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We analyze possible manifestations of macroscopic quantum coherence of states of the 
antiferromagnetism vector in small particles of a weak ferromagnet with orthorhombic symmetry, 
and investigate the field aspects of macroscopic quantum tunneling of spins. The probabilities 
of macroscopic quantum tunneling in the angular antiferromagnetic phases are calculated in the 
quasiclassical approximation in the region of magnetic hysteresis, taking account of the 
fluctuation contribution to the path integral. We show that the field dependence of the spontaneous 
decay rate of the metastable state is nonmonotonic, up to its vanishing in the middle of the 
hysteresis loop for half-integer spin of the sublattice. In the angular antiferromagnetic phase, the 
effect of periodic freezing of macroscopic quantum tunneling of the antiferromagnetism 
vector, associated with interference of instantons, can arise in a magnetic field. Calculations of 
macroscopic quantum tunneling in YFe03 and an estimate of the influence on it of a 
dissipative environment predict the appearance of macroscopic quantum coherence in nanoparticles 
of this material, even in the absence of a magnetic field. The possibility of detecting 
macroscopic quantum coherence in an ensemble of small particles of YFe03 at the temperature 
peak of the specific heat at low temperatures is indicated. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

Coherent quantum behavior of spin ensembles has been 
observed in artificially fabricated ferromagnetic and antifer- 
romagnetic small particles,' and also in finely dispersed me- 
dia, thin films, and bulk ~ r ~ s t a l s . ~ ~ ~  It is responsible for spin 
tunneling in single-domain samples? quantum diffusion of 
domain boundarie~?,~ spontaneous domain formation: and 
other phenomena. Their study is vital to an understanding of 
the quantum dynamics of spins in mesoscopic magnetically- 
ordered structures and in connection with the emerging field 
of nanotechnology.8 From this point of view, the field prop- 
erties of spontaneous spin reorientation in small particles of 
weakly ferromagnetic particles is of unquestioned interest. 

So far, the literature has only discussed the influence of a 
magnetic field on macroscopic quantum tunneling of spins in 
f e r r ~ m a ~ n e t i c ~ * ~ - I ~  and antiferromagnetic I 5 - l 7  single-domain 
particles. Weakly ferromagnetic materials are of interest 
from some points of view. First, exchange amplification of 
the magnetic resonance frequency wo= y\IH,H, takes place 
in them, like in antiferromagnets. Here y = g p , l h  is the 
gyromagnetic ratio (g is the Landd factor), H A  is the anisot- 
ropy field, and H E  is the exchange field. Thanks to this, the 
spin tunneling rate r' cc ooexp(-Ulk,T), where U is the 
height of the potential barrier, and the characteristic cross- 
over temperature T* cc noo, at which the quantum spin fluc- 
tuations begin to predominate over the thermal activation 
fluctuations, is higher than in ferromagnetic particles of simi- 

lar size. In addition, thanks to the presence of a weakly fer- 
romagnetic moment in them, in contrast to antifemomagnets, 
the interaction with a variable external magnetic field is en- 
hanced, which facilitates observations of macroscopic quan- 
tum tunneling by resonance methods. 

On the other hand, the presence of antisymmetric 
exchangeL8 in weak ferromagnets leads to a substantial dif- 
ference between the field properties of macroscopic quantum 
tunneling in this case and the purely ferromagnetic,479 
an t i f e r r~ma~ne t i c , '~ - '~  and ferrimagnetic cases, in which the 
sublattices of the antiferromagnet are u n c ~ m ~ e n s a t e d . ' ~  This 
has to do, in particular, with the difference in the nature of 
the magnetic field-induced orientational phase transitions 
and the properties of the energy degeneracy of the phase 
states of a weakly ferromagnetic particle. Depending on the 
orientation of the magnetic field in the crystal, the mecha- 
nism of field interference of the instantons, for example, will 
change. 

Interference of instantons suppresses microscopic quan- 
tum tunneling of spins in ferromagnetic particles with half- 
integer spin in the absence of an external magnetic field.13214 
A magnetic field, which lifts the energy degeneracy by virtue 
of the Zeeman interaction, can lead to freezing of spin tun- 
neling in such particles.12 In addition, it causes quantum os- 
cillations of the energy splitting of the degenerate phase 
states of the ferromagnetic particle, which in turn can lead to 
field oscillations of its magnetization at low temperatures.I7 

Similarly, field interference of instantons in an antiferro- 
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magnet causes oscillations of the tunneling rate in the angu- 
lar In this case, the period of the oscillations is 
deterniinecl by the intersublattice exchange tielcl acting on an 
elementary spin pair, in contrast to a ferromagnetic particle, 
where it is determined by the anisotropy tield.Io 

In a weak ferromagnet the mechanisms of instanton in- 
terference will vary, depending on the orientation of the mag- 
netic tield in the crystal and the nature of the magnetic an- 
isotropy. Obviously, in connection with this, the tield scale of 
the quantum oscillations of the macroscopic quantum tunnel- 
ing rate can vary. In addition, we will show that the presence 
of a spontaneous magnetic moment in a weak ferromagnet 
does not lead to macroscopic Kramers degeneracy of the 
levels, in contrast with uncompensated antiferromagnets, in 
which this latter effect depends on the parity of the uncom- 
pensated spin.19 We analyze these peculiarities for the case of 
an orthorhombic antiferromagnet with antisymmetric ex- 
change. Such weakly ferromagnetic compounds include rare- 
earth orthoferrites and orthochromates R M 0 3 ,  where M is 
Fe or Cr. In these compounds, orientational phase transitions, 
induced by a magnetic field, differ depending on the type of 
rare-earth ion R ~ +  (Ref. 22). We will direct our attention 
principally to an analysis of the peculiarities of macroscopic 
quantum tunneling in compounds of the type YFeO,, 
LaFe03, and LuFe03, which are characterized by a record 
small line width of the magnetic resonance, which is very 
important for observing macroscopic quantum tunneling. As- 
pects of this tunneling in other antiferromagnetic compounds 
will be discussed briefly. 

