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Microscopic calculations of the electron polarizability and lattice dynamics of ionic crystals are 
performed. The total electron density is represented as a superposition of overlapping 
densities of individual ions. In the spirit of Leontovich's method for nonequilibrium 
thermodynamics, the electron density distribution of an individual ion is calculated in the presence 
of auxiliary external fields which deform the electron density distribution of the ion. The 
deformation parameters are determined by minimizing the total energy of the crystal. The total 
energy of the crystal is regarded as a functional of the electron density, which is described 
by the local Thomas-Fermi approximation taking into account exchange effects. The 
computational results for the dielectric constants and phonon frequencies agree well with the 
experimental data. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The quantum theory of ionic crystals is one of the oldest, 
but still developing, fields of solid-state physics. By the be- 
ginning of the 1930s, Jensen and ~ e n z '  had successfully 
used the newly formulated Thomas-Fermi statistical 
theory2p3 to calculate the binding energy and equilibrium vol- 
ume of alkali halide crystals. Later, starting with the classical 
works of  owd din^ and ~ o l ~ ~ ~ o ?  ionic crystals were widely 
investigated with the aid of the overlap model. On the basis 
of that model, an ionic crystal is regarded as consisting of 
individual ions at which the electron wave functions overlap 
slightly. The total energy of the crystal is determined by the 
Coulomb interactions of the ions and various overlap inte- 
grals of the electron wave functions of the individual ions. 
Among recent works in this direction we mention the inves- 
tigations of the alkali halide crystals performed by Abaren- 
kov and ~ n t o n o v a ~  and Zeyher (Ref. 7). 

Until recently, however, many investigations of the elec- 
tron polarizability and lattice dynamics of ionic crystals were 
based on various types of phenomenological models. For ex- 
ample, the well-known Clausius-Mossoti formula for the di- 
electric constant e, 

different crystals, depending on the crystal environment, in- 
terionic distances, and so on. Later there appeared a large 
number of works9-'' in which attempts were made to esti- 
mate or calculate the change in the electron polarizability of 
an ion placed in a crystal. In these works it was shown that 
the change in the polarizability of an ion in a crystal appears 
as a result of the long-range Madelung potential from other 
ions, as well as because of the short-range forces associated 
with the overlap of the electron densities of the nearest- 
neighbor ions. 

Unfortunately, the possibility of representing the dielec- 
tric constant in the form of the Clausius-Mossotti formula 
with the electron polarizability defined to be the sum of the 
polarizabilities of the individual ions was not considered at 
all in these works. The problem is that Eqs. (1) and (2) are 
strictly valid only for systems of point-like ions, for which 
there exists a local relation between the induced dipole Pn 
and the local electric field EkPC on the given ion: 

The local field EfPC in turn can be expressed in terms of the 
external electric field Eext and the Lorentz field (47rI3)P: 

where v o  is the unit-cell volume and a, is the polarizability 
of a unit cell, was usually employed to describe the electron 
polarizability. In the case of diatomic cubic crystals, the stan- 
dard expression was used for a, 

a,=a++a-, (2) 

where a+ is the cation polarizability and a- is the anion 
polarizability. As the analysis performed in Ref. 8 of the 
dielectric constant for a large number of ionic crystals 
showed, this approach makes it necessary to employ polariz- 
abilities a+ and a- that differ substantially from their val- 
ues for the free ions. Moreover, the corresponding polariz- 
abilities, and especially a- , are found to be different for 

where P is the total polarization of the system 

and V is the volume of the system. 
As shown in Ref. 12 for a simple model of overlapping 

oscillators, taking overlap into account does not simply lead 
to a change in the magnitude of the polarizability of an 
oscillator-it also leads to a nonlocal coupling between P,, 
and E]? : 

P,, = 2 a,,,, I E:: . 
11' 
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The same nonlocal coupling also appears in the well-known 
shell model.'"he existence of nonlocal polarizabilities 
a , , , , ~  means that in the general case, the total electron polar- 
izability of a crystal cannot be expressed solely in terms of 
the polarizabilities of individual ions. This problem will be 
discussed in detail below. 

