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For a semiconductor close to the interband exciton instability, an effective boson action is 
constructed. It is shown that interactions with transition of particles from band to band lead to the 
appearance in the action of terms that break the global gauge invariance and, therefore, to 
the absence of superfluidity of the exciton liquid. An analogous Bose-liquid action with unbroken 
invariance with respect to a change in the phase of the Bose fields can be constructed for a 
superconductor with a low particle density. To describe the thermodynamics of a spatially 
homogeneous rarefied Bose liquid, a self-consistent approach taking into account the exact 
relationship between the self-energy functions is developed. The equations of the proposed theory 
do not contain infrared divergences, have a universal dimension-independent form, and 
make it possible to describe in a unified manner phase transitions in a Bose liquid with space 
dimension 0 2 2 .  The transition temperature in 3D and 2D exciton semiconductors is 
calculated. In addition, the temperature of BerezinskiT-Kosterlitz-Thouless transition for a 2D 
superfluid Bose system is found. In the case of a two-dimensional doped exciton 
semiconductor, it is shown that there exists a large region in the phase diagram in which the 
Fermi liquid of the excess particles is unstable with respect to phase demixing. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

The possible instability of the ground state of a semicon- 
ductor leading to a phase transition of electron nature in the 
case when the exciton binding energy E,, exceeds the band 
gap E, was first demonstrated in Ref. 1 and was actively 
investigated for several years (see, for example, Refs. 2 and 
3). It appears that at the present time this idea is receiving a 
new development in connection with the appreciable suc- 
cesses in the technology of growing semiconducting hetero- 
structures with prespecified electron spectrum. Indeed, there 
are well-known systems such as superlattices of the second 
kind based on InAsIGaSb compounds in which variation of 
the thickness of the films makes it possible to vary over wide 
ranges the band gap and pass continuously from a semicon- 
ductor spectrum to a semimetal single-electron spectrum.4 It 
is obvious that at a certain thickness we will certainly be able 
to satisfy the condition E,,>E, of exciton instability. There 
have recently been reports of the observation of condensa- 
tion of indirect excitons in heterostructures based on GaAsI 
AlAs (Ref. 5). The same phenomenon can evidently also be 
expected in the InAsIGaSb compounds. In addition, in the 
very near future we can expect the synthesis of new struc- 
tures with controlled variation of the band gap or of the 
binding energy of electron-hole pairs. 

These successes in the experimental domain require a 
reexamination of the existing status of the theory of the ex- 
citon instability in sen~iconductors. Indeed, despite the 30- 
year history of exciton semiconductors, there does not yet 
exist a physically sensible and well-behaved theory for non- 
zero temperatures permitting, in particular, the calculation of 
an important parameter such as the phase transition tempera- 

ture. The generalization to the case T#O of the diagram ap- 
proach of Refs. 2 and 3, which is rather complicated and 
cumbersome even at zero temperature, presents significant 
difficulties. Further, the calculation of the transition tempera- 
ture To in the standard mean field approximation leads to a 
manifestly unphysical result: T O - ~ e x - ~ ,  . This result is, in 
fact, entirely natural, since the usual mean field approach in 
this case is certainly not justified because there is no small 
interaction parameter in the semiconductor. In addition, all 
previous studies concerned isotropic three-dimensional sys- 
tems, whereas the present experimental situation requires the 
construction of a theory for the case of an essentially aniso- 
tropic electron spectrum that is nearly two-dimensional or 
occupies an intermediate position between the 2D and 3D 
cases (size-quantized or layer systems). The latter require- 
ment introduces additional complications on account of the 
increase in fluctuation effects with decreasing dimension. 

Investigation of a 3D exciton liquid at T=O in the limit 
E , , - E , ~ E ,  (Ref. 2) shows that the system behaves like a 
weakly nonideal Bose liquid. Physically, it is obvious that 
this similarity must also be maintained at T f  0. In this paper, 
we propose an approach to the description of a semiconduc- 
tor that is close to the exciton instability based on transfor- 
mation of the original fermionic system to an effective Bose 
liquid of conlposite particles. 

In Sec. 2, we analyze an effective low-energy Bose ac- 
tion of a semiconductor of arbitrary dimension D. The action 
has the standard form of the action of a rarefied Bose liquid 
with binary interaction, and the chemical potential X of the 
bosons is fixed and equal to X = E , , - E ~ .  A similar Bose- 
liquid representation for a superconductor with low particle 
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number was constructed earlier in the paper Ref. 6 of the 
authors. Thus, there is a close connection between the de- 
scriptions of an exciton senliconductor and a superconductor 
in the Schafroth limit, when the number of particles is so 
small that the mean separation between them becomes 
greater than the radius of the two-particle bound state. In- 
deed, these two systems are two realizations of an effective 
Bose liquid with given chemical potential and given particle 
number, respectively. However, there exists a difference, 
which consists of the absence of superfluidity of the exciton 
liquid due to the presence in semiconductors of interactions 
that violate the particle conservation law in each band and 
lift the degeneracy of the effective action with respect to the 
phase of the Bose fields. This question is considered in detail 
in Sec. 3. 

The transition to Bose variables makes it possible to un- 
derstand clearly and formulate the basic problems in the con- 
struction of the theory of exciton semiconductors at finite 
temperatures. To a large degree, these are associated with the 
complexity of the microscopic description of the thermody- 
namics of a Bose liquid over a wide temperature range, es- 
pecially for systems of low dimensionality. Indeed, the dia- 
gram series of perturbation theory for a Bose liquid even in 
the 3 0  case converge poorly because of the singularities at 
small momenta in the diagrams of higher orders. 

Nevertheless, already the first order (or the equivalent 
Bogolyubov approximation) for a three-dimensional rarefied 
Bose liquid gives a sensible result for T o ,  which is equal to 
the condensation temperature of an ideal Bose gas (see, for 
example, Ref. 7). In a 2D Bose liquid, the first order is al- 
ready divergent. In particular, there is a logarithmic diver- 
gence in the calculation of the density of the supercondensate 
particles. To compensate this divergence, ~ o ~ o v ~  proposed a 
procedure for taking into account the second order of the 
diagram perturbation theory. This theory made it possible to 
demonstrate qualitatively the possibility of formation of a 
superfluid density in the absence of a Bose condensate in the 
2D system. 

Nevertheless, such an approach cannot be recognized as 
satisfactory for our purposes on account of the impossibility 
of generalizing it to the three-dimensional (and, generally, 
D>2) case and the construction of a unified dimension- 
independent theory, which is needed for the description of 
systems with dispersion laws intermediate between 2D and 
3D. The inapplicability of Popov's formalism for D>2 is 
basically due to the scheme of perturbation theory in Ref. 8, 
which does not permit a self-consistent determination of the 
temperature dependence of the self-energy functions. 

