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The character of the growth of large inert-gas clusters, whose energy parameters are determined 
by nearest-neighbor interactions, is studied. It is shown that the optimal structure of a 
large cluster is based on a truncated octahedron, six faces of which are squares and eight faces 
are regular or almost regular hexagons. The irregular part of the change in the surface or 
total energy of a cluster is estimated to be - IOD, where D is the binding energy of two 
neighboring atoms, and it is independent of cluster size. The temperature of the transition 
from a solid cluster to a macroscopic particle, determined by the fluctuations of the total energy 
of a cluster as a result of the vibrations of its atoms, has been estimated from the behavior 
of the energy parameters of the cluster. It is shown that a cluster becomes a macroscopic particle 
when the number of atoms in it exceeds lo4. O 1995 American Institute of Physics. 

1. INTRODUCTION In analyzing the energy parameters of inert-gas clusters, 

A fundamental problem in the physics of small particles 
is the size at which a particle can be regarded as macro- 
scopic. We shall define a system of bound atoms or mol- 
ecules as macroscopic if its parameters depend monotoni- 
cally on the number of constituent particles. Based on this 
criterion, in what follows we shall examine this problem for 
clusters of inert gas atoms. It is obvious that for different 
parameters of a cluster-a system of bound atoms-this 
transition occurs at different cluster sizes and at correspond- 
ing temperatures. In the present paper we shall confine our 
attention to the binding energy of the atoms in a cluster at 
low temperature. This problem relates primarily to the deter- 
mination of optimal configurations of the atoms in a cluster 
with a fixed number of atoms; this is the main content of the 
following analysis. 

2. INTERATOMIC INTERACTION AND THE STRUCTURE OF 
A LARGE INERT-GAS CLUSTER 

The total binding energy of the atoms in a cluster is the 
sum of the binding energies for each pair, i.e., the sum of the 
pairwise interaction potentials of separate atoms. Once the 
dependence of the total binding energy of the atoms in a 
cluster on the configuration of the atoms has been deter- 
mined, the optimal arrangement of the atoms that yields the 
maximum binding energy of the atoms with a fixed number 
of atoms in the cluster can be identified. To this end, it is 
necessary to choose a realistic and convenient interatomic 
pairwise interaction potential. The interaction potentials of 
two inert-gas atoms at distances comparable to the equilib- 
rium separation R, of the atoms in a two-atom molecule are 
well known and are determined from both data on the elastic 
scattering of atoms and analysis of different parameters of 
macroscopic systems of inert gases. For large clusters the 
long-range part of the interaction potential of two atoms, 
which corresponds to interatomic separations that are large 
compared to the equilibrium separation R, ,  where the inter- 
action potential of the atoms is relatively small, also be- 
comes important. 

we shall choose between two types of interatomic pairwise 
interaction potentials. The first type, which we t e rn  short- 
range, is identical to the real interaction potential of two 
atoms at interatomic distances of the order of the equilibrium 
separation R e  in a diatomic molecule, and vanishes at large 
distances between the atoms. Based on this, we shall assume 
that the interaction in a cluster in the case of this interaction 
potential acts only between nearest neighbors. This greatly 
simplifies the general problem. First, the distance between 
nearest neighbors is precisely equal to the equilibrium sepa- 
ration R e .  Second, the total binding energy of the atoms in a 
cluster is proportional to the total number of bonds between 
nearest neighbors. We note that our analysis pertains to a 
cluster at zero temperature. In what follows, we shall mea- 
sure length in units of the equilibrium separation R ,  between 
atoms in a molecule and energy in units of the dissociation 
energy D of a diatomic molecule, which is assumed to be 
classical, i.e., the energy hw of a vibrational quantum is 
relatively low, h o 4 D .  In these units, in the case of the 
short-range interatomic interaction potential the total binding 
energy of the atoms in a cluster is equal to the total number 
of bonds between the nearest neighbors. 