It is also very important to take the electron polarizabil- 
ity into account correctly in calculations of the lattice dy- 
namics of ionic crystals. A substantial amount of work in this 
direction has been carried out using phenomenological mod- 
els. These include the aforementioned shell  mode^,'^ the 
deformed-ion model,14 and the "breathing" ion model (Ref. 
7 and 16). Attempts have been made to provide a micro- 
scopic justification for these models on the basis of a wave- 
function overlap scheme. Specific calculations for a number 
of coefficients appearing in these models have been carried 
out only for the simplest ionic crystal, L ~ H . ~  However, these 
investigations made it possible to formulate the most general 
phenomenological model of the lattice dynamics.16 This 
model includes the dipole polarization of an ion as a result of 
the action of electric fields on the ion, as happens in the shell 
model. The dipole polarization resulting from the deforma- 
tion of an ion by its immediate environment is also taken into 
account. In this model there is also the possibility of mono- 
pole polarization of an ion as a result of a change in the 
effective radius of the ion, i.e., the existence of a "breathing" 
ion. Unfortunately, in such a general model, there are a large 
number of unknown constants, and it is very difficult to 
choose these constants correctly. 

There exists a formally rigorous microscopic theory, for- 
mulated more than 20 years ago, of the electron polarizabil- 
ity and lattice dynamics of ionic  crystal^'^ (see also the re- 
view in Ref. 18) that employs the dielectric constant matrix 
~ ( q +  K ,  q+ K t )  in the space of the reciprocal lattice vectors 
K and K t .  Since it is necessary to perform difficult calcula- 
tions of a large number of matrix elements of the dielectric 
constant matrix, systematic microscopic calculations on the 
basis of this approach have been performed only for a very 
limited number of simple ionic crystals (see the review in 
Ref. 18). In the last few years, microscopic approaches based 
on the density functional method for the ground-state energy 
have been developed for calculating the polarization of ionic 
crystals and lattice dynamics (see the review in Ref. 19). 
This approach is in itself completely universal and can be 
used to calculate any type of crystal. However, its universal- 
ity makes it necessary to carry out very complicated calcu- 
lations of the electronic band structures and linear response 
functions. Actually, all of the calculations of the lattice dy- 
namics based on this method have thus far been limited to an 
investigation of a small number of phonon modes, mainly at 
momentum q=O. Specifically, this approach was employed 
to study the ferroelectric instability in perovskites20'2' and 
IV-VI semiconductors (Ref. 22). 

We emphasize that all of the foregoing first-principles 
microscopic methods for calculating the electron polarizabil- 
ity and lattice dynamics of ionic crystals have, besides com- 
plexity and awkwardness, one other important deficiency. In 
these methods, we lose the physically transparent and attrac- 
tive picture of an ionic crystal consisting of individual ions 

whose interaction determines all static and dynamic proper- 
ties of these crystals. This is especially important, because a 
great deal of experimental and theoretical evidence supports 
this picture of an ionic crystal. 

One objective of the present work will be to justify this 
picture. To this end, a simplified version of the density func- 
tional method, tirst proposed by Gordon and Kim, is 
employed.2" In the next section a detailed exposition of the 
initial idea of Ref. 23 and an elaboration of this idea that 
makes it possible to take into account multipole polarizabil- 
ities of ions, necessary for calculating the electron polariz- 
ability and lattice dynamics, will be given. In Sec. 3, a 
method for calculating ionic crystals taking into account the 
dipole polarization of the ions is described. In Sec. 4, the 
principles for calculating the electronic dielectric constant 
and the phonon spectra are formulated and computational 
results are presented. Some problems requiring further inves- 
tigation are discussed in the concluding section. 

The atomic system of units is used throughout. 

2. GENERALIZED GORDON-KIM MODEL 

In the Gordon-Kim model?3 an ionic crystal consists of 
individual overlapping spherically symmetric ions. The total 
electron density can be written in the form 

where the summation extends over all ions in the crystal. The 
electron density distribution p, (r )  of an individual free ion 
can be calculated using any atomic program. Specifically, in 
Ref. 23, the Hartree-Fock values of p i ( r )  were used. We 
note immediately that accurate experimental measurements 
of the electron density distribution p ( r )  in alkali halide 
~ r ~ s t a l s ~ ~ , ~ ~  confirm that p ( r )  can be represented in the form 
(7). The experimental data show, however, that the electron 
density on a negative ion is slightly compressed compared 
with its distribution on a free ion. The same result was also 
obtained in Ref. 26, where careful microscopic calculations 
of the function p ( r )  were carried out by the Hartree-Fock 
method for alkali halide crystals. 