2. LAGRANGIAN OF A WEAK FERROMAGNET AND THE 
SPIN TUNNELING RATE 

Let us consider an orthorhombic weak antiferromagnet 
of the type YFe03 in an external magnetic field. Its thermo- 
dynamic potential per unit volume, expanded into compo- 
nents of the ferro- and antiferromagnetism vectors F and G 
out to terms of second order, can be represented in the form 
(see Refs. 22 and 23) 

where A and d j  are the isotropic and antisymmetric'* (Dzy- 
aloshinski) exchange constants, a, and b, are the relativistic 
interaction constants (j= 1,2), and Mo is the saturating mag- 
netic moment of the antiferromagnet. 

Since usually 

F ,  F ,  d - - oc - oc 10-2, 
G,' G,. A 

the latter terms in Eq. (1) can be neglected. In addition, we 
can with good accuracy take d 3  - - d 3 ~ 1 .  Here, for the an- 
isotropy energy parameters we will assume the following 
relations to be fulfilled: 

FIG. I .  Angular coordinates of the sublattice nlagnetizations in the crystal- 
lographic coordinate system. 

for which the main state of the weak ferromagnet in the 
absence of a magnetic field is the state F=(O,O,F,), 
G=(G,,O,O)-the so-called r4 phase.') 

In the chosen hierarchy of magnetic parameters, the pre- 
ferred plane of rotation of the antiferromagnetism vector G is 
the ac plane of the crystal. We will make use of this in our 
subsequent analysis of the dynamics of spin tunneling in the 
materials considered. 

In the case in which the relativistic interactions and an- 
tiferromagnetic exchange are small in comparison with the 
isotropic exchange interaction (this latter interaction being 
the main interaction), their influence can be treated as a small 
perturbation. In this approximation the dynamics of spin tun- 
neling in the adiabatic limit is described according to Ref. 24 
by the Lagrangian 

cos 8,) + ( H ) ,  

where cpj and Bj are the polar coordinates of the spins, s is 
the spin of the magnetic ion, and h is the quantum of action, 
and the summation is carried out over all magnetic ions. 

Inside the magnetic sublattices the spin is bound by the 
strong exchange interaction. In this context, it is natural to 
break down the sum in Eq. (2) into a sum over sublattices, 
assuming the rotation of the spins inside each of them to be 
coherent. Combining the four sublattices of the weak ferro- 
magnet in two pairs, we arrive at a two-sublattice model 
which recommends itself for the study of the magnetody- 
namics of the domain boundaries in ~rthoferrites. '~~'~ In this 
case F = ( M l + M 2 ) I M o ,  G=(Ml-M,)IM,,  where M I  
and M2 are the magnetizations of the combined sublattices, 
and M o = ( M l ( + ( ~ , 1 .  

We choose a coordinate system with polar axis along the 
b axis of the crystal, and reckon the azimuthal angle from the 
a axis (see Fig. 1). For convenience, we introduce, in anal- 
ogy with Ref. 25, new dynamic variables for the direction 
angles of the magnetization of the sublattices: 
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In the new variables f l = ( O , ~ , P , c p )  the components of 
the vectors F and C take the form 

F,= -sin 0 sin cp cos F sin p 

+ cos 0 cos cp sin E cos p ,  

- F,= sin 0 cos cp cos E sin p 

+cos 0 sin cp sin E cos p ,  

F , =  -sin 8 sin E ,  

G-,= sin 0 cos E cos cp cos ,6 

- cos 8 sin E sin cp sin p ,  

-G,=sin 0 sin cp cos E cos p 

+cos 8 cos cp sin E sin p ,  

G,=sin 0 cos E ,  

Consequently, the Euclidean action SE=$m, L d r ,  tak- 
ing Eqs. (1)-(4) into account, is equal to 

= u0(-+~[liM,(cp,~in Y E sin 8- 8, cos E cos 8+ cpl) 

A 
+--(sin2 E cos2 P+ sin2 P sin2 8) + d sin P cos /? 

2 

6 1 
x(sin2 &-sin2 @)+-(sin 8 cos E cos p cos cp 

2 

- cos 6 sin E sin p sin (p)2 

63 + -(sin 0 cos E cos / ?  sin 
2 

x cp+ cos 8 sin E sin / ?  cos (p)2  - M ~ F . H  d r ,  ( 5 )  I 
where uo is the volume of the particle and r= i t  is imaginary 
time. The first term in the integrand (5 )  describes the so- 
called topological Berry phase27 responsible for the effects of 
instanton in ter feren~e. '~ . '~  The remaining terms are due to 
the exchange, relativistic, and Zeeman interactions in the 
system under consideration. 

The amplitude of the conditional probability of a transi- 
tion of the spins from the state 16) to the state le) (the propa- 
gator) is given, according to theory?8 by the path integral 

where s E ( a ) = $ ; ~ ( f 2 ) d ~  is the action along the path 
a ( r )  in imaginary time r= it ,  T is the total transition time, 

and N is a normalization factor. In the quasiclassical limit 
IS,I B h the main contribution to the integral (6) comes from 
the instanton trajectories fL, that minimize the action 
SE(f2) and satisfy the variational equations 
8SE/8fi1n=f2,=0. The one-instanton contribution to the 

probability amplitude in this case is equal to 

where ~ g = ~ ~ ( f l , ~ , )  is the classical action on the instanton 
path and S2sE is the second variation of the action. 

