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Exact analytical expressions for complete sets of eigenfunctions and eigenvalues describing 
collective excitations in a Josephson junction are obtained for the first time for stationary small- 
scale Abrikosov-Josephson vortex structures with a characteristic scale of spatial 
nonunifornlity shorter than the London length. The general relations obtained are applied to the 
case of collective excitations in an annular junction. The influence of a weak current on a 
small-scale vortex structure with a mean magnetic field is considered. It is established that a small- 
scale periodic structure of Abrikosov-Josephson vortices can have significantly greater 
resistance and similar large-scale structures consisting of Josephson vortices. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

Since the first paper by Lebwohl and stephen,' collec- 
tive excitations in a multisoliton chain of vortices in a Jo- 
sephson junction have continued to attract the attention of 
investigators. The approach described in Ref. 1 was extended 
and applied to the case of a Josephson junction of annular 
geometry as well in the work recently published in Refs. 2 
and 3. We note that the interest recently displayed in annular 
Josephson junctions is no accident. The use of this geometry 
makes it possible to eliminate the boundary effects appearing 
on the ends of a Josephson junction and to thereby simplify 
the comparison of theoretical and experimental results. Here 
it should also be pointed out that the dynamics of collective 
excitations were considered in Ref. 2 under conditions such 
that which the length of the Josephson junction, which cor- 
responds to the period of the states in an annular Josephson 
structure, is smaller than the Josephson length. In our opin- 
ion, under such conditions it becomes possible to use nonlo- 
cal Josephson electrodynamics, within which, in particular, 
exact nonlinear solutions were obtained for a static multi- 
fluxon chain of small-scale vortices in Ref. 4, where a de- 
tailed discussion of the conditions under which the ordinary 
description based on the sine-Gordon equation is incorrect 
was also given. 

The material presented below can be regarded as an ex- 
tension of the approach in Refs. 1-3 under new conditions 
not previously discussed, such that the characteristic scale of 
the spatial variation of the structures investigated is not only 
smaller than the Josephson length Aj, but also smaller than 
the London length A. The appearance of such vortex struc- 
tures can be associated, for example, with the presence of a 
magnetic field averaged along the junction (H) which ap- 
proaches the lower critical field in magnitude, but remains 
smaller than it.' In accordance with Refs. 4 and 6, the un- 
usual condition A > X j, which is characteristic of nonlocal 
Josephson electrodynamics, can be realized at large critical 

currents, at which the critical current density j, satisfies the 
relation 

As was asserted in Ref. 4, this can occur either for thin 
junctions of thickness 2d, for which the relation 

(K is the Ginzburg-Landau parameter, and l f p  is the mean 
free path) holds, or for superconductors with a large value 
for the Ginzburg-Landau parameter, K+ 1 (for further de- 
tails, see Refs. 4-7). 

Unlike large-scale structures, whose investigation has 
been traditionally associated with the sine-Gordon 
equation,8 the electrodynamics of small-scale Josephson 
structures is n o n l o c a ~ ~ - ~  and is described by the following 
integrodifferential equation: 

where cp is the phase difference between the Cooper pairs on 
the two sides of the junction, w j  is the Josephson frequency, 
p characterizes the dissipative properties of the junction, and 
the parameter 1 is expressed in terms of the thickness of the 
junction 2d, the Josephson length Aj, and the London 
lengths A +  and A- of the superconductors on opposite sides 
of the tunnel junction in the following manner: 

The integral in Eq. (3) has the sense of the Cauchy principal 
value. A more detailed discussion of the conditions under 
which the use of Eq. (3) becomes necessary was given in 
Refs. 4 and 5. 
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A stationary solution of Eq. (3) having the form of a 27r 
kink, 

and corresponding to a solitary vortex was obtained in Ref. 
6. Other solutions describing periodic chains of vortices were 
subsequently obtained in Ref. 4. The solution with a nonzero 
mean magnetic field along such a chain has the form 

Here the parameter L is related to the magnetic field aver- 
aged along the tunnel junction ( H )  by the expression 

where Qo= 7rhcl(el= 2.05 x l o w 7  0e/cm2 is the magnetic 
flux quantum. The solution with a zero mean field has the 
form 

cpo(z) = 7r+ 2 arctan ( 7- 1 sin - t) , (7)  

where L>Z. The parameter L in Eqs. (5) and (7) character- 
izes the periodicity of the vortex chain. Vortex structures 
corresponding to (4),  (5),  and (7 )  differ significantly in form 
from ordinary large-scale Josephson structures described by 
the sine-Gordon equation. In particular, the vortex magnetic 
field corresponding to the solutions (4),  (5), and (7) is similar 
in form to Abrikosov vortices and is in no way similar to 
ordinary Josephson vortices.496 On the other hand, the three 
qualitatively different types of structures described by (4),  
(5),  and (7) correspond to three fundamentally different types 
of solutions of the equation of a nonlinear magnet, to which 
the sine-Gordon equation reduces in the stationary case. 