To solve these difficulties, we develop in Sec. 4 a self- 
consistent approximation that is free of divergences for all 
dimensions of space and that makes it possible to describe in 
a unified manner the thermodynamics of a spatially homoge- 
neous rarefied Bose gas for arbitrary 0 2 2 .  The two follow- 
ing sections of the paper are devoted to application of the 
developed formalism to the description of three- and two- 
dimensional low-density Bose liquids, respectively. We men- 
tion that there is good agreement between our results for the 
2D system and the behavior of the XY model when allow- 
ance is made for irrotational fluctuations9 (for more details, 

see Sec. 6) and also agreement of the transition temperature 
To with the temperature obtained in Ref. 7 as a result of 
renormalization-group analysis of a 2D Bose liquid. We 
mention that Secs. 4, 5, and 6, which are devoted to the 
construction of a self-consistent approximation for a 
D-dimensional low-density Bose liquid, can be considered 
independently of the original problem of an exciton semicon- 
ductor or a superconductor with local pairs. 

In Sec. 7, we consider a two-dimensional doped semi- 
conductor that is close to the exciton instability. We show 
that both above and below the line of the phase transition to 
the exciton phase the phase diagram can contain regions in 
which dp/dn<O. This means that there is instability of the 
spatially homogeneous state of the Fermi liquid of the excess 
particles with respect to phase demixing. In this case, the 
nature of the phase demixing is associated with the suppres- 
sion of the exciton instability and the decrease in the density 
of the excitons with the doping as a result of the Burstein 
shift of the exciton energy. Since the renormalization of the 
width of the forbidden band in an exciton semiconductor is 
directly related to the exciton density, the decrease in the 
latter with increasing number n of excess particles causes a 
lowering of the edge of the electron band and, possibly, a 
decrease of the potential ,u with increasing n. It is this pos- 
sibility that is realized in the case of the 2D spectrum. The 
considered mechanism belongs in the framework of the gen- 
eral philosophy of the band approach to the theory of phase 
demixing that has been developed by the authors in connec- 
tion with high-temperature superconductivity during the last 
few years.'0"' A detailed exposition of our point of view 
concerning this phenomenon, and also a review of some very 
varied experiments that obtain a natural interpretation in 
terms of phase demixing, can be found in Ref. 11. Here we 
merely mention that demixing of the electron fluid in a 2D 
doped semiconductor can have a direct bearing on copper 
oxide high-temperature superconductors, in which the role of 
the interband exciton instability is played by instability with 
respect to charge transfer from the copper to the oxygen. The 
existence of such instability for the CuO, plane was first 
demonstrated in Ref. 12. 

2. EFFECTIVE LOW-ENERGY ACTION FOR A 
SEMICONDUCTOR WITH LONG-RANGE INTERACTION 

We consider a semiconductor with band gap E, and 
masses in the conduction band and valence band equal to m,. 
and ni, , respectively. We write the partition function Z in the 
form of a functional integral over Grassmann fields $ , ( r ,~ )  
and &( r ,~ ) ,  which describe the fermionic variables in the 
conduction band and in the valence band: 

where the action s{+,*} has the form 

The term So corresponds to the semiconductor without inter- 
action, 
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and the part of the action Si,,, includes all possible interelec- 
tron interactions. For simplicity, in this section we consider 
only interactions of density-density type, and we ignore the 
spin of the particles. In this case, 

where V , , ( r )  and Vz2(r )  are the potentials of the intraband 
interaction, and V I 2 ( r ) = V , , ( r )  is the potential of the inter- 
band density-density interaction. In the following section, 
we consider in detail the influence of the spin dependence, 
and of the interband interactions that are not taken into ac- 
count in ( 4 ) ,  and that violate conservation of particle num- 
bers in each band and lift the degeneracy in Sin, with respect 
to the relative phase of the fields @,(r , r )  and ~,h~(r,r).  

The presence in the action (2) of the interband interac- 
tion leads to the possibility of bound exciton states. The en- 
ergies E~ and wave functions x j ( r )  of the excitons are deter- 
mined by the following eigenvalue problem: 

where m = m ,  m,lM is the reduced mass and M = m, + m, is 
the total mass of the two-particle state. If the binding energy 
EO of the exciton ground state is so close to the band gap that 

the semiconductor can be described in terms of an effective 
Bose liquid of composite particles. In this section, we shall 
not dwell on the derivation of the effective Bose action for 
the interelectron density-density interaction ( 4 ) .  For the spe- 
cial case V , , ( r )  = V2,(r)= V I 2 ( r )  = e 2 / r ,  detailed calculations 
can be found in Ref. 13. In addition, the corresponding deri- 
vation is largely analogous to the procedure for obtaining the 
Bose action for a superconductor in the Schafroth limit that 
was proposed by the authors of the present paper in Ref. 6. 
The derivation of the low-energy action of the exciton liquid 
in the presence in Sill,  of interband interactions with transi- 
tions of particles from band to band, and also with allowance 
for spin effects, contains some specific features and will be 
considered in the following section. 

The formal procedure of the transition from the original 
Fermi representation in the action ( 2 )  to the Bose represen- 
tation consists of the introduction by means of the Hubbard- 
Stratonovich transformation of intermediate Bose fields that 
decouple the four-fermion terms in Sill, ( 4 ) .  Subsequent inte- 
gration over the Fermi fields leads to an effective action that 
depends only on the Bose fields %(r,r)  of the excitons. If the 
condition (6) holds, the exciton density is low, and this 
makes possible a restriction to only binary exciton collisions. 
This means that in the expansion of the action in powers of 

FIG. I .  Diagranls for bare vertex to  of  the boson-boson interaction. 

the Bose field, terms higher than (pi4 can be ignored. If, as 
usual, the excited states of the excitons are sufficiently well 
separated in energy from the ground state, 
( c g  - c j ) l l  eg - eO1 B 1, then the main contribution to the low- 
energy Bose action comes solely from the Bose field 
( ~ ~ ( r , r ) = ' p ( r , r )  corresponding to the excitons in the ground 
state (s states). As a result, the effective action takes the form 

The spatial scale to of the boson-boson interaction is deter- 
mined by the smallest scale of the problem-the radius 
ro= ( 2 m  E ~ ) - " ~  of the exciton state. This makes it possible to 
write the interaction in local form and subsequently, in the 
investigation of the effective Bose system, the finite range of 
the interaction can be taken into account by a cutoff of the 
momentum integrals at the necessary places. 