Another model interatomic pairwise interaction potential 
widely employed in computer calculations is the Lennard- 
Jones potential, which also includes a long-range part. The 
role of this part of the interaction potential can be assessed, 
and therefore a choice can be made between the two indi- 
cated model potentials by analyzing the parameters of an 
inert-gas crystal and comparing them with the parameters of 
a diatomic molecule. Indeed, long-range interaction is mani- 
fested in an inert-gas crystal to the same degree as in a clus- 
ter. Using the specific binding energy of a crystal with a 
Lennard-Jones interaction potential,' the equilibrium inter- 
atomic separation,' the optimal structure of the and 
the melting temperature of the crystal4 and comparing them 
with the same characteristics of real crystals,'25 we find6'7 
that in all of these cases the Lennard-Jones potential is not 
as good for describing crystals of inert gases as a short-range 
interatomic interaction potential. For example, in the units 
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FIG. 1 .  Specific surface energy A of clusters with short-range interatomic interactions. Filled circles correspond to fcc clusters with a central atomI5; open 
circles correspond to fcc clusters without a central atom15; crosses correspond to clusters with icosahedral structure (Ref. 12). 

adopted here, the specific binding energy of the atoms (the 
binding energy per atom) is 6 for the short-range interaction 
potential, 8.41 for the Lennard-Jones crystal,' and 
6.450.7, on the average, for real inert-gas crystals.8 The 
distance between nearest neighbors is 1 for the short-range 
interatomic interaction potential, 0.97 for the Lennard-Jones 
ptential,' and 1.00+0.01 for a real crystaL8 Therefore the 
short-range interaction potential better describes a system of 
bound inert-gas and we shall employ it below to 
analyze the properties of inert-gas clusters. Our problem, 
then, is to determine the optimal structures of a cluster with 
a fixed large number n of atoms in the cluster in the case of 
a short-range interaction between the atoms in the cluster. 

The optimal structure of clusters with a pairwise inter- 
atomic potential is icosahedral for small n and face-centered 
cubic (fcc) for large n.9-'1 The region of the transition from 
one optimal structure to another depends on the character of 
the interatomic pairwise interaction. In the case of a 
Lennard-Jones interaction potential this transition occurs for 
n- 1000:-'~ and in the case of a short-range interatomic 
interaction the transition is concentrated in the range 
n=200-500 (Ref. 12) (see below, Fig. I). Since the transi- 
tion to a macroscopic system occurs for n>  1000, in what 
follows we shall study clusters with the fcc structure. 

3. LARGE FCC CLUSTERS 

Every interior atom of an fcc cluster with a short-range 
interatomic interaction potential has 12 nearest neighbors, so 
that the total binding energy of the atoms in a large cluster 
consisting of n atoms can be represented in the form 

~ = 6 n - ~ n ' / ~ .  (1) 

The parameter A is the specific surface energy of the cluster. 
For large n, the function A(n) for optimal configurations of 

the atoms in a cluster is concentrated in a range of values that 
becomes narrower as n increases. We rewrite the expression 
(1) in the form 

We assume that we have determined the total binding energy 
of the atoms in a cluster for the optimal configuration of the 
atoms at some given n . Then the function A (n) characterizes 
the degree of stability of the cluster. The smaller the value of 
A(n), the more stable the cluster. 

The total binding energy E of the atoms in a cluster with 
a short-range interatomic interaction and fcc structure can be 
calculated on the basis of the method of Refs. 8 and 13, 
which takes advantage of the high symmetry of the cluster. A 
symmetric fcc cluster possesses O h  symmetry,14 which in- 
cludes three four-fold symmetry axes, four three-fold sym- 
metry axes, and three axes of inversion symmetry. The atoms 
that are carried into one another under these transformations 
belong to the same shell of a cluster. The maximum number 
of atoms per shell (the maximum number of elements in the 
transformation group) is 48. Obviously, the most stable struc- 
tures of clusters correspond to filled shells. Symmetric clus- 
ter figures which are preserved under the given symmetry 
transformations are special. In what follows, we single out 
such cluster structures for special attention. 