Using Eq. (7) for p ( r ) ,  the total energy of the crystal in 
the density functional method can be represented in the form 

Here E~ is the interaction energy of the nuclei, which can be 
written as 

where 2; is the nuclear charge of the i-th ion. The quantity 
E { p )  is the electron density functional and, in accordance 
with the work of Hohenberg and ~ o h n ? ~  can be represented 
as 
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Here V e x t ( r )  is the external potential, which in the crystal is 
simply the Coulomb potential of the nuclei 

The quantity F { p }  is a universal density functional, de- 
scribing the contribution of the kinetic energy T { p )  and the 
exchange energy EeX{p)  of the electrons. In Ref. 23 it was 
suggested that the standard local Thomas-Fermi approxima- 
tion, extended in order to take into account exchange and 
correlation, be used for F { p ) .  

Neglecting the overlap of more than two ions at the same 
time and the self-energy of the ions, Eq. (8) for the energy of 
the crystal can be rewritten in the form 

where V i V i ,  has the form 

V, , , I  = E { p i ( r - R i ) + p i l ( r - R j I ) ) -  E I p i ( r - R , ) )  

- E { p i r ( r - R i I ) } .  (13)  

Using Eq. ( l o ) ,  V , , , ,  can be rewritten as 

We now introduce the quantity Zr , which characterizes 
the total number of electrons in a given ion, 

Adding and subtracting Z r S ( r -  R , )  in the first two terms 
of Eq. ( 1 4 ) ,  we can finally rewrite the expression for the 
energy of the crystal in the form 

Here E~ is the Madelung energy of point-like ions 

where ZjO" is the nominal charge of the i-th ion 
z?= - ( Z ~ Z : )  (its sign is the same as for the standard 
chemical definition), and V? is the Madelung potential of the 
i-th ion 

The interaction ii,ir can be expressed as follows: 

The interaction V i T i ,  can be obtained numerically, and is 
a short-range repulsive potential. 

Thus, the Gordon-Kim model in its original form re- 
duces, in accordance with Eq. (16) ,  to the well-known rigid- 
ion model. The calculations in Ref. 27 show that this model, 
which does not employ any adjustable parameters, describes 
fairly well the static properties of alkali halide crystals. Like 
any rigid-ion model, however, it has a number of well-known 
drawbacks, since it completely neglects deformations in the 
electron-density distribution. The experimental data show 
that even in the equilibrium state, the electron density on a 
negative ion is compressed compared to a free ion. When an 
external electric field is applied to the crystal, induced dipole 
moments and therefore a dipole-type deformation of the 
electron density arise on the ions. In addition, the Gordon- 
Kim model does not enable one to calculate many ionic crys- 
tals, specifically oxides, since the 02- ion does not exist in 
vacuum, and is stabilized only by the crystalline environ- 
ment. Before we present possible extensions of the Gordon- 
Kim model, we discuss the problem of calculating the func- 
tion p ( r )  for one ion. 

As we have already mentioned, in the original Gordon- 
Kim the Hartree-Fock method was used to calculate 
p ( r ) .  In the present work, as in most other work in this field, 
we employ the density functional method in the form pre- 
sented by Kohn and In this approach, the energy 
functional for the system (in this case, for the ion) can be 
written in the form 
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Here To is the kinetic energy of the noninteracting electrons, 
which have the same density p ( r )  as the original system. The 
seconti term in Eq. (20) is the Coulomb interaction of elec- 
trons with the nuclear charge .ZN. The third term is the Har- 
tree contribution of the interelectronic Coulomb interaction, 
and the fourth term is the exchange energy. Representing the 
desired density as the density of a system of noninteracting 
electrons 

the Kohn-Sham equation for the wave functions @,,(r) de- 
scribing a free ion can be derived by minimizing the func- 
tional (20) with respect to 6p :  

where 

As a rule, in calculations employing the Kohn-Sham 
equation, a local approximation is used for the exchange en- 
ergy: 