According to Ref. 40, it is easy to obtain the quasiclas- 
sical expression for the multi-instanton probability amplitude 
in a system of two symmetric potential wells: 

Kb,-exp ia - - sinh - [ "LT] [;I 

where Eo  is the energy of the ground state, A is the energy 
splitting, and a is an arbitrary phase. Then the tunneling rate, 
expressed in terms of the probability amplitude of a one- 
instanton transition, is 

The value of the pre-exponential factor A, is determined by 
the fluctuation contribution to the integral (6) near the corre- 
sponding tunneling path and, according to is 

where ip is a linear operator associated with the second 
variation S2SE, and describes the fluctuation spectrum near 
the corresponding path; d e t l [ i p ( ~ , ( r ) ) ]  is the product of 
the eigenvalues of this operator on the path a, (the prime 
indicates that the zero eigenvalue is to be omitted when cal- 
culating the determinant); det1[ip(a,(+m))] is the product 
of the eigenvalues of the fluctuation operator near equilib- 
rium states of the system a , (?m).  

In the presence of multiple independent instanton trajec- 
tories, Eq. (9) generalizes trivially to 

We consider three different cases in which the magnetic 
field acts along one of the crystallographic axes of an ortho- 
rhombic crystal. 

3. H(la. MACROSCOPIC QUANTUM TUNNELING IN THE 
ANGULAR PHASE 

Analysis of the energy (1) shows that (see also Ref. 22) 
for Hlla and fields H <  H,= - Hd/2+ J ( H , / ~ ) ~ +  H,H, that 
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are not too strong, where H,,=dIM0, M,=A/M,, and 
HA = (b3 - b , ) lMo,  there are two energetically degenerate 

0 equilibrium positions .1L+ = (0=  n/2,~=0,/3=~O,cp= cp,), 
where p 0 = ~ , l / ~ , ( 1 - ~ 2 / ~ A ~ , ) ,  and s i n c p ~ = H ~ , ~ /  
HAHE( l - H2/HAHE). Between these states macroscopic 
quantum tunneling of spins is possible. For fields H>HC a 
stable phase is the nondegenerate phase T2: 
fll.2= (~/2,0,P(H),.rr/2), in  which macroscopic quantum 

tunneling of spins is impossible. 
Let us calculate the spin tunneling rate for H(la as a 

function of the magnetic field at zero temperature. The 
Euler-Lagrange equations in this case have the form 

iM, 
-(-sin E sin 0),+b.3(cos E sin /? sin 0 cos cp 

Y 

+sin E cos /3 cos 0 sin q ) ( -  cos E sin p sin 0 sin cp 

+ sin E cos p cos 0 cos cp) + b I (cos F sin p 

X sin 0 sin cp- sin E cos p cos 0 cos cp)(cos E sin p 

X sin 0 cos cp+ sin E cos /3 cos 0 sin cp) 

+MoH(cos e sin P sin 0 cos cp 

+ sin E cos /3 cos 0 sin cp) = 0. ( 124  

Taking into account that the preferred plane of rotation 
iM, 
-(cp, sin E cos 0+P,  cos E sin $)+A sin2 p sin 0 of the antiferromagnetism vector is the u c  plane of the crys- 

Y tal, we search for instanton solutions near 

X cos 6- 2d sin P cos P sin 6 cos 6 a= ( 7 ~ / 2 , p , ~ ,  p).  At 0= 7r12 the first equation (12a) is sat- 
isfied out to terms of order (dlA12. In this same approxima- 

+b3(cos E sin p sin 6 tion it follows from the second and fourth equations that 

Xcos cp+ sin E cos p cos 6 sin cp) 
Mo 2 

E G  -i-cpT+O(dlA) , 
X (cos E sin p cos tJ cos cp YA 

(13) 

-sin E cos p sin 6 sin cp) 

+bl(cos E sin j? sin 0 sin cp 

-sin E cos p cos 0 cos cp)(cos E sin p cos tJ sin p Substituting Eqs. (13) and (14) into (12c), and noting 

+sin E cos /? sin 0 cos cp) that O r  7r/2+ R d l ~ ) ~ ,  we obtain 

X l  - 
iMo -- p,,+b3(sin cp-sin cpo)cos p=O, 
-(cp, cos E sin 6+P ,  sin E cos 6)+A sin E cos E Y 

(15) 

Y 

xcos2 p+sin E cos E sin P cos /3+b3(cos E sin p where sinqo= -Hd/Hg3, i 3=(b3 -b l ) ( l  - H2/ 
H A H E ) ,  and X ,  = M ~ I A .  

X sin 6 cos cp+ sin E cos p cos 0 sin cp) This equation has the first integral 

X(-sin E sin /3 sin 0 cos cp 

+cos E cos /3 cos 6 sin cp) 
X I  2 b3 

--cp,- -(sin cp-sin cpo) '=~,  
2~ 2 

(16) 

+b,(cos E sin p sin 0 sin cp-sin E cos /3 cos 6 
where E is the constant of integration. 

X cos cp)( - sin E sin p sin 6 sin cp- cos E cos p Integral (16) gives the phase portrait of Eq. (15) shown 
in Fig. 2. The separatrix of the solution, which joins the 

X cos 6 cos cp) equilibrium points cpo= - ~ 1 2 2  6+ 2 m  (n = O,+ 1, 

+ MoH( - sin E sin P sin 6 2 2, . . . ), where S= c o s - ' ( d ~ / b ~ ~ ~ ) ,  describes the instanton 
trajectories. There are two types of instanton solutions: 

x sin cp - cos E cos p cos 0 cos cp) = 0 (12b) 
7- 

iMo 2 
-(cos E cos B),+ A sin P cos /3 (sin2 0- sin2 E)  + d 

Y 
( 1 7a) 

X cos 2p(sin2 E - sin2 6) + b3(cos E sin p sin 0 cos cp and 

+sin E cos p cos 0 sin cp)(cos E cos p sin 0 cos cp ~r 

-sin E sin /3 cos 6 sin cp) + b [(cos E sin p sin 6 sin cp 2 
(17b) 
\ ,  

-sin E cos /3 cos 6 cos cp)(cos e cos p sin 6 sin cp 

+sin E sin /3 cos 0 cos cp) + MOH(cos E cos /3 sin 0 where w= J K s i n ~ ,  n=O,* I , - c ~ ,  . . . 
The contributions to the action corresponding to these 

X sin cp + sin E sin p cos 6 cos cp) = 0, (12c) trajectories are given by 
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xcos2 c ( S c 2 +  S p 2 ) + ( ( b j - b I ) c o s  2cp- M ~ H / ?  

