. Thus, Brownian motion in the function 
space of conformations provides a natural description of the 
statistical behavior of such systems, and the Fokker-Planck 
equation is the natural mathematical apparatus (Sec. 3). 

Of course, the two approaches (mechanical and statisti- 
cal) complement and agree with one another. This was dem- 
onstrated in Sec. 4, where we derived the analog of the 
fluctuation-dissipation theorem, relating the mechanical re- 
sponse function bij to the static correlation function Gij . 

Finally, the aforementioned characteristic feature of the 
statistical behavior (small fluctuations in shape about a 
steady conformation) leads to a natural constraint on the 
spectrum of fluctuations as a result of the geometric charac- 
teristics of the steady conformation. In the case of a helical 
steady shape, this geometric factor is the skew-symmetric 
matrix (or the vector o ) ,  introduced above, which describes 
the rotation of the Frenet reference frame during motion 
along a curve. This size effect is physically similar to the 
classical Casimir effect, and leads to a fluctuating torque that 
tends to twist the equilibrium helical configuration of the 
molecules (Sec. 5). 
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