Here e X C ( p )  is the exchange energy of an interacting electron 
gas of density p. This quantity is quite well known, and there 
are a multitude of interpolation expressions for it. A detailed 
review of all advantages and disadvantages of the local ap- 
proximation can be found in Ref. 30. A significant drawback 
of the local approximation, especially important for our pur- 
poses, is that the free negative ions are unstable. This insta- 
bility arises because the asymptotic behavior of the exchange 
correlation potential 

at large distances r from the nucleus is incorrect. In a crystal, 
the electrons in a given ion are influenced by the ions sur- 
rounding them at distances much closer than the distances 
where V x C ( r )  exhibits incorrect asymptotic behavior. It is 
reasonable to allow at the outset for some part of the crystal 
potential in the equation for an individual ion. Such an ap- 
proach to studying 0'- ions was proposed by Watson in Ref. 
31. The electron-density distribution was calculated not for a 
free ion, but rather for an ion located inside a charged sphere. 
The charge on this sphere was chosen by requiring electrical 
neutrality, and therefore is equal in magnitude and opposite 
in sign to the charge of the ion. The choice of the radius of 
the sphere is a difficult problem, and we shall examine it in 
detail below. From what has been said above, it follows that 
we must add to Eq. (22) the potential of the Watson sphere 

zjo"lRw for r < R w  
v W ( r )  = 

~jo" l r  for r > R w  

Solving Eq. (22) with the additional potential v W ( r ) ,  we 
can determine p for any radius R w .  

The most systematic approach to the choice of Rw is to 
determine it by minimizing the total energy of the crystal 
E"". In allowing for the potential of the Watson sphere, the 
energy E"' can be written in the form 

Here V i , i t ( ~ ' ,  ,R$)  is determined by the relation (19) and 
depends on the radii of the Watson spheres. E,(R',) is the 
self-energy of the i-th ion, and depends on R L .  In contrast to 
the case of a rigid ion, the self-energy can no longer be 
neglected, as it was in the derivation of Eq. (16). 

Just as in the case of a rigid ion, V i , i t ( ~ h , ~ L )  is deter- 
mined by short-range forces and can be obtained by numeri- 
cal methods. To verify this, we shall examine the change 
produced in the interaction energy by a change in R',. The 
charge distribution of an ion varies in a spherically symmet- 
ric manner 

where 

Using Eq. (19), we can calculate the change in the inter- 
action energy of the ions as 

We now consider the tirst and second terms in Eq. (28). 
These terms represent the interaction energy of a spherically 
symmetric change 6 p ( r )  in the charge density with all point- 
like ions in the crystal. It is the existence of this term that 
might have motivated the authors of Ref. 32 to suggest the 
following procedure for choosing the quantities R b .  

The radii R', are chosen by requiring that the potential 
ZIR', inside the Watson sphere equal the Madelung potential 
V? on a given ion due to all other point-like ions. It is easy 
to verify that this approach has no physical basis, since the 
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value of the Madelung potential at a given ion bears no re- 
lation whatever to the spherically symmetric variation of the 
electron density. Indeed, noting that 6p ( r )  is spherically 
symmetric, we can rewrite the first and second terms in Eq. 
(28) in the form 

It is easy to show that the spherically averaged potential of 
point ions can be rewritten as 

As one can clearly see from the expressions (27), (29), 
and (30), the Madelung potential itself has been completely 
eliminated from the problem at hand. Therefore the spheri- 
cally symmetric distribution of the charge density is deter- 
mined completely by short-range forces. 

The variational approach to determining R b  was studied 
previously in Refs. 33 and 34, where it was was based on a 
variational determination of R', derived by minimizing the 
total energy of the crystal. The self-energy ~ 7 ' ~  of an ion was 
defined to be the difference in the total energy of the ion in 
the potential of the Watson sphere after subtracting the inter- 
action energy of the electron density with that potential and 
the energy of the free ions: 

This definition of the free energy is very uncertain for ions 
that do not exist in a free state, and in any case it is incon- 
venient for numerical calculations. 