X sin cp)SP2+2( - MoH sin e sin cp)(%,dH 

( 2 d -  MoH sin cp)P- b 

FIG. 2. Phase portrait of Eq. (15). 

Here, we can complete the square in the angles SE and 
S,8 and integrate the Gaussian integral in the formula for the 
transition amplitude (7) over these variables. As a result, we 

2u 2Mouo obtain the effective action describing the tunneling dynamics 
~ t ' = L G ( s i n  S- S cos S)+i- 

Y Y * (Iga) near the instanton path: 

and 

The imaginary terms in Eqs. (18a) and (18b) come from 
the topological Berry phase in the action (5). They define the 
phase shift in the tunneling probability amplitudes over the 
corresponding instanton trajectories. But the difference of 
these two phases is equal to 

where So,  the total spin of the sublattice, is a multiple of 
2 7 ~ .  Therefore, the imaginary part of the action has no effect 
on the total tunneling probability and instanton interference 
does not arise in this case. By summing over all the instanton 
and anti-instanton tunneling trajectories (as was done in Ref. 
13), it can be shown that the tunneling rate is given by the 
sum of the one-instanton contributions (9) over the types of 
trajectories found: 

2 
XlV0 

- M o H P  sin cp) aP2+ 2-( A Y - MoH sin E sin cp) 

(2d-AP-  MoH sin cp)P 

where we have replaced the time variable T by the new 
variable s = h y2r/X,uo. 

Thus, in contrast to a ferromagnet," the fluctuation dy- 
namics turns out to be equivalent to two coupled oscillators 
with potential energies which depend, generally speaking, on 
the instanton trajectories (17). In the case H = O  the oscilla- 
tors are independent. Let us consider the fluctuation contri- 
bution for this case to the path integral. Making the transition 
to integration over the amplitudes of the eigenmodes of the 
aforementioned trajectories, as was done, for example, in 
Ref. 29, we obtain the following expression for the prefac- 
tors: 

where we have introduced the notation 

To calculate the prefactors A ( ' )  and A ( ~ ) ,  we consider 
the fluctuation part of the action and 
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Calculation of the first ratio of determinants in Eq. (22) 
reduces, according to Ref. 30, to finding the asymptotic limit 
of the corresponding instanton solution (p(j'(s) as s+ f m. 

Specifically, if 

dcp(j) 
lim - = Q ( J ) ~ - P I s I  

b , +  db,-b, 
11 "- 

$-+?lo L" 

then the desired ratio is 

where we take 

Here it should also be noted that the zero mode of the op- 
erator associated with the fluctuations in cp arises by virtue of 
temporal translational invariance relative to the center of the 
instanton when calculating-the transition amplitude. 

To calculate the second ratio of determinants, we need to 
know the asymptotic behavior of the solution of the bound- 
ary value problem for the second fluctuational operator, in 
contrast to the previous case, where it was related to the 

Taking Eqs. (23) and (24) into account, we obtain the 
final expression for the tunneling rate in zero field 

where we have set st= 2X,vowolY2. The dependence of 
the tunneling rate (25) on the volume of the particle for 
YFe03 is plotted in Fig. 3. In the calculations we assumed 
the following values of the material parameters: 
Hd= 1.4X 1050e, H E =  6.4X 1060e, H A =  5.3X 1020e, and 
Mo= 1800 G (see Ref. 22). 

Note that for d2/A B b3,  the influence of the fluctuations 
of the angle 0 on the pre-exponential factor becomes negli- 
gible, and calculation of the tunneling rate, as was evident in 
Eq. (21), reduces to a one-dimensional problem. For simplic- 
ity, we assume in what follows that d2/ABb3.  In this case 
D:)= 2 ~ i n i 5 ( ~ , v ~ w l h ~ ) ~ / ~ ( ~ e ~ ~ ) / 2 h ) -  'I2, and for an arbi- 
trary magnetic field H < H ,  the tunneling rate has the form 

S(i) 
r ( H ) = 4  ds sin S. w3I2 exp[ - %]. (26) 

j= 1.2 

asymptotic limit of the instanton solution. The corresponding 
calculations for the case H = 0 lead to the result (see Appen- Figure 4 shows the dependence of the tunneling rate on 

dix A) the magnetic field, calculated for YFe03 at three values of 

- 112 the particle volume: vo= 5, 10, 20 nm3. The magnitude of 
the energy barrier separating the equilibrium states decreases 
with increasing field strength, while the tunneling rate grows 

.li) - exponentially. However, in the immediate vicinity of the 
0 - critical field of the phase transition from the angular phase 

to the phase r 2 ,  in conjunction with the vanishing of the 

FIG. 3. Dependence of the tunneling rate in the absence of n magnetic field FIG. 4. Field dependence of the tunneling rntc of YFeO, nanoparticles for 
on the volume of the particle of YFeO, . Hila: I )  u,= 5 nm', 2) o,= 10 nm3, 3) uo=20 nm3. 
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resonance frequency (the soft mode of the transition 
wl,, , I , ,  = 0 ) ,  the tunneling rate decreases abruptly. 