In view of both the qualitative similarity and quantitative 
differences between the new stationary small-scale vortex 
structures and ordinary Josephson vortices, it would be natu- 
ral to call the new structures "Abrikosov-Josephson vorti- 
ces" (compare Ref. 6). We note that Eqs. (5)  and (7),  which 
describe such vortices and utilize trigonometric functions, 
are considerably more transparent than the traditional formu- 
las that describe ordinary chains of Josephson vortices, 
which are expressed in terms of elliptic functions. 

We now enumerate some known results pertaining to the 
spectra of weak excitations in the theory of small-scale Jo- 
sephson structures. First, in Ref. 5 the following asymptotic 
dependence of the characteristic frequencies of excitations 
on the mode number n>O and the mean field ( H )  was es- 
tablished for periodic excitations with a period equal to the 
period of the main structure: 

The relation (8) was derived without reference to the station- 
ary states (4),  (5),  and (7),  but under the assumption of a 
sufficiently strong magnetic field ( H ) .  This dependence dif- 
fers qualitatively from the ordinary limit of local Josephson 
electrodynamics w, rn (H)n .  The stability of structures (4),  
(5) ,  and (7)  toward weak perturbations was subsequently in- 

vestigated in Ref. 4, and it was shown that solution (7) is 
unstable. Finally, the eigenfunctions and corresponding ei- 
genvalues were written out explicitly in Ref. 9, but they cor- 
respond only to periodic excitations of stationary structures 
(4, (9, and (7)  which have the same period as the stationary 
structure itself. 

In this paper we present results pertaining to the com- 
plete analytical solution of the problem of the spectrum of 
collective excitations of the stationary small-scale 
Abrikosov-Josephson vortex structures defined by Eqs. (41, 
(5),  and (7). When such excitations are investigated, the main 
concern is to solve the following eigenvalue problem: 

%*- * cos cpo(z) - 

In Sec. 2 we describe the complete analytical solution of 
this problem in a class of restricted functions for the three 
different types of stationary solutions cpo(z) defined by Eqs. 
(4),  (9, and (7). In Sec. 3 we present some consequences 
which follow from the results of Sec. 2 and pertain to col- 
lective excitations in a distributed Josephson junction of an- 
nular geometry. Finally, in Sec. 4 we show how the complete 
set of eigenfunctions and eigenvalues found for the excited 
states makes it possible to describe the effect of a weak elec- 
tric current on multisoliton states. 

2. EIGENFUNCTIONS AND EIGENVALUES FOR THE 
PROBLEM OF COLLECTWE EXCITATIONS IN AN INFINWE 
JOSEPHSON JUNCTION WITH ABRIKOSOV-JOSEPHSON 
VORTEX STRUCTURES 

We first consider the spectral problem (9) in the case in 
which the solution of Eq. (3) cp0(z) is given by Eq. (5).  In 
this case Eq. (9) takes the form 

1 dz' d @ ( z 1 )  

We present the solution of this spectral problem in a class of 
restricted functions which exhibits splitting of the spectrum 
of eigenvalues into two bands. 

1 )  Lower band. This band corresponds to the portion of 
the continuous spectrum 

in which the eigenfunctions and the corresponding eigenval- 
ues have the following explicit expressions: 
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Here the variable q is a parameter, which labels the solutions 
within the band and varies within the band in the range 0 
s q s  112L. 

2) Upper band. This band corresponds to the portion of 
the continuous spectrum 

and consists of two subbands a and b. The explicit form of 
the solutions in this band is specified by the following equa- 
tions: 

112 
a) * i ( z )=  - [ sin(z/zi)[  d m +  i / i ]  + i cos(z/iL) 

lq-  + 
s i n ( z / 2 ~ ) [  J-+L/I] - i c o s ( z 1 2 ~ )  I 

Thus, within the upper band the parameter q runs 
through values from zero to infinity, but in the ranges 0 
=S 1 < 1 /2L and q 1 /2L the eigenfunctions are described by 
different expressions. At the connecting point q =  1 /2L,  the 
following relation holds: 

where $I denotes the complex conjugate of I). 