Indeed, the potential of the Watson sphere is introduced 
as an auxiliary potential that makes it possible to alter the 
electron density distribution of the ion. The total energy of an 
ion with the potential v W ( R w  ,r) is a functional of this po- 
tential. In using the Legendre transformation, we must first 
of all change variables from V to p in the definition of the 
energy, since the interaction energy defined by Eq. (26) de- 
pends on the latter. Then we must eliminate the "excess" 
energy associated with the potential of the Watson sphere. 
We write the change in the energy of the ion as the potential 
varies in the form 

Then, in accordance with the Legendre transformations, the 
change in the energy of an ion as a functional of the change 
in density will have the form 

= - [ f ip (r )~ ' ( r ,RW)d3r .  (32) 

It follows from Eq. (32) that 

and, accordingly, the self-energy of the ion can be written in 
the form 

where E0 is an unimportant constant. We can choose as the 
starting point R; of the integration any value of the radius of 
the Watson sphere, up to an unimportant constant, that lies in 
the range of interest. The procedure described above corre- 
sponds exactly to Leontovich's principle for determining the 
energy of nonequilibrium states3' 

In an actual calculation of ESeIf(Rw), the density p(r)  
and its derivative rlp(r)ldRw must be calculated over some 
range of Rw using the Kohn-Sham equation (22) with the 
potential of the Watson sphere included in it. The program 
developed in Ref. 37 was used for the numerical calculation 
of the ions. 

The interaction energy can also be calculated as a func- 
tion of Rw , and R $ " ,  corresponding to the minimum total 
energy of the crystal, can be determined for any interionic 
distance. For many ionic crystals the energy minimum in this 
method is very smooth, and it is this chance circumstance 
that makes it possible in Refs. 32-34 to calculate many of 
the properties of ionic crystals to reasonable accuracy, even 
with an improper choice of R w .  There are, however, many 
ionic crystals--especially those with strongly polarizing 
positive ions-where accurate determination of the self- 
energy of an ion is crucial, most notably at high pressures. 
This problem is also under investigation, and will not be 
considered here. 

3. DIPOLAR DEFORMATION OF THE IONS 

In the preceding section we presented the generalized 
Gordon-Kim model and described in detail a method for 
calculating ionic crystals that takes into account the spheri- 
cally symmetric deformation of the ions. Here we present a 
method for calculating the static and dynamic properties of 
ionic crystals in the presence of dipolar deformation of the 
ions. 

In the spirit of the Gordon-Kim method, we must first 
calculate the behavior of an isolated ion in an external elec- 
tric field Eext. To this end, we employ the Kohn-Sham equa- 
tion (22), which we rewrite in the form 

( ( -  1/2)v2+ Ve f f ( r )+  v W ( R w  , r ) - r ~ ~ ~ ' ) $ , , ( r )  

where the potential of the Watson sphere corresponds to the 
radius Rw that minimizes the energy of the equilibrium state 
in the absence of an external electric field. We take into 
account the effect of the electric field on the ion by pertur- 
bation theory. To first order in Eex', we obtain 

and 

where 
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:transformations for this case are trivial, ancl the self-energy 
sf)(r) = x (bll(r) afl1,(r). (38) of an ion in an electric field as a functional of the polariza- 

tion P takes the form 
In calculating the change 6f11,(r) in the wave function, we 
must bear in mind that in Eq. (35), the total potential changes p2  

E=E'+ - -PE, 
not only as a result of the potential of the external field 2 a (45) 

BVe"= - r.Eex', but also as a result of the change in the 
where EO is the po~arization-independent part of the self en- 

self-consistent effective potential SV'", which can be written ergy Representing the electron density distribution in the 
in the form 

given field in the form (43), we can rewrite it as a function of 

dVexc(p(r)) the dipole moment, 
6veff(r)= 

dp rP 
(39) 8p1(P,r)= Tp'(r) ,  

The change 6fln(r) can be calculated using the standard 
quantum-mechanical formula, which expresses Stjn(r) as a 
sum over all occupied and vacant electron states determined 
by Eq. (35) in the absence of the field EeX'. There are, how- 
ever, a number of reasons why this method is inconvenient. 
It is much more convenient to directly solve the differential 
equation for Sfln(r), 

in a self-consistent manner. This approach to the calculation 
of atomic polarizabilities was proposed back in 1954 by 
~ternheimer?~ the only difference being that he neglected the 
change produced by the field in the self-consistent potential. 

Once the change 6fln(r) in the wave function is known, 
it is easy to calculate the change in the electron density 
Sp(r), and therefore the dipole moment P induced at an ion 
by the external electric field EeX' 

The dipolar polarizability a of an ion is defined by 

It follows from Eqs. (40), (41), and (42) that 

where 

All of these quantities are known from the solution for 
the behavior of one ion in an external field. The key idea for 
subsequent analysis is that the form of the polarization of an 
ion in a crystal is the same as in an isolated ion, and the 
amplitude of the polarization must be determined self- 
consistently by minimizing the total energy of the crystal. 

