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The anisotropy of the dielectric function of an inhomogeneous medium is considered when it
arises due to the presence of a preferred direction of the density gradient at each point

in the medium. Expressions are obtained for the dielectric tensor of an inhomogeneous medium
which take account of the anisotropy caused by the inhomogeneity. © 1995 American

Institute of Physics.

1. INTRODUCTION

At each point of an inhomogeneous medium, generally
speaking, there exists a preferred direction associated with
the existence of the density gradient. It is well known, for
example, that a periodically inhomogeneous medium is bire-
fringent for fields with wavelength much greater than the
spatial period of the medium.! At the same time, in macro-
scopic electrodynamics the medium is sometimes considered
inhomogeneous but isotropic. The applicability of such a
quasi-isotropic approximation in the special case of geomet-
ric optics has been discussed by different authors (a review
with references to the literature can be found in Ref. 2). It
would seem that the most natural way to obtain the condi-
tions of applicability of the quasi-isotropic approximation is
by the appropriate derivation of the expression for the polar-
ization of the material from a consideration of the local field
acting on a molecule.>"® As is well known, the polarization
of the material is directly related to the mean field acting on
the molecule, and its relation to the mean macroscopic field
is found from additional considerations taking account of the
properties of the material. Only after finding the relations
between the local field and the macroscopic field is it pos-
sible to obtain an expression for the dependence of the di-
electric function on the density.

Such a study was carried out a few years ago by Sipe’;
however, in the approximation that he used, anisotropy gen-
erally does not arise. Therefore it is of interest to clarify the
accuracy to which the anisotropy of an equilibrium inhomo-
geneous medium can be neglected, treating the dielectric
function of the medium as a scalar function of position, al-
though at each such point there exists a preferred direction of
the density gradient.

2. LOCAL FIELD IN AN INHOMOGENEOUS MEDIUM

The influence of the inhomogeneity of the medium on its
dielectric function is simpler to trace out if we consider the
relation between the local field acting on a molecule and the
mean macroscopic field. A molecule of a medium located in
an electric field acquires a dipole moment whose Fourier
transform d(r,w) is related to the polarizability of the mol-
ecule @;;(w) and the Fourier transform of the field acting on
the molecule E(r,w):

di(r,0)=qa;(w)E;(R,w). (N
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The dipole moments induced in each molecule of the me-
dium are sources of secondary fields. In order to calculate the
local field, let us first consider the microscopic field EMic
acting on the molecule located at the point R. This field is
made up of the primary field E (no longer interacting with
just one molecule of the medium) and the secondary fields of
all the other particles. Therefore, for the Fourier transforms
of the microscopic fields we can write

E]'"‘(R,0)=E{(R,0)+47> M;(R-R’)
R,

X ET(R,w), @)

where the sum is taken over all of the molecules of the me-
dium except the one under consideration, and we have used
the notation

1
Mij(R) = W a;(w)

q qz—(a)/c)2

The effective field acting on the molecule results from the
addition of the fields of many molecules located in some
region of space whose characteristic linear dimension [ is
large in comparison with intermolecular distances n~ 3, but
much smaller than the wavelength of the field:

n~B<l<. 4)

If these inequalities hold, then the field acting on the mol-
ecule results from the mutual cancellation of the fields of
many molecules and its value is close to that of the acting
field averaged over the positions of the other molecules. This
latter field is commonly called the local field E/°¢. The equa-
tion for the local field can be found by averaging expression
(2) over the positions of all molecules other than the one
under consideration. Then the microscopic field in expres-
sion (2) can be replaced by the local field, and to find the
average of the sum we multiply each of its terms by the
probability w(R";R) of finding a molecule at the relative
position R”=R—R’, and we then integrate over R"”. The
dependence on R’ in the terms of the sum then drops out,
and the sum reduces to multiplying by the number of mol-
ecules N— 1 =N. It is convenient to introduce the notation

Nw(R”;R)=n(R")[1—f(R";R)],
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where n(R’) is the number density of the molecules in the
inhomogeneous medium. Since the probability in any me-
dium of a very small distance between two molecules tends
to zero, the function f(R";R) is equal to unity at R”=0 in
any medium, independent of R. On the other hand, for
R">n~"3 the function f(R”;R) becomes negligible in any
medium. This substantially limits the possible form of
S(R";R). It follows that the result of taking the average of
expression (2) can be represented in the form

EI“(R,w)=E’(R,0)+4m f d*R"n(R—R")[ 1

_f(R”;R)]M,-j(R")E;-OC(R— R”,w). (5)

In order to relate the local field to the mean macroscopic
field, we find the relation between the macroscopic field and
the primary fields. By definition, the primary field satisfies
Maxwell’s equations in vacuum with the same current and
charge densities as in the phenomenological Maxwell equa-
tions in the medium for the macroscopic field. Therefore, the
difference between these equations does not contain currents
or charges, and enables one to relate the Fourier transforms
of the primary field, the macroscopic field, and the polariza-
tion of the medium:

E?(k,w)=E,—(k,w)+47rP,~(k,w)
where

Qij(kaw)=(k26ij_kikj)/[k2_(m/c)z]- (7)
Transforming back to the fields themselves, without too

much trouble we find

E?(R,w)=E,-(R,w)+47rP,-(R,w)—47rj d>R"P (R

d’k ,
—R”,w)f (27)3 Qij(k,w)exp(ik‘R ) (8)

The latter equation can be used to eliminate the primary field
from Eq. (5). However, it is more convenient first to intro-
duce the local field in expression (8) in place of the polar-
ization by way of the relation

P/(R,0)=n(R)a;(w)E"‘(R,0). ©)
Substituting relation (9) into Eq. (8) gives
E)(R,0)=E(R,0)+47n(R)a;E*(R,0)
—47rf d’R"n(R—R")E*(R—R",0)

X M (R"). (10)

Eliminating the primary field from Eq. (5) with the help of
relation (10), we easily obtain

E{(R,0)=E(R,0)—47n(R) a;;(0) EY(R,w)
+4'rrf d*R"n(R—R")
X f(R";R)M;(R")EV(R—R",0). (11)
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3. DIELECTRIC FUNCTION OF A WEAKLY
INHOMOGENEOUS MEDIUM

We now consider an inhomogeneous medium whose
density varies substantially over distances L large compared
to the wavelength of the field. We can supplement (4) by
writing

n~"B<l<\<L. (12)

In this case we can assume that the function

f(R";R)= f d*qf(q,R)exp(iq-R") (13)

is nonzero only over a range of R” of order n~ 3. The mo-
lecular number density n(R—R") and the local field
E'°(R—R",w) are essentially constant over intermolecular
distances, which enables us to neglect R” in the arguments of
these functions, and thus take them outside the integral.
Hence, we can transform (11) for an inhomogeneous medium
to the form

Ei(R’w) =E§OC(R,G)){5,']'_ 47"1(R)[aij(w)

—ais(w)vsj(R9w)]}’ (14)
where
V,,(R)= f d3qf(q,R)( 5, —q—qg-’-) (15)

It should be emphasized that the foregoing equality f(R”
= 0;R)=1 leads to the integral relation

f d*qf(qR)=1,

which holds for any R. In an inhomogeneous medium, the
function f(q,R) depends on the direction of the vector q. We
denote the function f(q,R) averaged over all directions of
the vector q by f(q,R), and set f(q,R)=f(q,R)+h(q,R).
Substituting the latter relation into Eq. (15) noting that re-
placing f(q,R) by f(q,R) in Eq. (15) gives

- " H 2
| d3qf(q,R)( 5y~ %) =30, aram

N

leads to the expression
2
Vii(R)= 3 8;;j—hij(R), (17)

where we have made use of the notation

In a homogeneous medium the quantity /,;(R) vanishes, but
in a weakly inhomogeneous medium in which the inequali-
ties (12) hold, h,; (R) is comparable to /[/L<<\/L in order of
magnitude. Therefore if inequalities (12) hold, it is generally
possible to neglect h,;(R). As a result, it follows from rela-
tion (17) that
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4a
6;;— = n(R)a;(w)|. (19)

3

E{(R,0)=E(R,w)

For a material with spherically symmetric molecules this re-
lation simplifies:

47
E(R,w):E'“(R,w)[ 1- 3 n(R)a(w)]. (20)

Hence it follows that in a weakly inhomogeneous medium
with spherically symmetric molecules the dielectric function
has the form

1+(87/3)n(R)a(w)
1—(47/3)n(R)a(w)’

e(R,w)= 21)
which reproduces Sipe’s result.?

In a weakly inhomogeneous anisotropic medium, the
form of the dielectric function becomes more complicated. It
is convenient to use the crystal optics approximation, which
treats the crystal as a homogeneous anisotropic medium, and
which takes account of ordering of only the orientations of
the molecules, not their spatial distribution. In particular, it
does not allow for the difference between a solid crystal and
a nematic liquid crystal.