It would be convenient in some of the discussion which 
follows to separate the continuous spectrum into bands so 
that within each band the parameter labelling the solutions 
would vary in the range from zero to 1 /2L in analogy to the 
lower band. Such a description is customary in Floquet's 
theorem (see Ref. 10). Under such a division, the lower band 
remains as a single band (the "minus" band), while the up- 
per band splits into an infinite number of bands, the first of 
which is subband a (the "plus" band). Subband b now con- 
sists of a series of bands, each of which can be assigned a 

number n, where n = 1,2, .  . . . Introducing the single param- 
e t e r p  ( 0  p s  I /2L) ,  which labels the solutions withineach 
band, we write the final form of the solution in such a rep- 
resentation: 

I )  the ''minus" hand, F: = E L  E [ O ;  ( J-- I )/ 

2) the "plus" band, e = e t  E [ ( d l  + (11~)" 1)/2;  
J i T m l ,  

3) the n bands, n = 1 , 2  ,..., E = E L E [ J ~  

+(n-  1 )/zL; J-+n/2~), 

We shall use both Eqs. (1 1)-(13) and Eqs. (14)-(16) to 
describe the continuous spectrum below. Figures I and 2 
show the dependence of the eigenvalues c: on the parameter 
q ,  which plays the role of the quasimomentum. Figure 1 is 
similar to Figs. 1, 2, and 3 in Ref. 1 and is an illustration of 
Eqs. (1 1)-(13). We note that when q> 1 / 2 L ,  the correspond- 
ing dependence is represented by a straight line, which 
sharply distinguishes the case under consideration from the 
case of local electrodynaniics (see Ref. 4). In Fig. 2 the same 
dependence is reduced to one Brillouin zone [Eqs. (1 4)- 
(16)], in which the quasimomentum varies in the range 
O < p = q s  1/2L. Such an interpretation underlines the simi- 
larity of the results obtained to the known results of Flo- 
quet's theorem (see Refs. 10 and 11). 
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FIG. I .  Dependence of the eigenvalue E on the quasimomentum q. 

To test Eqs. (11)-(13) it is convenient to use the rela- 
tions 

I 

where 

O =  1/(2L), sinh a = l I L .  (19) 

It would be useful to give the following commentaries 
on the solutions presented. 

FIG. 2. Dependence of E on q reduced to one Brillouin zone, 0 S p=q 
s 1/21,. 

a) Although the original equation is an integrodifferential 
equation, the band structure of the solutions presented corre- 
sponds to the classical results regarding the structure of the 
restricted solutions of differential equations with periodic 
 coefficient^,'^ which are known, in particular, in the theory 
of parametric resonance" and the Bloch theory of electrons 
in a crystal lattice." Within each band the solutions have the 
Floquet form (see Ref. lo), and they are labelled by the 
parameter p, which runs through all the values within the 
interval [0 ,1 /2L)  and has the same meaning as the analo- 
gous parameter in Floquet's theorem. 

b) The band structure of the solutions presented is simi- 
lar to the band structure of Lamd's equation,'"3 which ap- 
pears when small perturbations of periodic structures are 
analyzed in the local electrodynamics of a Josephson junc- 
tion based on the sine-Gordon equation. There are also two 
branches in the spectrum of collective excitations separated 
from one another by a gap in ordinary Josephson electrody- 
namics, the lower branch corresponding to acoustical modes, 
the upper branch describing plasma Josephson modes, and 
the size of the gap being determined by the Josephson fre- 
quency. One significant distinguishing feature of the case 
under consideration is the fact that the formulation of the 
nonlocal problem includes a class of exponentially increas- 
ing eigenfunctions, which are allowed by the Lamd equation. 
In addition, the eigenfunctions of the Lami  equation cannot 
be described in such a remarkably simple form as in our 
case, and they have representations in the form of infinite 
seriesI3 or special functions.' - -  
A c) It is clear that the complex conjugates $: , $, , and v,, n = 1,2,. . . are also solutions of the problem and corre- 
spond to the same eigenvalues as $;, $;, and $;, 
n = 1,2,. .. . Thus, each eigenvalue in the spectrum is at least 
doubly degenerate provided the corresponding eigenfunction 
and its complex conjugate are linearly independent. The lat- 
ter is true for all the points in the spectrum except for the 
three boundaries between bands E = F ,  , E G,, , and E: . 