Substituting the expression for Spf (pi ,r) into Eq. (19), 
we can calculate the interaction energy of two ions with 
prescribed dipole moments Pi and Pi,.  As shown in our pre- 
vious work:' ? i , i t  can be represented in the form 

Here fy,i, is the part of the interaction that does not depend 
on the polarization, and @ i , i ~  is the matrix of the interaction 
of point dipoles. The matrix Ti,i, represents the difference 
between the true interaction of distributed dipoles and the 
interaction of point dipoles. This is a short-range matrix, and 
must be calculated numerically only for the nearest neigh- 
bors. 

The vector Si,i, describes the interaction of the dipoles 
with the electric field induced by the spherically symmetric 

- ~ 

distribution of electron density. Formally, the matrices * i , i t  

(43) and Ti,i ,  and the vector SiIil can be represented in the form 

Our calculations of the polarizabilities of the atoms were 
published previously in Ref. 38, and we do not discuss them 
in detail here. We merely note that in the calculations, we 
used improperly determined values of Rw for the ions in 
accordance with Ref. 32, and we point out below the changes 
introduced in the polarizabilities when Rw is properly cho- 
sen. 

The next step is to calculate the interaction energy of 
two ions with fixed dipole moments Pi and Pit. Before doing 
so, we note that just as in the case of a spherically symmetric 
density distribution, we must change variables from E to P 
when we determine the self-energy of an ion. The Legendre 

and 

where pi(Pi ,r) is the electron density distribution of an ion 
and p:,(r) is its spherically symmetric part. To calculate 
these quantities numerically, the expression for E { . )  must be 
expanded, as was done in the case of a spherically symmetric 
distribution of the electron density of the ions, using Eq. 
(19). 

Then the total energy of the crystal in an external electric 
field can be written in the form 
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Minimizing the energy as a function of the dipole moments, 

we obtain a linear equation for these quantities: 

This equation can be solved numerically. 

4. DIELECTRIC POLARIZATION AND LATTICE DYNAMICS 
OF IONIC CRYSTALS 

The extension of the Gordon-Kim model developed in 
the preceding sections can be used to calculate the electron 
contribution to the dielectric constant E, of ionic crystals, as 
well as the lattice dynamics. First of all, we examine the 
expression for E ,  , employing a definition which for cubic 
crystals can be written in the form 

Here D is the electric displacement vector, P  is the total 
dipole moment of the crystal, and E is the electric field in- 
side the crystal. The summation in Eq. (53) extends over a 
unit cell of volume vo. We then consider a crystal wafer in 
an electric field oriented parallel to the surface of the wafer. 
In this case the electric field E inside the wafer will equal the 
external field EeX'. Now, passing to the limit of infinite vol- 
ume of the wafer, we can replace E by EeXt in Eq. (53) and 
obtain the final expression for the dielectric constant, 

We use this formula in the calculations. 
The dipole moments can be calculated using Eq. (52) 

derived in the preceding section. We rewrite it in the form 

In writing this expression, we neglected the vector S;,;,, 
since in cubic crystals it vanishes in the absence of perma- 
nent dipoles. 

Before presenting the results of the numerical calcula- 
tions of E ,  , we discuss some general results that follow from 
Eqs. (53) and (54). Neglecting the short-range interaction 
matrix l'i,ir, we rewrite Eq. (55) in the form 

Introducing an expression for the local field at site i ,  

ant1 noting that for cubic crystals with NaCI-type structure, 
the local field has the form 

we easily obtain for E, the standard Clausius-Mossotti for- 
mula 

where a, is the polarizability of the cell, in this case equal to 
the sum of the polarizabilities of the individual ions. 

Making use of l ' i , i , ,  we can also solve Eq. (55) for the 
local field E'OC, which yields 

where is the nonlocal polarizability: 

The nonlocal relationship between the dipole moment Pi at a 
site and the local field in all surrounding sites was previously 
proposed'2 on the basis of a simple phenomenological 
model. The derivation presented above demonstrates the uni- 
versality of the relationship between Pi and EfoC in ionic 
crystals. We emphasize that in spite of the nonlocal character 
of the relation between Pi and EloC, an expression that is 
formally identical to the Clausius-Mossotti relation can be 
derived, as before, for the dielectric constant. Taking advan- 
tage of Eq. (58) for EI°C, we can easily solve Eq. (60) and 
directly obtain for E, an expression of the Clausius- 
Mossotti type, but the polarizability a, of a cell will now 
take the form 

In this formula the summation extends over all ions in a unit 
cell and over all nearest neighbors. 