The physical nature of the exciton-exciton interaction is 
clear from the diagrams for to in Fig. 1. In the process of 
collision, the excitons decay with subsequent exchange of 
their constituent Fermi particles. If only the interband inter- 
action V , ,  is present in the systetn, only the process repre- 
sented in Fig. 1 a is possible. Such a process leads to boson- 
boson repulsion. If the intraband interaction V i i  is also 
present, there is a contribution from the diagram of Fig. l b  
with interaction of the fermions in the intermediate state. The 
resulting expression for to  has the form 

where x ~ , ~  is the Fourier transform of the exciton wave func- 
tion in the s state. For V l , =  V i i ,  the expression (8) is ob- 
tained, for exan~ple, in Ref. 13. Since it is precisely this case 
that is most naturally realized in semiconductors, we analyze 
the expression for the boson-boson interaction for identical 
potentials of the interband and intraband interactions. Then 
the expression ( 8 )  can be written in the symmetric form 
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FIG. 2. Diagrams for the bare vertex of 

I - - 
a b c 

! i thc fermion-boson interaction. 

Thus, for arbitrary potential V(p), the exciton-exciton inter- 
action always corresponds to repulsion, thereby ensuring sta- 
bility of the Bose liquid of the composite particles. 

We show that for the potential V(r) of an electron- 
electron interaction of arbitrary range, 

where the coefficient of proportionality is of order unity and 
is determined by the particular form of V(r). For the Cou- 
lomb potential, the estimate (10) is obvious on dimensional 
grounds due to the presence of a unique characteristic 
scale-the Bohr radius ro. In particular, the calculation of (9) 
for D=2 ,  3 and ~ ( r ) - e 2 / r  leads to the result 

1 3 7 ~  ro 4 7 ~  7~ 
[;D= - - tiD=- ( I  - 7~~ g ~ ~ 0 . 9 6  -. 

3 rn '  m rn 

The value of t iD in (11) was first found in Ref. 2. The cor- 
responding values for a point potential of the interelectron 
interaction have the form 

Note that for D > 2  in the case of a potential V(r) of short 
range R the contribution of the intraband interaction to to 
[the diagram in Fig. l b  and the second term in (8) corre- 
sponding to it] is negligibly small with respect to the param- 
eter Rlro.  Comparison of the expressions for the boson- 
boson interaction in the case of the potentials of infinite (1 1) 
and zero (12) range leads us to believe that the estimate (10) 
is valid at least in the cases of the 2D and 3D systems, which 
are the ones in which we are interested. 

Thus, the effective action of the semiconductor close to 
the exciton instability has the standard form of the action of 
a Bose liquid, and the chemical potential A of the bosons is 
fixed and equal to 

~arlier," the authors of the present paper showed that a Fermi 
liquid with attraction between the particles in the low-density 
limit can also be described in terms of a Bose-liquid action 
of the type (7) with chemical potential A of the bosons equal 
to twice the electron chemical potential p. The role of the 
bosons in the latter case is played by bound states of two 
electrons with opposite spins. Thus, the exciton semiconduc- 
tor and the superconductor with low particle number are two 
different realizations of an effective Bose liquid with, respec- 
tively, given chemical potential and given particle number. 

Note that the global gauge invariance of the action (7), 
which in the case of a superconductor reflects the basic sym- 

metry requirements, is for a semiconductor exclusively a 
consequence of the neglect in S,,, (4) of interaction terms 
that involve a transition of particles from band to band. We 
consider the role of these interactions, and also the difference 
between a semiconductor and a superconductor associated 
with the freedom in the spin structure of an electron-hole 
pair, in Sec. 2. However, there exists one further difference 
that leads to new physical effects (see Sec. 7), namely the 
possible inequality of the number of electrons and holes in a 
doped semiconductor. 

In the presence of a certain number n of excess particles 
(for definiteness, we consider n-type doping), we obtain a 
liquid of unpaired fermions that interact with the Bose liquid 
described by the action (7). 

We analyze the possible mechanisms of fermion-boson 
interaction. As will be shown below, the dominant effect is 
always the fermion-boson repulsion due to the effect that 
leads to the Burstein shift: excess particles, occupying states 
of the conduction band, reduce the phase space that partici- 
pates in the exciton formation. As a result, the exciton energy 
is reduced by an amount proportional to the electron density: 
S E ~ - -  yo n.  Therefore, in second-quantized form, we must 
obtain a correction to the action of the form yo(Ci"~q*cP (*is 
the fermion field), and this corresponds to repulsive scatter- 
ing of the fermion by the boson. 

The diagram corresponding to the interaction mechanism 
described above is shown in Fig. 2a. The scattering process 
consists of decay of the exciton in the intermediate state and 
replacement of the electron that is in the exciton by the in- 
cident electron. The presence of the intraband interaction 
leads to the appearance of the process shown in Fig. 2b. This 
scattering process corresponds to an effective attraction. The 
resulting vertex of the fermion-boson interaction corre- 
sponding to the diagrams in Fig. 2a and 2b can be obtained, 
for example, in the framework of a formalism analogous to 
that of Ref. 13: 

The positivity of yo corresponding to the fermion-boson re- 
pulsion is obvious from the structure of the integrand in (1 4). 

One further possible interaction mechanism is associated 
with the interaction that arises between the electron charge 
and the London multipole moments in the case of virtual 
polarization of the exciton. This process corresponds to an 
effective attraction and proceeds through an intermediate ex- 
cited state of the exciton (the diagram in Fig. 2c). The main 
contribution is made by the p state that is closest in energy. 