The numbers of atoms in a cluster for which the function 
A (n) possesses a local minimum are termed magic numbers. 
The specific binding energy Eln in such a cluster is higher 
than in a cluster with one atom more or one atom less. Note 
that these arguments apply to optimal configurations of at- 
oms in a cluster, to which the maximum binding energies of 
the atoms for fixed n correspond. 

Figure 1 displays the function A(n) for fcc clusters with 
a short-range interatomic interaction obtained in Ref. 15 by 
the method indicated above. The values of this function for 
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FIG. 2. Geometric figures that correspond to symmetric structures of fcc clusters: a) Octahedron with m = 2 ;  b) tetradecahedron with p= 2 .  

an icosahedral cluster, which were obtained on the basis of 
Eq. (2) using the energy parameters of an icosahedral cluster 
calculated in Ref. 12, are also presented there. It follows 
from this figure that the fcc structure is optimal for a large 
cluster with a short-range interatomic interaction. 

An important conclusion that can be drawn from the data 
displayed in Fig. 1 is that the function A(n) is oscillatory. 
This distinguishes the cluster from a macroscopic particle. 
For large clusters, however, the amplitude of these oscilla- 
tions becomes relatively small and the thermal fluctuations 
become quite large, which smears the oscillatory structure of 
this function. To obtain a criterion for a cluster to be macro- 
scopic, it is necessary to analyze the character of the oscilla- 
tions of A(n). 

Note that in accordance with the general scheme of Ref. 
16, , :luster grows by adding atoms to the cluster to cover its 
flat faces, although over a certain range of n, the added at- 
oms cover separate edges of the cluster. Therefore the start- 
ing configurations of the atoms in a cluster are symmetric 
figures with flat faces. 

An fcc cluster can form figures bounded by flat faces 
with (loo), (1 lo), and (11 1) orientations in the notation 
adopted in Ref. 17. An atom on a (100) surface has eight 
nearest neighbors, an atom on a ( 1  10) surface has seven near- 
est neighbors, and an atom on the (11 1) surface has nine 
nearest neighbors. Obviously, the most stable symmetric fig- 
ures of clusters have surface faces with (11 1) and (100) ori- 
entations. The basis of these figures is an octahedron [see 
Fig. 2(a] bounded by eight (11 1) planes. The minima of the 
function A(n) displayed in Fig. 1 correspond to truncated 
octahedra [(Fig. 2(b)], which can be obtained from an octa- 
hedron by slicing off six pyramids whose vertices are also 
the vertices of the octahedron and whose bases are squares. 
The truncated octahedra possess the 0 symmetry of the oc- 
tahedron, containing all symmetry axes of the Oh group, but 
not inversion symmetry. This means that the truncated octa- 
hedra are unchanged by any transformation of the group 0 
of the octahedron. 

4. CLUSTERS--TRUNCATED OCTAHEDRA 

We now determine the parameters of the truncated 
octahedra-the total number of n of atoms in the filled struc- 
ture of a cluster and its surface energy E,,, = 6n  - E .  For a 
cluster with a short-range interatomic interaction, the total 
binding energy of the atoms is 

where nk is the number of atoms with k nearest neighbors. 
This formula takes into account the fact that every bond links 
two atoms. Hence, the surface energy of the cluster is 

It follows from this formula that only the surface atoms con- 
tribute to the surface energy, because k =  12 for the interior 
atoms. 

We first calculate the parameters of an octahedral cluster. 
Let m be the number of the octahedron in a family. Then 
each of the 19 edges of the octahedron contains m + 1 atoms, 
two of which are vertex atoms. The octahedral cluster there- 
fore contains six vertex atoms, 12(m - 1 ) nonvertex edge 
atoms, and 4 (m  - 1 )(m - 2 )  surface atoms located inside the 
eight surface triangles, i.e., the octahedron contains 
4m2 + 2 surface atoms. From the relation 

where n,,, is the number of atoms in the mth octahedral clus- 
ter, we find1* (in what follows the index ni is dropped) 

To find the surface energy, we note that a vertex atom has 
four nearest neighbors, an interior edge atom has seven near- 
est neighbors, and an interior atom of a surface triangle has 
ten nearest neighbors. Then, on the basis of Eq. (3), we ob- 
tain for the surface energy of an octahedral cluster1* 
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TABLE I.  F~lled structures of fcc clusters w~th  sho~t-range tnteratonilc 
inle~actions. 