This result provides direct confirmation of the general 
statement, proved in Ref. 39, that the Clausius-Mossotti for- 
mula is of a very general nature, and derives from the pres- 
ence of long-range dipole-dipole interactions between unit 
cells. The polarizability of a unit cell itself must be calcu- 
lated with allowance for all short-range interactions, and thus 
exhibits an entirely nonuniversal dependence on the proper- 
ties of the constituent ions, the cell volume, and so on. For- 
mally, we can determine the polarizability of each ion in a 
cell using the formula 

But this is really just a formal definition, since the corre- 
sponding quantity a; is not a response of the ion to some 
external or local electric field. As one can see from Eq. (60) 
and the site-independence of ~f~ for crystals with NaCl 
structure, ai is the response of an ion at the site i to local 
fields generated by all nearest neighbors. 
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TABLE I .  Dtelectric constants. 

n o  f f t ~  ao a,,, cT (theor.) 4 (exp.) 

MgO 3.82 0.08 2.73 0.06 4.60 3.0 1 
CaO 4.41 0.47 3.22 0.34 4.40 3.38 
SrO 4.58 0.78 3.47 0.60 4.05 3.27 
BaO 5.03 1.58 3.71 1 . I  8 4.47 3.34 

As can be easily verified from Eq. (54), E ,  can be ex- 
pressed much more simply as 

which has the form of the dielectric constant of a system of 
noninteracting dipoles. The polarizability Gi of the i-th ion 
relates the dipole moment Pi to the external electric field 
EeX' 

The polarizability Gi and the polarizability Gi , which is 
defined by Eq. (63), are related by 

In deriving the dielectric constant E ,  , we have thus de- 
termined three quantities that characterize the polarizability 
of an ion in a crystal. First there is the polarizability ai of an 
individual ion in the potential of the Watson sphere, which 
takes the crystalline environment into account approxi- 
mately. This is the quantity calculated previously (see, for 
example, Refs. 9- 11) in various approximations to the po- 
larizability of an ion in a crystal, and then substituted into the 
Clausius-Mossotti formula (59) in order to calculate E ,  . 

As one can see from the above analysis, this approach to 
determining E ,  is totally unjustified, since it completely ne- 
glects the short-range dipole-dipole interaction. The formal 
polarizability iii of an ion, which must be used in the 
Clausius-Mossotti formula (59), is defined by Eq. (63). As 
one can see from Table I, in oxides ai is substantially differ- 
ent from Gi.  These differences, as we show in Ref. 38, are 
small for alkali halide compounds, so that the calculations of 
E ,  performed for them in Ref. I1 are in good agreement with 
the experimental data. The difference between ai and iii re- 
lates to the fact that in calculating them, differing methods 
are used to allow for electric fields in the system. Although it 
is physically impossible to separate the long-range field of a 
point dipole from the short-range field, it is often convenient 
to study them separately. ~ ~ e c i f i c a l l ~ , "  this makes it pos- 
sible to obtain a number of rigorous relationships among 
phonon frequencies. 

The numerical results for E ,  in Table I are in good 
agreement with existing experimental data. The fact that the 
theoretical values of E ,  are somewhat higher than the experi- 
mental derives mainly from the well-known fact that the den- 

sity functional approach using the local density approxima- 
tion for the exchange overestimates the polarizabilities of 
individual ions. 

The generalized Gordon-Kim model can also be used to 
calculate the lattice dynamics. In this case, the electric field 
induced by ion displacement plays the role of the external 
electric field. Once again, the variation in the interaction en- 
ergy of the ions with tixed dipole moments can be calculated 
using Eq. (19). To calculate the phonon spectra for the de- 
formed crystal, the first-order terms in Sp, which vanished in 
the total interaction energy for an ideal crystal in the calcu- 
lation of the electron polarizability, can no longer be ne- 
glected. Specifically, the first and second terms in Eq. (19) 
give precisely the interaction of the dipole moments with the 
electric field of the point ions. The third and fourth terms 
lead to an interaction between distributed dipoles and the 
spherically symmetric electron density distribution of neigh- 
boring ions. 