948 JETP 81 (5), November 1995 A. A. Gorbatsevich and I. V. Tokatly 948 



In the dipole approximation, this interaction was considered 
in Ref. 14. In the general case, the vertex of the multipole- 
charge interaction has the form where SB is determined by the expression (7) and corre- 

sponds to the bosonic part of the action, while SFB describes 
the fermions in the conduction band and the fermion-boson 
interaction: 

where e l  is the energy of the excited p state, and nz, is the 
reduced fermion-boson mass. The index j labels the degen- 
erate p states and takes the values j =x , y  ,z for D =3 and 
j=x ,y  for D=2.  The quantity I;(k) corresponds to the tri- 
angle vertex of the electron-exciton interaction with transi- 
tion of the exciton from the s to the p state (see Fig. 2c): 

In (16), xl,j(r) is the wave function of the p state. It is 
obvious that y,,-, will have the maximum value in the case 
of the long-range Coulomb interelectron interaction V(r). We 
show that even in this case the multipole-charge attraction 
for D =2  and 3 is much less that the repulsive interaction yo. 
The value of yo calculated in accordance with (14) for 
v(r)=e2/r  in the 2D and 3D systems is 

We find the attractive potential from (15) and (16). For the 
2D system, we obtain the expression 

Using the obvious upper bound of the integral in (IS), [(a) 
< I ,  and also Eqs. (17), we find the ratio of the repulsive 
potential AD to the attractive potential y:, : 

Making similar calculations for the 3D case, we obtain 

It follows from (20) that for D=3 the attraction becomes 
comparable with the repulsion provided m,. exceeds rn, by a 
factor of more than 100. However, in two-dimensional sys- 
tems the multipole-charge attraction is negligibly small for 
arbitrary ratio m, l m ,  [see (19)]. Thus, for the majority of 
physically sensible situations the electron-exciton interac- 
tion corresponds to repulsion. At the same time, the total 
fermion-boson action takes the form 

In (22), i+b is the fermionic field corresponding to the excess 
particles in the conduction band, and p is the electron chemi- 
cal potential measured from the bottom of the band. For yo, 
as for to in (7), the following estimate holds for arbitrary 
V(r): 

In particular, for V(r) of infinite range in the cases D = 2  and 
3 we have the expression (17), and in the case of a point 
potentials of the interelectron interaction V(r) the calculation 
of yo in accordance with (14) gives 

Thus, the general form of the effective low-energy action 
of a seniiconductor close to the exciton instability does not 
depend on the specific form of the potential of the interelec- 
tron interaction, which determines only the numerical coef- 
ficient in the expressions for the boson-boson (10) and 
fermion-boson (25) interactions. 

3. BOSE ACTION FOR SEMICONDUCTOR WITH INTERBAND 
INTERACTION OF GENERAL FORM. ALLOWANCE FOR 
LIFTING OF THE PHASE DEGENERACY 

It follows from the results of the previous section that 
the low-energy action for a semiconductor with interband 
interaction of the density-density type (7) is identical to the 
corresponding action for a superconcluctor with low particle 
density (see our study of Ref. 6). The invariance of the action 
with respect to phase rotations leads to the occurrence of a 
Goldstone branch of vibrations and to superfluidity. Such 
behavior is entirely natural for superconductors, but it is well 
known that the exciton liquid in semiconductors does not 
possess the property of superfluidity. This is due to the fact 
that in real systems there are always interactions with tran- 
sitions of particles from band to band, and these lift the de- 
generacy with respect to the difference phase of the fields 
dq(r,r) and fi2(r,r) in Sil l , .  This last leads to the appearance 
of a gap in the spectrum of collective excitations and viola- 
tion of the criterion for superfluidity. 

Thus, allowance for the additional terms of the interband 
interaction must lead to the violation of global gauge invari- 
ance of the action (7). Bearing in mind the final remark in the 
previous section, we shall assume a point interaction. 

For a two-band system, the most general expression for 
Sin[ is 
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In (26), cro= I, aj (j= 1,2,3) are the Pauli matrices, and 
r,,=(r,, 12 are isotopic matrices that act on the space of band 
indices. The symbol X denotes the direct product of matri- 
ces. 

It follows from the results of Sec. I that to establish the 
form of the boson action in the given case we can, without 
loss of generality of the results, retain in Si,,, only the inter- 
band interaction. Then g; are nonvanishing only for v= 1,2. 
The invariance with respect to the spin rotations imposes the 
condition gy=g;=gg. 

Thus, there remain four independent coupling constants. 
To eliminate the four-fermion terms in (26), it is necessary to 
introduce four real Bose fields-two scalar, x; and Xi, cor- 
responding to the singlet exciton states, and two vector fields 
with components C j  and 2; (j= 1,2,3) corresponding to the 
triplet excitons. We represent these fields in the complex 
form 

After the Hubbard-Stratonovich transformation, we obtain 

where G-'  is the diagonal part of the matrix M correspond- 
ing to the inverse Green's function of the semiconductor 
without interaction, and 3 is the off-diagonal part of M de- 
scribing the exciton Bose fields. Note that in the mean field 
approximation the Bose variables (27) correspond to the four 
types of exciton condensate that are possible for a two-band 
system and are well known in the theory of an exciton di- 
electric (see, for example, Ref. 15). In our case, these are 
fluctuating variables with respect to which functional inte- 
gration is performed. 

Since 2, and 2, occur in the same manner in the action 
(29), we can without loss of generality consider just one 
channel. For definiteness, we consider only the singlet Bose 
field (omitting then the index s of 2 , ) .  We go over from the 
coupling constants to the corresponding binding energies EL:  

In the case I F , ~ - E ~ I / E ~ G I ,  we obtain for the part of the 
action (28) that does not depend on the Fernli variables (28) 

where 

The Gaussian integral with respect to the Fermi variables can 
be calculated in the standard manner (see, for example, the 
corresponding calculations for a superconductor in Ref. 6). 
The part of this integral quadratic in the Bose variables is 

We introduce the renormalized Bose field q,= &A,'Z(~). 
Then with allowance for the two previous expressions, we 
finally obtain for the effective action 

The final term in the action (30), which describes the boson- 
boson interaction, arises from the term of fourth order in the 
expansion in powers of the Bose fields 2 of the total action 
(28) after integration over the Fermi variables. The potential 
of the boson-boson interaction to in (30) is detern~ined by 
the expression (12). 

Thus, because of the difference of the coupling constants 
in the channels corresponding to the real and imaginary com- 
ponents of the exciton field, the action contains a term that 
breaks the invariance with respect to a change in the phase of 
the field cp. In real semiconductors, interactions with the tran- 
sition of particles from band to band, to the extent of which 
the phase fixing energy (Ys is not equal to zero, are usually 
weak by virtue of the orthogonality of Bloch functions in 
different bands. In contrast, the interaction of density- 
density type is not weak. Therefore, in the majority of cases 
the phase fixing energy must be small. It is such a situation 
that we consider below. More precisely, we require that 

Note that despite the smallness of the parameter (3 1 )  the 
breaking of phase symmetry leads to important physical con- 
sequences. First, superfluidity disappears even at T=O. Sec- 
ond, as was demonstrated in Ref. 3 for T=O and D =3, when 
the considered interactions are taken into account a phase 
transition with formation of a condensate is a first-order tran- 
sition. However, we show below that allowance for fluctua- 
tions leads to a first-order transition even in a stantlartl Bose 
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liquid with phase-degenerate i d o n .  Therefore, for D = 3  this 
circumstance is unimportant, and, as a consequence, the 
weak phase fixing does not affect the thermodynamic prop- 
erties of 3 0  systems. The most important physical changes 
occur for D=2. Indeed, it is well known that in two- 
dimensional degenerate systems at all TZO there is no long- 
range order (in the sense of the presence of a true Bose 
condensate). In this case, the phase transition entails the 
emergence of "rigidity" of the system p, and a change in the 
nature of the decrease of the binary correlation function from 
exponential to power-law behavior below the critical tem- 
perature. The lifting of the degeneracy immediately leads to 
the possibility of formation of a condensate and long-range 
order. Nevertheless, a formal description can be constructed 
in such a way that the "condensate" density will not occur at 
all in the final equations and, as in the 3D case, the dynamics 
of both degenerate 2D systems and systems with weak phase 
fixing can be described in the framework of a unified 
scheme. 