The asterisk indicates local minima of the function A ( n ) ;  dashes refer to 
structures obtained from truncated octahedra by removing some edges and 
vertices. 

I 

201' 
260 

314' 
338 
369 
405 
459' 
538 

586' 
640 
664 
675 
71 1 
807' 
861 
885 
952 
976 

Slicing off six identical regular pyramids with edge length k 
from the mth octahedron, we obtain a truncated octahedron 
characterized by the indices m and k. The method employed 
yields the following expressions for its parameters: 

The truncated octahedron is bounded by 14 planes, so that 
six of its (100) faces are squares and eight (111) faces are 
hexagons. If these hexagons are regular, we obtain a regular 
figure-a tetradecahedron,I9 which possesses a higher sym- 
metry than O h .  Denoting by p the number of the figure in 
the family of tetradecahedra, we have in this case m = 3 p  and 
k = p .  This gives for the parameters of the tetradecahedronZO 

A 

7.519 
7.659 
7.533 
7.666 
7.814 
7.563 
7.562 
7.801 
7.540 
7.594 
7.699 
7.719 
7.607 
7.545 
7.624 
7.746 
7.812 
7.561 

Each tetradecahedron corresponds to a local minimum of 
A(n) as a function of the magic numbers for a cluster with a 
short-range interatomic interaction. 

The method for calculating the binding energy of the 
atoms in an fcc cluster *,I3 makes it possible to find the 
optimal configuration of atoms for a given number of atoms 
in a cluster, and the corresponding binding energy of the 
atoms. Some results of such calculations are presented in 
Table I." The table includes the symmetry configurations of 
the atoms in a cluster when the cluster forms a figure that is 
preserved under every transformation in the group 0 of the 

octahedron. Clearly, the minima of the function A ( n )  corre- 
spond to truncated octahedra, which subsume all of the tet- 
radecahedra'. I l l ,  k 

in Eq. (5) 

6, 2 
7, 3 
7, 2 
7, 1 
- - 
8, 3 
8, 2 
- - 
9, 3 
9, 2 
9, 1 
- - 
10, 4 
10, 3 
10, 2 
10, 1 
- - 
11, 4 

5. GROWTH OF A LARGE CLUSTER AND ITS 
MACROSCOPIC NATURE 

We now analyze the character of the oscillations of the 
function A(n) according to Fig. 1 and Table I. We define the 
location of the lth minimum of the function A(n) in the form 

" 
1000 

1072* 

1139 
1157 
1289' 
1385 
1504 

1654' 
1750 
1804 
1865 
1925 

2075' 
2171 
2190 
2225 
2406' 

so that tetradecahedra are described by this formula. The 
function (7) therefore has the correct asymptotic form. Sta- 
tistical analysis of the data in Fig. 1 and Table I yields for the 
parameter in this formula a= 1-03? 0.08, if it is assumed 
that n=201 corresponds to the number of the minimum 
I=  6. If in the size range of the clusters presented in Table I 
only the parameters of the tetradecahedra are used, statistical 
analysis of their positions gives a=0.96?0.01. Next, using 
Eq. (6) for the largest tetradecahedra gives 
a= 15/16= 0.938. Therefore the parameter a in Eq. (7) is 
close to 1. 