The complete expression for the energy of the crystal 
can be written in the form 

Representing Ri as 

where RP is the equilibrium position of the i-th ion and ui is 
a small displacement of the ion from equilibrium, we can 
write the expression for the electric field Ei as 

and the vector Si,it as 

The deformability matrix misit  is therefore short-range, and 
can be calculated numerically with Eq. (19). Minimizing 
with respect to Pi we obtain the following equation for the 
dipole moment: 

Introducing the local field E)O' as in the preceding sec- 
tion, we can rewrite the equation for Pi : 

Here ai,,, is the nonlocal polarizability matrix defined by Eq. 
(6 1 ). 

Equation (72) for the induced dipole moment was pro- 
posed in Ref. 40 as a phenomenological nonlocal extension 
of the shell and deformed-ion models. Our result can there- 
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TABLE 11. Phonon frequencies. 

I' point X point 
zeR o l . ~  , cnl - '  o,,, , cm ' wl. cnl ' y, c n ~  ' 03. em-' w4, cn1- ' 

CaO theor. 2.43 265 524 213 286 318 433 

exp. 300 574 210 290 320 400 

SrO theor. 2.39 248 46 1 143 196 297 389 

exp. 240 495 130 200 250 350 

fore be regarded as a microscopic substantiation of this parameters in our calculations, we can regard the agreement 
model. Moreover, in our approach, all matrices are calculated with the experimental data to be highly satisfactory. 
without recourse to adjustable parameters. 

Expanding the first three terms to second order in the 5. CONCLUSION 
small displacements u i ,  and the second and third terms in 
powers of the small deviations of the Watson radius Rw from 
its equilibrium lattice value R ; ,  we can represent the ex- 
pression (53) for ECr in a form corresponding to the most 
general phenomenological model of an ionic ~ r ~ s t a l . ' ~ ' ~  
This model takes into account both the spherically symmet- 
ric variation of the effective radius of the ion ("breathing") 
and the nonlocal polarizability and deformability of the ions. 
There is no reason, in principle, why one cannot then calcu- 
late the modal matrix of the oscillations and the phonon fre- 
quency spectrum. Here, however, we shall not calculate the 
complete phonon spectrum, but instead restrict ourselves to 
calculations of some phonon frequencies at the center of the 
Brillouin zone and at its boundaries by the "frozen-in" pho- 
non method (see Ref. 41). 

This method makes it possible to obtain the phonon fre- 
quencies from the energy difference between the ideal and 
deformed lattices. We shall not describe here the details of 
this well-known method, but merely consider the calculation 
of the frequency of the longitudinal optical mode with 
q=O. To this end, we first determine, by the method of 
frozen-in phonons, the frequency wTo of the transverse op- 
tical mode. We can then determine the resulting total polar- 
ization P of the crystal with a lattice displacement corre- 
sponding to the transverse optical mode with q = 0: 

Knowing P, we can easily find the dynamical Born 
charge .Zeff, which is defined by19 

We can then also easily determine the frequency of 
the longitudinal optical mode at q = O  from the splitting of 
the optical phonon frequencies for longitudinal and trans- 
verse vibrations, 

In summary, in the present paper we have presented a 
simple microscopic approach to calculating the static and 
dynamical properties of ionic crystals. This approach is 
based on an extension of the Gordon-Kim model that makes 
it possible to take into account the monopole and dipole 
polarizabilities of each ion. In principle, this approach can 
also be extended to take into account the higher-order mul- 
tipole polarizabilities or static distortions of electron density 
in an ion. This is important in studying ions with unfilled 
electron shells. Our results for the lattice dynamics yield an 
expression for the energy of the crystal that is formally iden- 
tical to the most general phenomenological model of lattice 
dynamics, which assumes both the spherical symmetry of the 
electron density and the presence of nonlocal polarizabilities 
and deformabilities of the ions. 

The numerical results for the electron polarizability of 
the ions show that it is necessary to improve upon the local 
approximation for the exchange energy. This is especially 
important in calculations of a light negative ions, such as 
0 2 - ,  for which the local approximation overestimates the 
ionic polarizability substantially. 
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