+ d) The eigenvalues F = E;  , ~ b ~ ~ ,  c 0  , and .st, 
n = 1,2,. . . , which mark boundaries between bands, corre- 
spond to periodic eigenfunctions with a period 47rL, which 
are equal to the doubled period of the solution cpo(z). Ac- 
cording to Ref. 9, they exhaust all the solutions of the prob- 
lem in this class. 

Next, the following expressions, which relate the system 
of eigenfunctions 

and the complete system of functions {e i v i ,  77 E R}, are valid: 

- i(e-"+e-(" Off) 1 - ( (  d&I 

918 JETP 81 (5). November 1995 G. L. Alfimov and V. P. Silin 918 



i ( e -pa+e - (~+ l ) a )  - e - ( ~ + 2 ) a  

+ 
cash a *"- 2 cosh a *A 

e-pa - + I *,,, p=0,1,2 ,... . 
2 cosh a (23) 

Here fl and a are defined by Eqs. (19), and the sums are 
assumed to be equal to zero, if the lower boundary of the 
summation surpasses the upper. It follows from the relations 
(21)-(23) that the system of eigenfunctions (20) is also com- 
plete. This, in turn, provides some indication that Eqs. (14)- 
(16) describe all the solutions of the problem (9) with 
po(z) defined by (5). We note that the explicit form of the 
solution presented leads to the marginal stability of the sta- 
tionary periodic structure of the Abrikosov-Josephson vorti- 
ces described by Eq. (5). 

We now present the results pertaining to the problem of 
the spectrum of weak perturbations of a vortex chain de- 
scribed by Eq. (7). In this case the eigenvalue problem (9) 
takes the form 

Using (17) and (18), we can show that the eigenvalue spec- 
trum of the problem (24) has the following band structure, 
which is qualitatively similar to the band structure of the 
problem (10). 

1) The lower band, which corresponds to the portion of 
the continuous spectrum 

is represented by the following eigenfunctions and eigenval- 
ues: 

Here the parameter q varies within the band in the range 0 
G q S  llL. 

2) The upper band corresponds to the portion of the 
continuous spectrum 

In analogy to the problem (10) this band consists of two 
subbands: 

L sin(z/L) - i l  cos(zlL) 

b, *JZ)= L sin(z1~) + i l  COS(ZIL) exp[i(q - L) z]; 

- - 
- It is clear that the complex conjugates 9; , 94' , and 
rCI, are also solutions of the problem and correspond to the 
same eigenvalues as $4 , J I ~  , and $, . Thus, the band struc- 
ture of the spectrum of weak excitations for the state (7) is 
qualitatively similar to the structure of the spectrum for the 
state (5). At the same time, the presence of negative eigen- 
values in the spectrum (25)-(27) points out the instability of 
the state (7). The completeness of the system of eigenfunc- 
tions (25)-(27) is proved in complete analogy to the case of 
the system (1 1)-(13). 

To conclude this section we point out that to obtain the 
set of eigenfunctions and eigenvalues of Eq. (9) when 
pO(z) corresponds to the 25- kink (4), it is sufficient to note 
that the expression (5) transforms into (4) upon the limiting 
transition L - - + m .  Passing to the limit L-tw in Eqs. (1 1)- 
(13), we have the set of eigenfunctions and eigenvalues of 
Eq. (9) for the case of a 27r kink: 

z-il  
$,(z)=-eiqZ, z t z l  e q = l + q l ,  q>O. (29) 

It follows from the equations obtained that the solution of the 
2 ~ - k i n k  type is marginally stable. We note that the solutions 
(28) and (29) were previously presented in Ref. 9. 