As one can see, the filled structure of an fcc cluster with 
a short-range interatomic interaction consists of a tetradeca- 
hedron or a figure which is nearly a tetradecahedron in which 
the six (100) faces are squares and eight (111) faces are 
either regular hexagons or hexagons with almost the same 
edge length. Starting with this figure and filling its faces with 
atoms, we now analyze the change in the surface energy of a 
cluster. For the analysis it is most convenient not to add but 
rather to remove surface atoms of the figure. If all atoms of 
the same surface square are removed from the surface of the 
p-th tetradecahedron, then the decrease An in the number of 
atoms and the surface energy bEsur  of the cluster will be 

If all atoms on the same surface hexagon are removed, then 
these parameters turn out to be 

A 

7.680 
7.561 

11267.650 
7.647 
7.785 
7.548 
7.581 
7.587 
7.550 
7.602 
7.693 
7.643 
7.561 
7.561 
7.622 
7.614 
7.710 
7.552 

If atoms on an adjacent square and hexagon are removed, 
then these parameters of the cluster decrease by 

I l l ,  k 
in Eq. (5) 
- - 
11, 3 
1 1 , 2  
12, 5 
- - 
12, 4 
12, 3 
13, 5 
13, 4 
13, 3 
13, 2 
- - 
14, 5 
14, 4 
14, 3 
15, 6 
14, 2 
15, 5 

When the atoms on a square and two hexagons adjoining the 
square but not bounding one another are removed, these pa- 
rameters are 

On the basis of these expressions, we arrive at the fol- 
lowing conclusions. The change in the specific surface en- 
ergy of a cluster accompanying the removal of separate ele- 
ments of the surface of a cluster is 
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where A corresponds to the filled figure whose parameters 
are given by Eq. (6). On the basis of each of Eqs. (8), in the 
limit of large p we have AA- llp2, i.e., the amplitude of the 
oscillations of the surface energy of a cluster relative to the 
average value does not depend on the cluster size in the limit 
of a large number of atoms in the cluster. 

This is true only of filled faces. We now demonstrate this 
for a surface square. If the (100) face of a cluster is removed, 
removing atoms of a square with edge i+  1 so that one ver- 
tex of this square is also a vertex of the figure, we obtain for 
the desired parameters of the cluster, to within Ili, 

Then, on the basis of Eqs. (9) and (6), we have to within 
- Ilp 

The minimum of this quantity corresponds to i=p/2: 

Over the range n- lo3-lo4 the corresponding variation in 
the surface energy (0.2n"3) does not exceed the characteris- 
tic fluctuations in this quantity when individual atoms are 
added, so that in what follows we shall neglect this effect. 

On the basis of the foregoing analysis, we take the am- 
plitude of fluctuations in the surface energy of a cluster about 
the mean to be AESu,- 10. This estimate was obtained from 
Eqs. (8) for large n for the case when the number of atoms 
removed from the surface of the cluster is approximately 
one-half the number of surface atoms and all atoms can be 
collected from the different figures taken into account in Eqs. 
(8). 

Two circumstances are pertinent here. First, changing the 
number of the octahedron from which the desired figure is 
obtained by unity corresponds to the removal or attachment 
of four surface triangles, which corresponds for the given 
figure to the removal or attachment of four hexagons. There- 
fore our estimate also includes fluctuations in the specific 
surface energy accompanying a transition to a new number 
of the optimal figure of the cluster. Second, a transition from 
magic to nonmagic filling numbers results in a change in the 
specific surface energy by a quantity of order unity. The 
present estimate covers the magnitude of irregular variations 
produced in the surface energy of a cluster by different 
mechanisms. 

Thus, irregular variations in the surface energy of a clus- 
ter as the cluster grows, which characterize the difference of 
the surface energy of the cluster from a monotonic function 
of the number of atoms, are AE,,,- 10. These deviations 
obviously distinguish a cluster from a macroscopic particle, 
for which the dependence of the surface energy on the num- 
ber of constituent atoms is approximately monotonic. A clus- 
ter can therefore be regarded as a macroscopic particle if the 
fluctuations in its surface energy are greater than the indi- 
cated quantity. The fluctuation of the total energy of a solid 
cluster as a result of the motion of its atoms is T 6, where T 
is the temperature of the cluster expressed in energy units, 

TABLE 11. Maximum temperzttirles T,,, (in units of D) for inet.1-gas clusters. 