4. HI1 b. MACROSCOPIC QUANTUM TUNNELING IN THE 
ANGULAR ANTIFERROMAGNETIC PHASE 

In the case Hllb, analysis of the energy (I)  shows that 
the magnetic field fails to lift the energy degeneracy of the 
equilibrium states with oppositely directed antiferromag- 
netism vector Gl(?a all the way to the field of sublattice 
collapse H,flj,,= H A  + H E  (the spin-flip transition field). 
Therefore, over the entire field range H <  Hsflj,,, quantum 
mixing of coherent spin states with Gll r a is possible. The 
transition matrix element between these states can be calcu- 
lated in analogy with the previous case. 

The variational equations 6SE / ail!= 0, as our analysis 
has shown, have approximate solutions of the following 
type: 

Mo sin EX-j-cp,--+O - (Ad)' YA H E  

Here q ( r )  satisfies the equation 

XI - 
- 7cp,,+b3 sin cpcoscp=O, 

Y 
(28) 

where g3 = (b3 - b 1 - H ~ / H ~ ) .  The effective action, 
obtained by substituting relations (27) into Eq. ( S ) ,  has the 
form 

An analogous action describes the dynamics of the magneti- 
zation of a single-axis antiferromagnet in a magnetic field.15 
Antisymmetric exchange in the case Hlld does not have a 
substantial effect on the spin dynamics. Solving Eq. (28), we 
obtain the instanton trajectories 

cpt  = f -2  arctan{exp[w(~- rO)]), (30) 

where w = YJK is the antiferromagnetic resonance fre- 
quency. Contributions to the action on these trajectories dif- 
fer only in their imaginary part 

The term i i M o u o r r l  y= Ti2rrfiSo (So is the total spin of 
one sublattice) leads to phase differences that are multiples 
of 2rr in the transition probability amplitudes of alternative 
trajectories, which does not show up in the instanton inter- 
ference. However, the field contribution to the imaginary part 
of the action does result in inteference of instanton ampli- 
tudes. Calculating the total probability of the transition from 
cp=O to cp=(2n+l)7r (n=0,21,?2 ,  ...) by summing 
over all the instanton and anti-instanton trajectories, we ob- 
tain the following expression for the tunneling rate: 

where SCI= Re S; = 2~ Jb"3XI/ y and 

It can be shown that for H=O, the ratio of determinants is 
given by (24), i.e., 

and for d 2 / ~ 9 b 3  or H+HA we heve Do= 1. 
Thus, in contrast to the case Hlla, the magnetic field 

creates a phase shift in the tunneling amplitudes over alter- 
native trajectories, as a result of which they interfere. Con- 
sequently, the tunneling rate oscillates with period 
AH = H,/2So, where So is the total spin of one sublattice. 
Interference suppression of tunneling of the magnetization in 
a weak ferromagnet is reminiscent of oscillations of the cur- 
rent of electrons scattered by a magnetic field in the Bohm- 

Aharonov effect.31 Moreover, an action that takes a form 
similar to (5 ) ,  as noted in Ref. 17, describes field interference 
of electrons in a metallic conductor with charge density 
waves. The magnetic field here plays the role of a normal- 
ized magnetic potential. Instanton interference also arises in 
single-axis ferromagnets, in which the magnetic field is per- 
pendicular to the easy axis.'' The period of the oscillations, 
however, in a ferromagnet is determined by the magnetic 
anisotropy field H A ,  while in antiferromagnets, it is deter- 
mined by the exchange field H E .  Thus, the presence of a 
spontaneous moment in the given case has no effect on quan- 
tum interference of the tunneling amplitudes, in contrast to 
an uncompensated antiferromagnet, in which the presence of 
a spontaneous moment can lead to dependence of the mac- 
roscopic quantum coherence on the uncompensated spin, as 
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FIG. 5. Field dependence of the tunneling rate of the antiferromagnetism 
vector on the angular phase for Hllb: I )  uo= 5 nm3, 2)  uo= 10 nm3, 3 )  
u,=20 nm3. The inset shows an enlarged fragment of the field dependence 
at the point A. 

in a ferromagnet.lg Figure 5 plots the field dependence of the 
tunneling rate for YFeO,, calculated according to Eq. (32). 
Note that the lack of any influence of the dissipative envi- 
ronment of the spins, lattice vibrations, magnetic impurities, 
or other factors is essential for the quantum tunneling effects 
considered here.2) 

5. Hllc. MACROSCOPIC QUANTUM TUNNELING IN THE 
REGION OF MAGNETIC HYSTERESIS 

The last of the three cases which we consider has to do 
with spontaneous remagnetization in the region of magnetic 
hysteresis, when the magnetic field H<H,=HD12 
- J ( H , / ~ ) ~ -  HAHE, is anti-aligned with the equilibrium di- 
rection of the magnetization Fllc (in this case Glla). This 
state is metastable, and by virtue of quantum fluctuations, 
can transition to the stable equilibrium state with FllH and 
Gll - a. For H > HA , this equilibrium state is nondegenerate 
due to the antisymmetric exchange interaction, which in- 
duces a spontaneous magnetic moment that depends on the 
direction of the vector G. 

In contrast to the two previous cases Hlla and ~ l l b ,  in 
which tunneling leads to quantum mixing of the energetically 
degenerate phase states of the spin system, here a resonant 
interaction takes place between the wave function of the 
metastable state Ib) and the wave function le) of the nearest 
excited energy level of the deeper potential well with FIIH. 
The tunneling process in this case can be arbitrarily divided 
into two steps: sub-barrier motion up to the turning point and 
the transition to the resonance level. 

The trajectories of sub-barrier motion are found from the 
variational conditions 6SE 1 6$2= 0. Proceeding analogously 
to the preceding cases, we find the trajectories passing near 
the a c  plane of the crystal. Analysis of the Euler-Lagrange 
equations shows that the desired solutions have the form 

and the dynamics of the angle cp are described by the effec- 
tive action 
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FIG. 6. Phase portrait of the dynamical equations corresponding to the 
action (34). 