4. SELF-CONSISTENT APPROXIMATION FOR 
D-DIMENSIONAL BOSE LIQUID (022) 

We have established that both an exciton semiconductor 
and a low-density Fermi liquid with attraction reduce for 
arbitrary dimension D to an effective Bose liquid in the limit 
(7) of low particle density. In the given case, the presence of 
the low-density parameter, which is determined by the ratio 
of the range of the interaction potential to the mean separa- 
tion between the particles, is guaranteed by the smallness of 
r o ~ - ( ~ ~ ~ o ) 1 ' 2 ~  1. 

Thus, it is necessary to have a physically sensible for- 
malism suitable for describing a low-density Bose liquid in a 
wide range of temperatures, including the phase-transition 
temperature. In this section, we construct a self-consistent 
approximation that makes it possible to describe in a unified 
manner phase transitions in a Bose liquid of arbitrary dimen- 
sion 0 3 2 .  

We proceed from the standard action (7) for the Bose 
liquid. In the first stage of the calculations, we renormalize 
the vertex to  of the boson-boson interaction. Following 
PO~OV,' we introduce an intermediate momentum p such that 
~ . = p " ~ / 2 ~  satisfies the inequality h<&=Zeo. We integrate 
over the range of variables k > i .  As a result, we obtain an 
action of the form (7) in which the bare interaction to  is 
replaced by the renormalized t and all momentum integrals 
are truncated at the upper limit by p". The renormalization 
consists of dressing to by a series of ladder diagrams corre- 
sponding to the scattering of two bosons by each other, i.e., t 
is determined by the expression 

The expression for the polarization operator 11 in (32) is 
written down in the simplest case of a step dependence on k 
of the potential to .  Note that in this case, as usual, the ladder 
diagram series is distinguished by virtue of the low particle 

density. Taking into account the definition (9) of to ,  we can 
obtain the following expression for the renorninlized internc- 
tion potential for D >2: 

where the numerical coefficients a and p are of order unity 
and are determined by the actual form of the bare interaction 
potential. For D =2, the polarization operator in (32) is loga- 
rithmically large at low momenta. Therefore, the parameters 
of the bare interaction disappear altogether from the expres- 
sion for the renormalized potential t: 

Thus, it follows from (33) that in the low-density limit ( r o  is 
small) for any dimension 0 2 2  we have an effective theory 
of a Bose liquid with weak interaction. The Hamiltonian of 
the system has the form 

The weakness of the interaction makes it possible in the sub- 
sequent stages to use perturbation theory with respect to t or 
an approximation of mean field type. However, as was al- 
ready noted in the Introduction, the existing diagram meth- 
ods for describing the thermodynamics of a Bose liquid are 
not suitable for our purposes because of the important differ- 
ences in the formalism for D=2 and D > 2  and the impossi- 
bility of self-consistent determination of the self-energy 
functions in two-dimensional systems. 

We proceed as follows. For T < T , ,  we separate in the 
field cp the "condensate" (c-number) part cp,: 

Note that the separation of cpo by no means indicates the 
presence of a true Bose condensate as macroscopic occu- 
pancy of a single lowest level. The "condensate" part cpo 
must be looked upon in the general case as the square root of 
a large number of particles in states with momenta k  < qo 
4 m. A bare "condensate" defined in such a manner and 
generating in a 2D system a superfluid density was first in- 
troduced by Popov in his diagram theory of a 2D Bose liq- 
uid. An appreciable difference between a bare "condensate" 
and a true one arises only in two- and one-dimensional sys- 
tems, in which the density of the true Bose condensate is 
identically equal to zero for TZO. The subsequent theory 
must be constructed in such a way that neither the lowest 
cutoff momentum qo  nor the density of the bare "conden- 
sate" po occurs in the final equations. With allowance for 
(35), the Hamiltonian density h can be rewritten as follows: 
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In the self-consistent field approximation, we introduce a bi- 
linear decoupling in the interaction terms of (36). With al- 
lowance for ( 3 9 ,  the penultimate term does not contribute. 
We write the final four-fermion term hi,, in the form 

where s =(p@), d =(qq). The potential part of the Hamil- 
tonian of the self-consistent field Q, is determined from the 
condition (hz) = (hi,,). As a result, we obtain for Q, 

Introducing the normal, 2, and anomalous, A, self-energy 
parts in accordance with 

we obtain for the Hamiltonian of the self-consistent approxi- 
mation the expression 

1 
- (A- 
2 t  

We diagonalize H S F  (37) by a standard canonical transfor- 
mation for Bose operators. Averaging the obtained expres- 
sion over the grand canonical ensemble, we find the thermo- 
dynamic potential of the system 0: 

where E k  is the spectrum of quasiparticles: 

In the expression (38) for Q we require fulfillment of the 
exact relation well known in the theory of a Bose liquid that 
connects the self-energy functions 2 and A at zero momen- 
tum and ensures the acoustic nature of the excitation spec- 
trum (see, for example, Ref. 16): 

This step, which appears simple at first glance, has a deep 
meaning and is the fundamental point in the construction of 
our approximation. We eliminate 2: in (38) by means of the 

identity (39) and determine po from the usual condition of 
extrenlality of the thermodynamic potential i(Z (di(2/dpo = 0 ) .  
As a result, we obtain 

Finally, we have the following expression for the thermody- 
namic potential, which depends only on the anomalous self- 
energy function A: 

In the expression (40), Ek = \Im is the Bogolyubov 
quasiparticle spectrum. Minimizing (40) with respect to A, 
we obtain a self-consistency equation determining the depen- 
dence of A: 

In (41), nk=n(E$T) is the Bose distribution function. We 
find the equation for the total density p of the Bose particles 
from the well-known thermodynamic relation 

Alternatively, with allowance for the self-consistency equa- 
tion (41) 

Thus, Eqs. (40) and (41) completely determine the thermo- 
dynamics of the spatially homogeneous Bose liquid below 
the transition point. The expressions obtained have universal 
form for any space dimension and for arbitrary D are free of 
divergence at small momenta. 