Element 

and s is the effective number of cluster vibration modes. 
Therefore the criterion for a cluster to be macroscopic has 
the form 

where D is the energy required to break the bond between 
nearest neighbors, or the dissociation energy of a diatomic 
molecule, and which was used above as the unit of energy. 

We use the Debye approximation2' for the modes of a 
cluster, and assume that the Debye temperatures of the clus- 
ter are the same as those of inert-gas crystals for longitudinal 
and transverse modes. We then obtain for the effective num- 
ber of modes in the cluster 

where O D  is the mean Debye temperature for an inert-gas 
crystal, and 0 ,PT .  Expressing the irregular part of the 
variation in the surface (and total) energy of a cluster in 
conventional units as - IOD, we obtain the following esti- 
mate for the temperature at which the cluster can be regarded 
as a macroscopic particle: 

T ~ % - T ~ = ~ O D ~ @ ~ / ~ .  (13) 

In this formula we employed the relation 
where OL and 0,  are the Debye temperatures for longitudi- 
nal and transverse modes, and the values of these quantities 
for inert-gas crystals were taken from Ref. 22. Table I1 con- 
tains the value of T ,  for inert-gas clusters at two cluster 
sizes. 

We emphasize that we regard a system of many bound 
atoms to be macroscopic if its energy fluctuations exceed the 
irregularities in the energy variations accompanying the ad- 
dition of new atoms. On the basis of this definition, an 
almost-filled large flat surface is not a macroscopic system at 
zero temperature, since the filling of the surface gives rise to 
an additional jump in its energy. However, even at low tem- 
peratures, a large surface satisfies the definition employed 
above for a macroscopic system. This definition of a macro- 
scopic system can be formulated differently: an individual 
atom in the system makes a small contribution to the inves- 
tigated part of the system's energy by comparison with all of 
the other atoms. We assumed above that the fluctuations in 
the internal energy of the cluster are due to the vibrations of 
the atoms. Transitions of atoms to excited shells can make a 
definite contribution to this quantity. 

The foregoing analysis applies to solid clusters. For liq- 
uid clusters the energy fluctuations are stronger, since the 
sinusoidal nature of the oscillatory motion of the surface 
atoms is destroyed. Therefore, on the basis of the estimate 

996 JETP 81 (5). November 1995 8. M. Smirnov 996 



(13), it follows that liquid clusters of inert gases with 
n >  1 0 b r e  macroscopic particles in any case (the melting 
point of the inert-gas clusters is 0.580 [Ref. 8)]. 

Note that in actuality the temperature of the clusters can- 
not be low. Indeed, clusters are usually formed when an ex- 
panding gas condenses. Clusters are therefore initially hot, 
and they subsequently cool, both as a result of collisions 
between the clusters and the atoms of the cooled gas, and as 
a result of evaporation of individual atoms from them. The 
characteristic rates of cooling as a result of these processes 
decrease rapidly with decreasing temperature, so that low- 
temperature clusters are quite difficult to obtain, since their 
lifetime is limited. Taking this circumstance into account and 
using the data in Table 11, it can be concluded that in real 
inert-gas clusters with n> lo4 are macroscopic particles. 

6. CONCLUSIONS 

The foregoing analysis shows that the growth of large 
clusters of an inert gas, which are maintained by short-range 
interatomic interactions, amounts to the filling of the indi- 
vidual faces of a tetradecahedron. Irregular fluctuations in 
the surface and total energies of a cluster are estimated to be 
of the order of 10D, where D is the binding energy of two 
neighboring atoms in a cluster. From the standpoint of the 
behavior of the total energy of a cluster as a function of the 
number of constituent atoms, an inert-gas cluster can be re- 
garded as a macroscopic particle with n > lo4, since the tem- 
perature of the cluster cannot be very low. For other cluster 
parameters, the transition from a cluster to a macroscopic 
particle can start at different filling numbers. 
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