X(1 -cos cp)(cos cp-cos 6) , I (34) 

where 63=(b3-b , ) (1  + H * I H ~ H ~ )  and 6=cos-'(-1 
+ 2 d ~ l b , H , ) .  The first integral of the dynamical system 
defined by the action (34) takes the form 

XL 2 b3 
-q,- T ( l  -cos cp)(cos cp-cos 6 ) = E .  
2Y 

(35) 

Figure 6 shows the phase portrait of this system, con- 
structed according to Eq. (35). As can be seen from the fig- 
ure, there are two alternative instanton solutions departing 
from the point cp= 0, corresponding to the zero value of the 
first integral and having different turning points 
a, = (a/2,0,/?o, 5 6), where Po= dlA - HcosA'HE. Inte- 
grating relation (35) over time, we obtain the two instanton 
trajectories 

2 tan[6/2]exp[w(~- rO)] 
cp = 5 2 arctan 

1 + sxp[2 w(7- >to)] ' (36) 

where w = \j( 1 - C O S ~ & I ~ ~ ~ .  

The contribution to the action in the instanton solutions 
is easily found by evaluating the integral in expression (34), 
taking account of the integral relation (35) 

Consequently, the contributions to the tunneling rate of the 
trajectories (36) are 

where A(H)=A*(H)=A-(H).  
The transition amplitude to state le) can be obtained 

approximately, as in Ref. 12, by expanding it in terms of the 
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transition amplitudes to the coherent states I n )  and noting for So half-integer and odd wave functions le). Here 

that the dominant contribution is due to transitions via the ~o=2h&loo,  ~ ~ ~ ~ = 4 b ~ ~ a ~ ~ ~ ~ ~  , m f 0. 

states l i l t ) ,  i.e., From these forn~ulas it follows that in the absence of a 
magnetic field, when S= T, freezing of tunneling due to in- 

where ( i l t l e )  is the projection of the resonant level on the 
coherent states In,). We can then write down the expres- 
sion for the decay rate of the metastable state 

To analyze expression (40) further, we expand the wave 
functions (a, 1 and 1 e) in eigenfunctions of the z-projection 
operators for the total spins of each sublattice IS:)): 

stanton interference, in contrast to the case of a ferromagnet, 
takes place neither for Kramers-type nor for non-Kramers- 
type ions. However, for H=HCI- d m ,  when 
(Y= ~ 1 2 ,  in a weakly ferromagnetic particle with half-integer 
spin of the sublattices the tunneling rate to a resonant level 
vanishes. There is no such effect for particles with integer 
spin, and only nonmonotonic variations of the tunneling rate 
with varying magnetic field are possible, due to the fact that 
a set of harmonics drops out of the expansion (43) at certain 
values of the magnetic field, for example, when S= ~ 1 4 ,  
3 ~ 1 4 ,  etc. Such a dependence of the tunneling rate on the 
field, as follows from Ref. 12, is also possible in a ferromag- 
netic particle. 

It should be noted that in the presence of a dissipative 
environment, relaxation processes will influence the charac- 
ter of the instanton interference, going so far as to suppress 

= n ei,pjSoZ (s~)le-;vjs:"bs(,), 
j =  1,2 s(j) z 

(41) it. In that case, due to quantum fluctuations, the decay of the 
z metastable state will vary monotonically with the field, ac- 

where cording to the envelope of the tunneling rate (38). 

and So is the total spin of the sublattice. Analogously, 

The excited state Je) in the quasiclassical approximation 
corresponds to the resonant eigenmode of the oscillations of 
the sublattice spins that satisfies the equations SSE / S a =  0 
in real time and has the form a= ( T / ~ , E , / ~ , ( P ) ,  where E and 
/3 are related to cp by (33), and the angle cp oscillates with 
amplitude S. The fact that the projection of the antiferromag- 
netism vector on the z axis vanishes in the resonant mode 
implies that s:')=s?), i.e., that the oscillations of the 
z-components of the spins in the sublattices are identical. 
This gives us the right to set a ( 1 )  (2)=0 in expansion (42) 

Sz SL 

for the wave vector le), if S(,') # SF).  In addition, from the 
invariance of the master Hamiltonian (1) (for d l  = - d3) un- 
der a simultaneous change of sign of the z components of the 
sublattice spins s(,') , ~ ( , 2 ) +  - s(,'), - ~ ( , 2 )  , it  follows that 
the wave functions le) divide into even and odd with respect 
to such an inversion operation. For the even functions 
(le)even), a . ( l )  (2)=a_S(~)-S(z), and for the odd (le),dd), 

$; Sz z z 
a ( 1 )  ( 2 ) =  - a - ~ ( l ) - ~ ( 2 ) .  Hence, after substituting relations 

Sz Sz i 7. 