We now consider an anisotropic single-axis medium in
equilibrium in an external field directed along the principal
optical axis. The electron density in such a medium depends
on the coordinate along the principal optical axis. Such a
medium will be single-axis, anisotropic, and inhomogeneous.
In the crystal optics approximation it is sufficient in such a
medium to take account of the ordered orientation of the
molecules in the direction of the principal optical axis. De-
noting the direction vector of this axis by the unit vector e,
we can represent the polarizability of a molecule of the me-
dium in the form

a;(w)=a(w)(5;;—ee;)+b(w)ee;. (22)

The inhomogeneity of the material in the crystal optics ap-
proximation is described by the variation in the number den-
sity of the molecules, while their spatial order can be ig-
nored. Then, for an inhomogeneous, single-axis material, the
relation between the macroscopic field and the local field
(14) can be inverted to yield

1
I 1=(47/3)n(R)b(w)

1
I =(47/3)n(R)a(w)

EY‘(R,0)=E{(R,0){ ;e

+(6;j—eie;) . (23)

Hence, we obtain the dielectric function of an inhomoge-
neous, single-axis material in the following form:
gij(R,0)=¢,(R,0)(5;—e;e;) +eo(R,w)ee;,

1+(87/3)n(R)a(w)

e, (R,0)= I —(47/3)n(R)a(w)’

1 +(87/3)n(R)b(w)
1 - (47/3)n(R)b(w) "

eo(R,w)= (24)
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4. DIELECTRIC FUNCTION OF AN INHOMOGENEOUS
MEDIUM IN THE GENERAL CASE

We now consider an inhomogeneous medium in which
the characteristic dimension L of the inhomogeneities is
bounded only by the inequality

I<L (25)

and inequality (4) holds. In this case, the influence of the
inhomogeneities on the formation of the local field is, as
before, not great, so that relation (14) between the local field
and the macroscopic field still applies and the conditions for
the derivation of the expression for V; (17) are still fulfilled.
The quantity #(q,R) is now comparable in order of magni-
tude to I/L, i.e., it is small in comparison with unity, but can
be much larger than //\, and thus must be taken into ac-
count.

With the help of formula (17), relation (14) can be
brought into the form

4m loc
E{R,w)=|8;j= == n(R)a;(0) |E;"(R,0)

+4mn(R)a;(w)h (R)EV(R,0). (26)
The quantity 4;; (R) can be expressed in terms of the binary
distribution function F(R’,R):

dqd’R" , —
hyR)= | | =g a 4.4, S(R"R) exp(~iq-R")

—_— 1
—exp(—iq-R”)] = (2_77)7 f d*R'[F(R’,R)

_1]J'd3q

_eXP[iQ(R—R')]]- (27)

959, 1 .
——— sin(q|R—R’
qz [ qu—R | (ql |)

In the derivation of expression (26) we have neglected
terms quadratic in A ; (R). Therefore we can, to the~same
accuracy, write in place of Eq. (26)

Wi (R)(8;;— 4mn(R)ay(w)h (R)W, (R) JE(R,w)
=E"‘(R,w), (28)

where the tensor W, (R) is defined by the relation
4
Wi (R) 5““ 3 "(R)axj(w) :5ij- (29)

Invoking the relation between the polarizability and the local
field (9), it is straightforward to obtain from Eq. (28) an
expression for the dielectric tensor of an inhomogeneous me-
dium,

&;j(R,w)=8;;+4mn(R)a;(w)W (R)— 167°n(R)
X Cl/i.\'((J‘))“/SI(R)(XIk(w)hkm(ll) WII(R) (30)

In the case of material consisting of spherically symmetric
molecules,

aij(w) = 5ija(w),
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Wi (R)=5,[1—(4m/3)n(R)a(w)]™",
and formula (30) simplifies to
¢i(R,w)=06;;e(R,w)—h;(R)[e(R,w)— | 1?
L 1+@BTIR)a(w)
T —(4m3)n(R)a(w)
47n(R)a(w) |2
1—(47/3)n(R)a(w)| ’

h;;(R)

@n

where £(R,w) is the value of the dielectric function that is
usually used to describe the inhomogeneous medium, i.e.,
disregarding anisotropy.

5. THE FIELD IN A ONE-DIMENSIONALLY INHOMOGENEOUS
MEDIUM

Taking the anisotropy of an inhomogeneous medium into
account substantially alters the Maxwell equations for the
field in such a medium. Thus, for example, in a one-
dimensionally homogeneous medium consisting of spheri-
cally symmetric molecules, and when the molecular number
density varies only with z, the most general form of the
tensor A;; (z) is

hif(z)=a(z)[ 6;j—eie;]+b(2)eie;, (32)
and expression (31) for the dielectric tensor can be written as
&ijf(z,w)=(J;j—eiej)eo(z,0) +eie;e,(z,0), (33)
where we have made use of the notation
£o(z,0)=6(z,0)—a(2)[e(z,0)— 112,
£o(z,0)=8(z,0) ~b(2)[e(z,0)— 1]% (34)