3. COLLECTIVE EXCITATIONS IN AN ANNULAR 
DISTRIBUTED JOSEPHSON JUNCTION 

Let us consider a distributed Josephson junction having 
the form of a thin ring of radius R. We assume that R is quite 
large (compare Refs. 2 and 3), that A , > A j ,  and that the 
approximation (3) can be used to describe the distributions of 
the phase jump of q(z)  in the junction. It is clear that in 
order for either of the periodic structures (5) and (7) to be 
realized in such a junction, the period of the structure must 
be an integral number rn times smaller than the length of the 
junction 27rR. We focus on the case of the stable chain (5), 
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which has the smallest period 2 r L .  In an annular junction 
this formation can appear, if R = nzL, and at large values of L 
such a structure has the form of ni single Josephson vortices 
evenly distributed over the entire circumference of the junc- 
tion. It follows from (6) that such a state can appear only for 
selected values of the mean field equal to 

This does not mean that such stationary formations cannot 
correspond to other values of (H) f ( H I , , ) ,  since in the 
present case we have been dealing only with structures de- 
fined by (5). 

To investigate the perturbations of the structures indi- 
cated, the solutions which "fit" into the total circumference 
of the junction an integral number of times must be selected 

from the complete set of all the restricted solutions of the 
problem (10). In other words, these are the solutions whose 
smallest period equals 2 r R / n i ,  where rn is an integer. This 
problem was solved for ni = 1,2 in Ref. 9. This can easily be 
done for arbitrary n1 using the explicit expressions (1 1)-(13). 
Here the results will differ, depending on whether nz is even 
or odd. A single description for the cases of even and odd nr 
can be proposed by the traditional method using the solutions 
of the problem (10) in the doubled period 4 r R .  To obtain a 
complete system of such solutions, L must be set equal to 
Rlm in Eqs. (11)-(13), and the values of q must be assumed 
to be equal to q=k /2R,  k=O, l ,  ..., ni in Eqs. (11) and (12) 
and q =  (k+m)/2R,  k = 0 , 1 ,  ... in Eq. (13), respectively. 
Now the explicit forms of the eigenfunctions and eigenval- 
ues are given by the following expressions: 

It follows from (21)-(23) that the system (3 1)-(33) ob- 
tained is a complete system of eigenfunctions in the doubled 
period 47rR. In order to isolate the eigenfunctions which are 
periodic with a period 27rR from the system (31)-(33), it 
must be assumed in Eqs. (3 1) and (32) that k and rn have the 
same parity and only even values of k nus t  be taken in Eq. 
(33). Thus, the complete system of eigenfunctions which are 
periodic with a period 2 r R  for rn = 2 p  (even rn) will be 

{$2,(z,m), $ s ( z , r n ,  s = p , p -  1 ,..a, 0; 

I 

while the analogous system for m = 2 p  + I (odd nz) is 

The system of functions (31)-(33) makes it possible to 
solve the problem of describing the weakly excited states 
cp(z) near the stable equilibrium state (5) in an annular Jo- 
sephson junction: 
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Here (7 is some small amplitude, and ib(z) is represented by 
any of the functions Qkk(z,m),  Q:(z ,n~) ,  and lbk(z,m) 
which are periodic with a period 27rR. The characteristic 
frequency o of such collective excitations is expressed in 

+ terms of the corresponding eigenvalue c: = E L  (nz) ,  e k  ( m ) ,  01. 

Ek(nl) by means of the formula 

We note that in the asymptotic limit of large eigenvalues E 

the dependence (37) coincides with the dependence (8)  pre- 
viously obtained. 

4. INFLUENCE OF A WEAK CURRENT 

In this section we consider the influence of a weak cur- 
rent j on the vortex structure (5).  An analysis of the corre- 
sponding problem within traditional Josephson electrody- 
namics can be found in Refs. 3 ,  14, and 15, where it was 
shown, in particular, that a motionless chain of Josephson 
fluxons begins to move slowly as a single unit under the 
action of a weak current and that the current-voltage char- 
acteristic is then linear. The influence of a current on the 
nonlocal structure (5 )  of Abrikosov-Josephson vortices can 
be described by the following e q ~ a t i o n : ' ~ , ' ~  

p acp 1 a2cp I d ~ '  d c p ( ~ ' , t )  
sin cp+7-+-- - -  

oj dt o t 2 -  dz' + I ( t ) .  