The proposed procedure for deriving the equations-the 
imposition of the condition (39) on the expression for the 
thermodynamic potential (38) before its minimization with 
respect to the self-consistent field A-differs fundamentally 
from the standard mean field approximation. As a rather 
cumbersome analysis shows, it corresponds in diagram lan- 
guage to effecive allowance for the vertex corrections to the 
Green's functions that are obtained by replacing in all pos- 
sible ways two "condensate" lines by particle lines in the 
superfield diagrams for Q. We note that in the second order 
in t the equations for p (42a) and fl (40) are identical to the 
equations obtained by Popov with allowance for the second 
order of diagram perturbation theory.8 However, the com- 
plete system of equations differs appreciably due to the pres- 
ence of Eq. (41), which determines a self-consistent change 
in the anomalous self-energy function A as a function of T. 
This change is determined by the higher (in t) orders of 
perturbation theory that are contained in our form of the 
theory and leads to fundamental physical consequences. The 
following sections of the paper are devoted to the analysis of 
these consequences. 
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Using the expression for the renormalized vertex f ,  we 
can show that in the considered low-density lirriit it is niean- 
ingful to retain only the temperature-dependent part of the 
integrals in (40)-(42). Then the expressions we obtain for 
the therniodynamic potential below the transition point, Kt,, 
the total density p, and the self-consistency equation for A 
simplify somewhat: 

The phase transition temperature To is determined by the 
condition A=O. For T> To, the thermodynamic potential S1, 
is given by 

The self-energy function C is determined by the minimiza- 
tion of (44). 

To conclude this section, we formulate equations for the 
case of a Bose liquid with fixed number of particles (p 
=const). We express the chemical potential A in terms of p 
by means of the second equation of (43b). After a Legendre 
transformation 

we find the free energy F ,  for T<To: 

From the condition dFldA=O, we obtain an equation for A: 

Comparison of (45b) and (43c) shows that the solution for 
p=const can be obtained from the solution for X=const by 
the successive substitutions 

2 t+ t ,  and then X+tp. (46) 

5. BOSE CONDENSATION IN THREE-DIMENSIONAL 
SYSTEMS: FIRST-ORDER PHASE TRANSITION 

It is well known that in the mean field approximation the 
phase transition in a 3D Bose liquid is a second-order phase 
transition, as it apparently should be in the case of spontane- 
ous symmetry breaking in a degenerate system. However, 
there exist cases in which allowance for fluctuations in sys- 
tems with phase degeneracy leads to a change in the transi- 
tion order. For example, it was shown in Ref. 17 that in an 
ordinary superconductor the transition is always of first order 
because of the fluctuations in the electromagnetic field. A 
similar result was obtained for a model of a semimetal with 

congruent Fermi surfaces of the electrons and holes in Ref. 
18, in which allowance for the correlation corrections to thc 
mean field approximation led to replacement of a second- 
order transition by a first-order one. 

In this section, we show that in a three-dimensional Bose 
liquid the fluctuation effects contained in the equations for- 
mulated above also lead to a phase transition to a condensed 
state that is weakly of the first order. 

We write the self-consistency equation (43c) for D = 3  in 
the form 

In the special case X = E ~ - E ~ ,  this equation determines the 
phase diagram of a 3 0  exciton semiconductor. To establish 
the nature of the phase transition, it is sufficient to investi- 
gate the solution (47) at small A. Calculating the asymptotic 
behavior of the integral in (47) when 2A/T<l, we obtain an 
equation valid near the transition point: 

where b=l(3/2) is the Riemann zeta function. The low- 
temperature solution with A f O  disappears abruptly when the 
A-A straight line touches the function determined by the 
right-hand side of (48). From the condition of equality of the 
derivatives with respect to A of the left- and right-hand sides 
of'the self-consistency equation, we find that this occurs at 

To determine the temperature To of the first-order phase tran- 
sition, we substitute A, (49) in Eq. (48). We then find 

The dependence of the anomalous self-energy function A on 
T is shown in Fig. 3. In the range of temperatures 
TB< T< To, there exist two branches of solutions of Eq. 
(47). To the solution with smaller A (lower branch), there 
corresponds a maximum of the thermodynamic potential. 
The high-temperature (normal) phase can exist (as a nieta- 
stable one for T <  To) a11 the way to T=  TB . It is at this point 
that we have vanishing of 2-A, which plays the role of an 
effective chemical potential of the normal Bose liquid [see 
(4411. 

The temperature of the phase transition in the exciton 
seniiconductor is obtained by substituting X=cO-eg in (50). 

For a system with a given number of particles, we find 
by means of the substitutions (46) 
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FIG. 3. The dependence A ( T )  for a three-dimensional system. The dashed 
curve shows the unstable branch of solutions. 

Note that the lower limit of existence TB (51) of the normal 
phase is equal to the well-known condensation temperature 
of an ideal Bose gas. 

The smallness of (T- To)/To in the region in which the 
solution (47) is two-valued enables us to assert a first-order 
transition in a 3 0  Bose liquid in the standard language of a 
Landau functional. The expression for the functional Q near 
the transition point can be readily recovered from Eq. (48) or 
obtained by direct expansion of the general expression (43a) 
at small A and D =3. Introducing the order parameter qo as 
the square root of the condensate density in accordance with 
the expression A =  tq i ,  we obtain 

The appearance in this last equation of the cubic invariant 
obviously indicates a first-order phase transition. 