(41) and (42) into (39) and regrouping terms, we obtain 

Sn 

for So integer and even wave functions le), and 

Sn- 112 

6. RESULTS AND DISCUSSION 

Thus, we have shown that in a single-axis antiferromag- 
netic particle with antisymmetric exchange the field depen- 
dence of macroscopic quantum tunneling of spins signifi- 
cantly depends on the orientation of the magnetic field in the 
crystal. When the magnetic field is aligned with the antisym- 
metric exchange vector (H((d), quantum mixing of energeti- 
cally degenerate states with anti-alignment of their antiferro- 
magnetism vectors (GI1 ?a) is possible, with resultant energy 
splitting of the ground state up to the field that collapses the 
antiferromagnetic sublattices Hsm= HE+ H A  . In weakly fer- 
romagnetic particles of the type YFeO, , in which the spins 
are reoriented in the a c  crystal plane, thanks to the presence 
of alternative instanton trajectories, the corresponding tun- 
neling amplitudes interfere, which leads to periodic freezing 
of macroscopic quantum tunneling in a magnetic field with 
period proportional to the exchange interaction of an elemen- 
tary spin pair AH HE ISo. A similar analysis for a different 
magnetic anisotropy, e.g., in compounds of the type 
DyFeO, or TrnFe03, in which the preferred plane of rotation 
in weak magnetic fields is the a b  plane of the crystal, shows 
that quantum interference of instantons is suppressed by the 
anisotropy. However, in the region of strong fields exceeding 
the characteristic field Hsp,,= dH,H,H,H, (the spin-flop transi- 
tion field), interference of antiferromagnetic instantons will 
also occur, as in the first case, since in this field region the a c  
plane becomes energetically favored. The described mecha- 
nism of freezing of macroscopic quantum coherence spin- 
states in a magnetic field due to instanton interference can 
also arise in a ferromagnetic particle. However, the periodic- 
ity of variation of the tunneling rate in this case is governed 
by the anisotropy energy of an elementary spin.10 

If the magnetic field acts perpendicular to the antisym- 
metric exchange vector (KL d) and does not remove the en- 
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ergy degeneracy (when Hlla), then tunneling of the antifer- 
romagnetism vector between degenerate angular phases is 
not acconlpanied by instanton interference in compounds of 
the type YFe03, since in weak fields 
H<H,.= - H,//2+ J ( H , / / ~ ) ~ + H ~ H ~  where (and only 
where) energy degeneracy of the angular phases in such a 
particle exists, antiferromagnetic interference is suppressed 
by anisotropy (in "ab-crystals" it arises when H>H,F,/OP). 

Finally, when the magnetic field acts along the main 
crystallographic axis (Hllc) it is possible to observe sponta- 
neous remagnetization associated with quantum fluctuations 
in the region of magnetic hysteresis. Here quantum interfer- 
ence of instantons also takes place, but its mechanism differs 
from the previous one. This is because the intermediate co- 
herent spin states la+) to which the system transitions as a 
result of alternative sub-barrier motion are not identical. 
They can transition one into the other thanks to coherent 
rotation of the spins in a magnetic field if the conditions of 
phase synchronism are satisfied. Because of this oscillations 
of the tunneling rate arise, whose period is determined by the 
coercion field AH blm. As in a ferromagnet with half- 
integer total in the case under consideration total 
freezing of macroscopic quantum tunneling is possible if the 
total spin of an individual sublattice is half-integer. However, 
it takes place not in zero field, but in a finite field within the 
magnetic hysteresis range, when H =  Hd- and 
when the value of the rotation angle of the antiferromag- 
netism vector at the turning point in the tunneling reaches 
6= .rr/2. 

The instanton interference effects considered here are 
strongly related to coherent rotation of the spins. The inter- 
action of macroscopic spins with lattice vibrations, spin- 
wave excitations at zero temperature, etc., can change the 
picture of macroscopic quantum tunneling. As was pointed 
out in Refs. 34 and 35, the quantum coherence of spins may 
be most greatly affected by the presence of weakly coupled 
spins in a dissipative environment, creating topological de- 
coherence and being responsible for other mechanisms of 
decoherence. To minimize such effects, it is necessary to use 
nonmagnetic bonding media, and as the magnetic ions in the 
particle itself, one should use isotopes with zero nuclear spin 
such as 5 6 ~ e  and 5 9 ~ i .  The influence of a dissipative environ- 
ment can be crudely taken into account by assuming the 
absence of magnetic impurities on the basis of the model 
proposed in Ref. 36 of a dynamic system with one degree of 
freedom, linearly interacting with the field of oscillators. If 
the dissipative function of the system has the form 
R = vP:, where 77 is the characteristic damping parameter, 
then, according to this model, sub-barrier motion of such a 
system is described by the effective action 

In antiferromagnets the dissipative function can be writ- 
ten as 

where N is Gilbert's magnetic relaxation parameter. There- 
fore, for trajectories that pass close to the uc-plane, we have 

Consequently, in our case the effective action takes the form 

Mobility measurements on domain boundaries in YFeO, at 
T = 4  K (Ref. 37) yield a g 5 X  Therefore, the last term 
in the action (46) can be treated as a perturbation and can be. 
estimated using the instanton solutions obtained above. Thus, 
for H = 0, when q ( r )  = +2arctan[exp(w7)1, we obtain 
S,ff=SE((r=O)+aMovo/2y. For particles with volume 
uo = 5 nm3 the correction to the tunneling rate is 

In compounds such as TmFeO, , in which a = 0.4, it is no 
longer possible to treat the dissipative term as a perturbation. 
In this case the tunneling probability becomes exponentially 
small. 

Thus, YFe03 is a very promising weakly-ferromagnetic 
material for observing macroscopic quantum tunneling. 
However, it should be noted that the estimates we have made 
here are quite crude and do not take account of the "freezing 
out" of phonons and spin excitations at zero temperature 
(and possibly other effects as well). It is possible that at very 
low temperatures the influence of a dissipative environment 
in orthoferrites with strongly anisotropic ions is not so great. 
But in this case it must be borne in mind that in RFe03 
compounds with ions of the type Dy, Tb, the spin tunneling 
dynamics can differ substantially from that considered here: 
because of the strong relativistic interaction in rare-earth 
ions, compared with the exchange interaction, they behave 
like "pseudo-Ising" ions. To describe the spin dynamics of 
such ions, it is necessary to allow for their interaction with 
multipole moments, as was done, for example, in Ref. 39. 