(38) 

We take a dimensionless current density I ( t ) = j ( t ) l j , ,  
which depends only on time. Setting I ( t )  small, we seek a 
solution of Eq. (38) in the form of an asymptotic expansion 
in this variable. In such an expansion the secular terms must 
be eliminated. We eliminate these secular terms by assuming, 
in analogy to the local case, that the perturbed state moves as 
a single unit according to a certain law z o ( t ) ,  which is de- 
termined by the current I ( t ) .  In a first approximation with 
respect to the small current, the solution of Eq. (38) can be 
written in the form 

Here cpo is described by Eq. (5) ,  and c p ,  obeys the equation 

Considering the structure ( 5 )  in an annular Josephson junc- 
tion, we use an expansion of Eq. (39) in the complete system 
of eigenfunctions considered in the previous section which 
are periodic with a period 27rR. The subsequent arguments 
are simplitied when the following notations are introduced: 

- - 
R 

d m -  R cos(m .$/ R )  ' 
(40) 

921 JETP 81 (5), November 1995 

These two functions are eigenfunctions of the spectral prob- 
lem (10) and correspond to the eigenvalues E ,  ( m )  = 0 and 
~ , ( m ) =  Jm. The use of the functions (40) and 
(41) is beneficial, since the following relations hold: 

This makes it possible to represent the solution of Eq. (39) in 
the form 

For the amplitudes A, and A. we now obtain the equations 

and the condition for elimination of the secular terms has the 
form 

We first discuss the consequences of Eq. (45) under the as- 
sumption that the initial problem is solved. Then the solution 
of Eq. (45) can be represented in the form 

where zo (0 )  and v (0 )  are integration constants. If I = const 
holds for t>O, Eq. (46) has the following form: 

In the limit fit+ I this relation corresponds to uniformly ac- 
celerated motion: 

In the resistive case, in which P # 0, in the limit t+m Eq. 
(47) corresponds to uniform steady motion: 
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where 

In the other characteristic case, in which we have 
I = I ,  cos wt at t>  0 ,  Eq. (46) gives 

1 - exp( - p t )  
zo( t )  = z o ( 0 )  + P 

Hence, in particular, in the nondissipative limit, where 
p-=S w  and Pt< 1, we have 

The perturbed motion emerging here together with the ap- 
pearance of a constant velocity is also characterized by 0s- 
cillations. In the opposite resistive limit, where /? # 0 in the 
limit t+m,  Eq. (51) gives 

Equation (46) and the ensuing equations up to (53) describe 
the motion of the vortex structure (5) as a whole. The new 
feature not observed in ordinary Josephson electrodynamics 
is the dependence of the properties of such motion on the 
parameters characterizing the Josephson junction in our non- 
local electrodynamics. It should be noted that the uniform 
velocity (50) corresponds to the motion obtained in the 
small-current limit from the general relation (7) in Ref. 17, in 
which an analytical description of a nonlinear periodic struc- 
ture of small-scale vortices traveling with a constant velocity 
in the strong-dissipation limit of nonlocal Josephson electro- 
dynamics was given. 

Apart from the appearance of the motion of the structure 
(5) as a whole, the perturbation (42) should be borne in 
mind. According to Eq. (43), the amplitude A ,  undergoes 
only relaxational damping. The consequences of Eq. (44), 
which has steady-state solutions, are more interesting. For 
example, in the case of I = const, such a steady-state solution 
has the form 

In another case of a sinusoidally varying current, the steady- 
state solution of Eq. (44) has the form 

( J F T G T ~ - R ~ ~ ) C O S  w t + ~ w p  sin wt 
X 

( J E % Z ~ ; - R ~ ~ ) ~ + ~ ~ ~ ~ R ~  

At small values of /? this equation describes the resonant 
excitation of a spatially nonuniform vortex state with the 
spatial structure (41), which occurs under the action of a 
spatially uniform current flowing through the periodic vortex 
structure (5). 

The relations obtained make it possible, in particular, to 
make some definite statements regarding the current-voltage 
characteristic of an annular junction containing the static vor- 
tex structure (5), at least at small currents. Taking into ac- 
count the equation 

for averaging around a ring, we can write the following re- 
lation: 

n 
rn lt- ( Jm- m l )  - . (57) d  t  dAOl  

In the special case of I= const, for steady motion we there- 
fore have 

where R, is the ohmic resistance of a unit of area of the 
tunnel junction. The expression (58) corresponds to the 
weak-current limit of Eq. (12) in Ref. 17, which was derived 
in the theory of a resistive small-scale nonlinear traveling 
structure of Josephson vortices of the Abrikosov type. 