6. PHASE TRANSITIONS IN A TWO-DIMENSIONAL BOSE 
LIQUID 

We find the solution of the self-consistency equation 
(43c) in a two-dimensional system. In the limit 2A/T4 1, this 
equation has the form 

Note that in the D = 2  renormalized vertex (33b) the cutoff 
energy E can be replaced to logarithmic accuracy by A. With 
allowance for this, we define the dimensionless interaction 
potential 

It is the smallness of this quantity (14 1) that will serve as the 
criterion of applicability of the theory we are to develop. We 
introduce the dimensionless variables 

FIG. 4. The dependence A(T)  for a two-dimensional Bose liquid. 

and in these equations write down the self-consistency equa- 
tion 

At a certain point x=xo ,  the straight line i- x touches the 
function 21  ln(1lx). This point corresponds to a first-order 
phase transition from the low-temperature (AZO) to the 
high-temperature (A=O) phase. Equating the derivatives on 
the right- and left-hand sides of (54), we find the value of xo: 

and then the critical temperature: 

In the second equation of (56), we have used (53). The dis- 
continuity of the anomalous self-energy function at the tran- 
sition is determined by 

In contrast to three-dimensional systems, the solution of the 
self-consistency equation for D=2 has two branches at all 
T< To, and in accordance with this the high-temperature 
phase with A=O exists (as a metastable phase when T<To) 
right down to T=O. The dependence A(T) is shown in Fig. 
4. The asymptotic behaviors of the upper branch of A(T) 
(corresponding to the global minimum of a) near zero and 
near To are 

Note that results analogous to ours (abrupt appearance of 
anomalous mean values and the existence of the normal 
phase in a metastable state down to T=O for D=2)  were 
obtained in Ref. 19 for an exciton semiconductor with maxi- 
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mally strong phase fixing, when the Bose field can be as- 
sumed to be real. However, the approach used by the authors, 
which in a certain sense is phenomenological, does not make 
it possible to take into account correctly the renormalization 
of the vertices, which plays a cardinal role in two- 
dimensional systems. 

The transition temperature in a liquid with a fixed nuni- 
ber of particles can be obtained from (56) by the substitu- 
tions (46). Noting, in addition, that for p=const the dimen- 
sionless vertex is to logarithmic accuracy 

we finally obtain 

In systems with broken phase invariance (exciton semicon- 
ductor), the phase transition at T=  To that we have described 
corresponds to the formation of a true condensate and long- 
range order in the absence of superfluidity. This transition 
acquires a different physical content in superfluid systems 
(Bose liquid, superconductor with small number of par- 
ticles). 

In the construction of our approximation, we have taken 
into account only irrotational, or "anharmonic" in the termi- 
nology of Ref. 9, fluctuations. In the framework of such a 
treatment, a superfluid density p, appears at the temperature 
To, and the nature of the decrease of the correlation function 
changes from an exponential one at T>To to a power-law 
decrease at T< To :The superfluid density can be determined 
in the usual manner: 

P.s=P-Pn 7 

where the density of the normal component is readily found 
by calculating the mean momentum of the Bose liquid in a 
moving coordinate system: 

Using the expression for the total density (43b) and the self- 
consistency equation (43c) for D =2, we find 

The integral in (59) is a regular function of AlT and tends to 
zero at small AlT. Therefore, near the phase transition tem- 
perature To we can write 

Thus, as the temperature is lowered to the point To a finite 
superfluid density p,(T) equal to A,.lt arises abruptly. The 
dependence P,~(T) is similar to the function A(T) in Fig. 4. 

Note that the abrupt occurrence of I+ in the given case 
agrees very well with the dependence p,(T) due to irrota- 
tional fluctuations in the XY model' and differs qualitatively 
fsom the corresponding dependence in Popov's diagram 
theory,8 in which the absence of a self-consistency procetlure 
leads to a smooth vanishing of p ,  at the transition point. 

Allowance for solenoidal excitations changes the picture 
of the phase transition. It is known that in 2D-degenerate 
systems a transition with a change in the rate of decrease of 
the binary correlation function and the occurrence of true 
superfluidity occurs at the temperature T ,  through the 
Berezinskii-Kosterlitz-Thouless (BKT) mechanism by the 
pairing of vortices that also exist above the transition 
ten~~erature .~ '  The superfluid density at the transition point 
p,,(T,) and the critical temperature are related by the univer- 
sal equation2' 

Using Eq. (60) and the expressions (56) for To and (57) 
for A,. , we calculate this ratio at T =  To: 

Comparison of the last two equations shows that the tem- 
perature T, of the BKT superfluid transition is less than the 
temperature To of the disappearance of p, due to the irrota- 
tional fluctuations. In the range of temperatures T,< T< To, 
p ,  (59) denotes the coefficient of "rigidity" of the system 
introduced by Berezinskii. The presence of the "rigidity" of 
p, ensures the existence above T, of isolated quantum vorti- 
ces and an acoustic branch of excitations that transmit inter- 
action between the vortices. We can estimate T, if we know 
the relation (61) and use the relationship (60) between p, and 
A and the self-consistency equation (54). As a result, we 
obtain 

Thus, the width of the temperature region between T, and To 
decreases as the density tends to zero. Therefore, in a large 
temperature range O<T<T, the p,(T) (59) that we have 
found corresponds to the true density of the superfluid com- 
ponent of the rarefied Bose liquid. 

To conclude this section, we find the temperature depen- 
dence of the total density p (T) in systems with given chemi- 
cal potential A (for example, for a scrniconductor, where 
X = E ~ - E ~ ) .  

At temperatures T<To,  the dependence of the density 
on the temperature is determined by the expression (43b). 
Therefore, as the transition point is approached from below p 
takes the value 

At T>T,, the thermodynamic potential iR, of the system 
has the fornl (44), ancl in accordance with this total density 
of the particles in the normal state i s  

In (62), we have introduced the parameter 0=2:-h. The self- 
energy function 2: is determined by miminizing R,: 
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FIG. 5. Tmiperature dependence of the total density (means square of the 
field q) in systems with given chemical potential. 

Near the transition, BIT< 1. Calculating the asymptotic be- 
havior of the integral in the last equation, we obtain the 
following self-consistency equation for @ T ) :  

T 
6 = - A + ~ T  ln- .  

6 

The limiting value of the density when To is approached 
from above is determined by the value of 6,= 6(To)  at the 
transition point: 

The equation for 0, is readily obtained by using the relation 
A, ITo = t" and the expression (57) for A, : 

The solution of this equation gives q= 6, lAc~0.463.  Thus, 
at the transition point the total density has a discontinuity 
equal to 

The solution of Eq. (63) for T>To shows that above To the 
density p is a linear function of T:  

The functional form of p(T) is shown in Fig. 5.  It is inter- 
esting to note a possible analogy with magnetic systems, in 
which the mean density (cp*cp) represents the mean square of 
the magnetic moment (m2). The dependence of this quantity 
on T must be similar to p(T) in Fig. 5. 