Let the wave field have the form H(z)exp(igx—iwt), that is
to say, let the direction of propagation of the wave lie in the
xy plane. Maxwell’s equations in such a medium have two
linearly independent solutions, in one of which the compo-
nents of the fields £, E,, and H, vanish, and in the other,
the components H,, H,, and E, vanish. In the limit of a
homogeneous, anisotropic medium, the first solution goes
over to the ordinary wave, and the second, to the extraordi-
nary wave. In an inhomogeneous, anisotropic medium, the
properties of the second solution depend substantially on the
orientation of the direction of propagation relative to the
principal optical axis. It is convenient to call the first solu-
tion, even in an inhomogeneous medium, the ordinary, or
E-wave, and the second, the extraordinary, or H-wave. The
ordinary wave obeys the same equation as in an inhomoge-
neous, isotropic medium, with the single exception that the
dielectric function &(z,w) must now be replaced by the
quantity g4(z,w) defined by the first of Egs. (34). The equa-
tion for the extraordinary wave differs from that for the
H-wave in an inhomogeneous, isotropic medium, in particu-
lar, in that it contains two different characteristics of the
medium: g4(z,w) and €,(z,w).

The equation for the magnetic field of such a wave
H=H, has the form
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c

d[(Veg)(dH/dz)] +[

w2 qz
dz

- 7]H =0. (35)

> e

Taking anisotropy into account can lead to qualitative
differences in the behavior of the solutions. Thus, Ref. 10
presents the derivation by Forsterling, who considered the
reflection of an oblique incident wave from a layer of inho-
mogeneous, isotropic medium in which &(z) passes through
a zero, and found that in contrast to the E-wave, in the re-
flection of an H-wave against the background of a decaying
field near the zero of £(z), an anomalously abrupt amplifi-
cation of the field takes place. However, the equation for the
inhomogeneous, isotropic medium is obtained from the more
general equation (35) by replacing €4(z) and &,(z) by
€(z), which is valid only under certain conditions. Forster-
ling’s use of the approximation of an isotropic, inhomoge-
neous medium in equation (35) means that the difference
€0~ &, is assumed to be small compared with any character-
istic quantity of the problem, in particular, |go| and |g,|:
|80.—8e|<|80 > 8e!'

The functions €y(w®) and &,(w) vanish, generally speak-
ing, at different values of the frequency, and near the zeros of
go(w) and £,(w) the approximation of a homogeneous, iso-
tropic medium is inapplicable. Hence it follows that near the
zeros of the dielectric function it is necessary to take into
account the anisotropy of the medium and to use Eq. (35) to
determine the field of the H-wave.

Thus, Forsterling’s derivation, on the basis of which he
concluded that the H-wave penetrates anomalously deeply
behind the plane in which the dielectric function vanishes,
was in error, since it was obtained outside the domain of
applicability of the approximation of an isotropic, inhomo-
geneous medium, which he used.

6. RESULTS AND DISCUSSION

At every point in an inhomogeneous medium, there is a
preferred direction of the density gradient. Therefore, the in-
homogeneous medium, strictly speaking, is at the same time
anisotropic. The important parameter determining the degree
of anisotropy of the inhomogeneous medium is the ratio of
the formation length of the local field / to the characteristic
dimension L of the inhomogeneities. When the distance L
over which the properties of the medium vary is small com-
pared with [, e.g., on the surface of the material, the condi-
tions for formation of the local field are altered, which in-
duces a natural anisotropy of the surface layer, with a
thickness of order /, even in an isotropic medium.""

If the characteristic dimension L of the inhomogeneities
in the medium is larger than the formation length of the local
field / and the required accuracy of the calculations is coarser
than //L, then the anisotropy of the inhomogeneous medium
can be neglected, i.e., the medium can be taken to be isotro-
pic.

If, on the other hand, one requires accuracy higher than
/L, then one must take account of the anisotropy and use the
dielectric tensor (30) to describe such a medium, or, if the
conditions of the problem permit, the special cases (31) or
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(33). When considering effects directly due to the mere ex-
istence of the anisotropy, it is always necessary to allow for
the tensor nature of the dielectric function.

Thus, for example, in a one-dimensional inhomogeneous
medium whose density depends only on z, the conditions of
propagation of an electromagnetic wave depend on the angle
between the direction of propagation and the z axis, but in all
other cases do not depend on this angle, in analogy with the
ordinary and extraordinary waves in a homogeneous single-
axis crystal. By neglecting the anisotropy in such a medium,
we ignore the differences between these waves, which even
in the presence of weak anisotropy will inevitably show up
over a long enough path length. To account for such effects,
it is necessary to allow for anisotropy.

Note that when the formation length of the local field / is
comparable in magnitude to the characteristic size of the in-
homogeneities, L, the relationship between the local field
and the mean macroscopic field can be different at every
point in the medium, so that it is necessary to calculate it at
every individual point in the medium, based on the local
nature of the inhomogeneities. For example, periodic varia-
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tion of the electron density in a single crystal makes it pos-
sible to account for the influence of small inhomogeneities of
electron density. This was done by Johnson by another
method, namely by generalizing to optical frequencies an
approach used to consider x-ray diffraction.'?
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