The current-voltage characteristic corresponding to a 
small-scale vortex structure with an oscillating current has 
not previously been considered. In accordance with (53) and 
( 5 9 ,  here Eq. (57) gives the following expression for steady 
motion in the resistive limit /3 # 0 

h w;lo w  sin w t + P  cos wt 
v =  1-nz/  

2lel JFGZF w 2 + p 2  

w; J- sin w t - R w p  cos wt 

( w: JFGZi- w 2 ~ ) ' +  o ~ ~ ~ R ~  

According to Eqs. (52) and (55), in the opposite nondissipa- 
tive limit p< w under the assumption that u (0) = 0 we have 

dzo - R l w ~ l ,  sin wt 
dt  w \ i F G m  ' 

dA0 - R ~ W ~ ~ I , ,  sin wt 

dt  \ I F G Z i [ w ;  J F G E  w 2 R ]  ' 
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These equations and (57) give 

f iq lo (mlw5-  ~ w * )  v =  - sin w t .  
2 1 e l w ( w : J m - w 2 ~ )  

(60) 

The latter expression corresponds to resonance at a fre- 
quency wj[ l + ( ~ z I I R ) ~ ]  'I4. 

Equation (58) can be compared with the result in Refs. 3 
and IS, which was obtained in the classical theory of Joseph- 
son junctions, in which 

where k is determined from the equation 

Here K(k) and E(k) are complete elliptic integrals, X j  is the 
Josephson length, and nt is the number of fluxons in a period 
equal to 2n-R. 

In the limit rn+ n-RIAj the classical theory, like Eq. (58), 
gives the ordinary Ohm's law. In the opposite limit of a small 
number of fluxons, it follows from the customary theory that 

Conversely, Eq. (58) gives the following current-voltage 
characteristic: 

Bearing in mind the smallness of h j  in comparison with 1 
(see Refs. 4 and 6), we can argue that small-scale Josephson 
structures can have a significantly larger resistance than tra- 
ditional large-scale vortex structures. 

5. CONCLUSIONS 

Summing up all the material presented above, we can 
state that exact (and very simple) analytical expressions have 
been obtained for the complete systems of eigenfunctions 
and eigenvalues of the collective excitations in an infinite 
Josephson junction containing stationary small-scale 
Abrikosov-Josephson vortices. For example, in the absence 
of dissipation ( P  = O), the frequency of the collective exci- 
tations in a junction with one Abrikosov-Josephson fluxon 
has the form w= w j \ i l f q l ,  q 2 0. In the case of a junction 
filled by a chain of Abrikosov-Josephson fluxons with a 
mean magnetic field [see Eq. (S)] there are two branches of 
characteristic frequencies for collective excitations. This is 
similar to traditional (local) Josephson electrodynamics. The 
acoustical (lower) branch of collective excitations is charac- 
terized by the frequency 

(65) 

The frequency of the collective excitations on the plasma 
(upper) branch of the spectrum have the form 

In addition, the spectrum of collective excitations corre- 
sponding to the multifluxon filling of a tunnel junction with a 
zero mean magnetic field [see Eq. (7)] was obtained. Such a 
state is unstable with a growth rate 

The general results obtained were used to find the spec- 
trum of excitations in an annular junction and to describe the 
influence of a weak electric current on an annular junction 
containing Abrikosov-Josephson vortices. To solve the 
former problem, the values of q which correspond to the 
annular geometry of the structure were identified. The inves- 
tigation of the latter problem showed that the action of a 
weak current on a periodic vortex structure results in move- 
ment of the entire vortex structure as a whole and in the 
appearance of spatially nonuniform perturbations in it. The 
current-voltage characteristics of an annular Josephson junc- 
tion containing Abrikosov-Josephson fluxons were obtained, 
and their dependence both on the parameters characterizing 
the junction and on the number of fluxons in it was investi- 
gated. Here we stress the new resonant dependence of the 
current-voltage characteristic of a Josephson junction de- 
scribed by Eq. (60), which appears at the frequency of a 
collective excitation in an annular junction containing rn 
Abrikosov-Josephson vortices. In addition, a simple com- 
parison of Eqs. (63) and (64) demonstrates the significant 
difference between our proposed current-voltage character- 
istic of a junction with nz Abrikosov-Josephson fluxons and 
the characteristic of a similar junction with rn Josephson vor- 
tices. 

The new predicted spectra of collective excitations con- 
front experimentalists with a challenge no less complicated 
than the one offered by the publication of Ref. 1 in 1967. We 
note that there is still no exhaustive experimental confirma- 
tion of the results in Ref. 1.  
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