7. DEMlXlNG OF THE ELECTRON LIQUID IN A TWO- 
DIMENSIONAL DOPED SEMICONDUCTOR 

In this section, we investigate the behavior of a semicon- 
ductor close to the exciton instability when it contains a cer- 
tain nonvanishing concentration 11 of excess particles. It was 

shown above (see Sec. 2) that the description of such a sys- 
ten1 reduces to the solution of the problem of fernlions inter- 
acting with Bose exciton degrees of freedom in the conduc- 
tion band. One of the manifestations of this interaction is a 
possible instability of the spatially honlogeneous state of the 
Fermi liquid with respect to the formation of macroscopic 
regions with enhanced concentration of particles, i.e., with 
respect to phase demixing. The effective action of the doped 
semiconductor was constructed in Sec. 2 and is determined 
by Eqs. (21), (7), and (22). The origin of the phase demixing 
is associated with the fernlion-boson repulsion [the final 
term in S F ,  (22)l. Indeed, the presence of a nonvanishing 
fermion density leads to an effective decrease in the boson 
chemical potential A and, as a consequence, to a decrease in 
the density of the Bose particles. This effect is a manifesta- 
tion of the suppression of the exciton instability by doping 
that results from the decrease in the exciton binding energy 
as a result of the Burstein shift. Since the same fermion- 
boson repulsion term determines the renormalization of the 
edge of the conduction band, which is proportional to the 
density of the bosons, the decrease in this density as a result 
of the doping leads to a lowering of the edge of the electron 
band. Thus, the increase in the number of electrons in the 
band gives rise to a decrease in the exciton density and a 
resultant lowering of the band edge. If this lowering occurs 
more rapidly than the growth of the electron chemical poten- 
tial ,u due to the occupation of the band, a situation is real- 
ized in which the chemical potential ,u decreases with in- 
creasing particle number n ,  i.e., we have d p l d n ,  which 
means there is absolute instability of the spatially homoge- 
neous state of the system. 

We investigate the problem in the framework of the self- 
consistent approximation developed above (see Sec. 4). Inte- 
gration over the rapidly varying degrees of freedom in the 
first stage leads to the replacement of the bare potentials of 
the boson-boson, to ,  and fermion-boson, yo, interactions by 
the renormalized quantities t  and y in the action (21). As in 
Sec. 4, the renormalization of to consists of the summation of 
the ladder diagrams corresponding to the scattering of two 
bosons by each other. Therefore, for the considered case 
D =2  

Similarly, yo is renormalized by the dressing of the bare po- 
tential by the ladder series describing scattering of a fermion 
by a boson: 

In the expression (65), I t F B  is the polarization operator in the 
fermion-boson scattering channel, and m, is the reduced 
fermion-boson mass: 

Subsequent calculations are similar to those made in Sec. 4. 
The decoupling of the fermion-boson interaction term leads, 
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first, to renorn~alization of the boson chemical potential. 
Namely, i t  leads to replacement of A by a A equal to 

Second, it leads to the appearance of the electron self-energy 
part x2;, , which determines a shift of the edge of the electron 
band that is proportional to the density p of the Bose par- 
ticles: 

The electron chemical potential is determined from the equa- 
tion for the fermion number: 

The two-dimensionality of the spectrum makes it possible to 
calculate the integral in the last equation exactly and find p 
explicitly: 

The second term in the expression (67) for p increases 
monotonically with decreasing n and describes the increase 
in the chemical potential with doping as a result of occupa- 
tion of the band. The first term in (67) corresponds to the 
change in p due to the renormalization of the edge of the 
conduction band resulting from the fermion-boson interac- 
tion. The total boson density p is described by the expres- 
sions of the previous section with replacement of the bare 
chemical potential X by the renormalized A (66). Therefore, 
the first term always decreases with increasing n and makes 
a negative contribution to dddn ,  creating the prerequisites 
for a sign change of it. 

We calculate the derivative of the chemical potential p 
with respect to the particle number n and show that it can be 
negative both in the high-temperature normal phase (A=O) 
and in the ordered phase with A f  0. The line To(n)  in the 
phase diagram that separates these two phases can be ob- 
tained from the expression (56) for To: 

Below this line AZO, and p is determined by the expression 
(43b). Therefore 

We express dAldn in terms of A(n,T) ,  differentiating with 
respect to n the self-consistency equation (52) (naturally, af- 
ter the replacenlent in it of A by A). Finally, we obtain for 
dp'dn 

ToA - TA,. 

Since the dimensionless vertex F(55) is a small parameter of 
the theory, at low temperatures TGTo(n )  a sign reversal of 
ddrln is possible only in the presence of strongly differing 

masses M of the boson and H I ,  of the fermion, or, equiva- 
lently , whcn the electron and hole have very different 
masses. However, on the approach to the transition point the 
denominator in the first term tends to zero, and, therefore, for 
any Mlnr, there always exists below the line T= To(tz) a 
region in which dpldn and the homogeneous state is abso- 
lutely unstable with respect to phase demixing. 

Above the phase transition line, the total density p 
changes in accordance with the expression (62). Calculating 
the derivative deldn by means of the expression (63), we find 
for dpldn in the disordered phase 

d p  .rr M 
-- - - - m c T A ,  

I + -  t" 
dn n [ ( M i  ToB+TA, 

The last expression shows that in the normal phase too there 
can exist a region of instability of the spatially homogeneous 
state but only if the boson mass is much greater or much less 
than the fermion mass. 

8. CONCLUSIONS 

In this paper, we have proposed a self-consistent descrip- 
tion of phase transitions in systems that admit representation 
in terms of an effective rarefied Bose liquid. For a semicon- 
ductor close to the exciton instability we have constructed an 
effective low-energy action. This action has the standard 
form of the action for a Bose liquid with repulsive short- 
range interaction. We have shown that for semiconductors 
the symmetry with respect to rotation of the phase of the 
Bose field is always broken by the presence in real systems 
of interactions with transitions of particles from the conduc- 
tion band to the valence band. 

The equations of the self-consistent theory developed in 
this paper for the rarefied Bose liquid do not contain diver- 
gences at small momenta and have a universal dimension- 
independent form. This last fact makes it possible to describe 
in a unified manner the thermodynamics of a spatially homo- 
geneous Bose liquid in dimensions 0 3 2 .  For exciton sys- 
tems and superconductors, our approach makes it possible to 
describe accurately the limit with respect to the particle den- 
sity that is the opposite of BCS theory (or, more precisely, 
the limit with respect to the ratio of the two-particle bound 
state to the mean separation between the particles). The ex- 
istence of the two correct asymptotic behaviors with respect 
to the density is necessary for understanding the physics in 
the intermediate region, to which many real systems (includ- 
ing high-temperature superconductors) correspond. In addi- 
tion, our results may also have a wider domain of applica- 
bility, since bosonic degrees of freedom arise naturally in 
many problems in the physics of strongly correlated systems. 
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