In real experiments, decompensation of the magnetic 
sublattices can arise in the particles due to fluctuations of the 
magnetic ion density." Some aspects of macroscopic quan- 
tum tunneling in decompensated antiferromagnets were con- 
sidered by Chudnovsky in Ref. 19. If the spread of the mag- 
netic moments is not large, specifically, if 
A M I M o 4  d m ,  which in YFe03 is roughly 3%, then 
the particles will behave as if they are weakly ferromagnetic, 
since the dominant influence on spin reorientation then 
comes from the spontaneous weakly-ferromagnetic moment 
M,lIMo H,IH,. In this case, however, changes in the in- 
stanton interference pattern are possible, associated with pos- 
sible additional topological contributions to the action (in 
this regard, see Ref. 19). In particular, for Hlla the presence 
of a half-integer uncompensated spin leads to freezing of 
macroscopic quantum tunneling over the entire range of 
magnetic fields. For ~ J l b ,  in the region of weak magnetic 
fields H G HsflO,, , the field dependence of the tunneling rate 
for integer and half-integer uncompensated spin will differ 
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FIG. 7. Temperature dependence of the magnetic specific heat of a nano- 
particle in the n~acroscopic quantum coherence state. 

by a field shift of a half-period of the quantum oscillations, 
starting from zero for half-integer spin. At high magnetic 
fields, the interference pattern remains essentially un- 
changed. In general, however, to describe the peculiarities of 
the influence of decompensation on macroscopic quantum 
tunneling in a weak ferromagnet a separate analysis is nec- 
essary. 

In conclusion, we note one more possibility of experi- 
mentally detecting macroscopic quantum coherence. In addi- 
tion to existing methods for observing macroscopic quantum 
tunneling by low-temperature magnetic relaxation223 and the 
resonant response to a weak external field,'938 we consider 
possibilities for observing this effect based on the thermody- 
namic properties of the behavior of small particles with two 
close-lying energy levels at superlow temperatures 
T< T* = hwlkB. AS is well known, for systems with split- 
ting of the ground state into two close-lying levels with 
width A = 2hT,  the expression for the magnetic contribution 
to the partition function has the form 

where Eo is the ground state energy. Hence we obtain the 
entropy of the system 

and the magnetic specific heat 

From an analysis of (49) it follows that the specific heat 
Cn,ag(T) has a maximum at T* = 0.417AlkB equal to 
Cmag(T*) = 0.44kB (Fig. 7). Thus, after measuring the spe- 
cific heat of a magnetic particle, it is possible to obtain a 
numerical estimate of the energy splitting and the tunneling 
rate by determining the temperature at which it reaches its 
maximum value. Thus, for a YFe03 particle of volume 
5 nm3 in an external field corresponding to the maximum 
value of the energy splitting, T"z0.12 K (in zero field 
T " z 0 . 4 6 ~  K). For temperatures of the order of a 

hundred millikelvins the phonon specitic heat of the lattice in 
the case of one particle can be estimated from 
C,,,,,,(T) = ( 4 ~ ~ / 5 ) ~ ~ ~ ~ ~ , ~ ( x ) ( ~ / 8 , ) " ,  where @ID= ( j 2  (u)l  
kB) (6 T 'N~)  ' I 3=  678 K ((u) = 4.3 x 1 ~ ~ c r n l s  is the average 
speed of sound in the crystal, No=1.5X 10~'cn1-' is the 
number of atoms per unit volume). Since CPl1,,,(0.12 K) 
-2.6X 1 0 - ~ k ,  in the case under consideration, the phonon 
contribution to the specific heat can be neglected in compari- 
son with the magnetic contribution. These estimates demon- 
strate that the tield dependence of the frequency splitting in 
the state of macroscopic quantum coherence of antiferromag- 
netic nanoparticles can, in principle, be used for magnetic 
adiabatic cooling to superlow temperatures, as in the para- 
magnetic nuclear relaxation e f f e ~ t . ~ '  
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APPENDIX A 

We consider the eigenvalue problem for the fluctuation 
operator 

Such an operator describes the fluctuation dynamics of the 
angle 8 in normalized variables whose spectrum determines 
the magnitude of the pre-exponential factor in (22) and (24) 
in the absence of a magnetic field. The determinant of the 
matrix for the operator i ( s )  is equal to the product of the 
eigenvalues A , of the Sturm-Liouville problem L $j= A j$j 

with boundary conditions d, $( .f Tl2) = 0, i.e., 
det i E H j A j .  It follows from Ref. 30 that the ratio of deter- 
minants D = det i ( s ) lde t  i ( a )  of the matrices of the fluc- 
tuation operators i ( s )  and i ( a )  = - d%+ e 2  can be ex- 
pressed in terms of the asymptotic limit of the solutions of 
the linear equations 

and 

with the boundary condition 

specifically, 

The solution of Eq. (A3) has the form 

To find the solution of Eq. (A2) we make the substitution 
$, = ( I - t2)E'2~1, where (= tanh s, and change of variable 
x =  ( I  - ,912. As a result, Eq. (A2) reduces to hypergeomet- 
ric form 
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The general solution of this equation is 

where 

Taking the boundary condition (A4) into account, we find the 
constants C, and C2 and, in the limit T j  +m, we find 

Consequently, the desired ratio of determinants (A5) in the 
limit T-+ + m is given by 

Noting that the operator (Al) corresponds to the fluctuation 
part of the action (21) for 

formula (A9) then gives 
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"I., denotes the irreducible representation of the spatial symmetry group of 
the crystal D:: (Ref. 23). 

' h e  study of processes whereby a dissipative environment affects macro- 
scopic quantum tunneling of spins is still in its infancy. We direct the 
reader's attention to two interesting papers32.33 that consider the influence 
of acoustic vibrations and nuclear magnctic spins on the tunneling of the 
magnetic moment in a ferromagnet. As shown in Refs. 34 and 35, the 
presence in a dissipative environment of isolated spins radically altcrs the 
tunneling dynamics and can completely destroy coherence. This being the 
case, it would be desirable to minimize the presence of magnetic impurities 
in the particle and the bonding medium according to the rccommcndations 
in Ref. 34 (see Appendix A). 
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