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The difficulties, associated with surface divergences, of a consistent QED theory in describing 
the natural broadening of spectral line profiles of atoms are studied. In the case of heavy 
multiply-charged ions, when levels with the same values of the total angular momentum J ,  its 
projection J ,  , and parity may overlap, these difficulties are shown to manifest themselves 
in QED calculations of the respective spectral line profiles even in the lowest approximation. The 
possibility is discussed of using the equation for the relativistic T matrix to cope with these 
difficulties. Finally, it is shown that the boundary condition for this equation can be chosen in such 
a way that no difficulties involving surface divergences arise in the description of the 
temporal evolution of QED systems, with the solution of this equation by perturbation techniques 
leading to the ordinary renormalized expression for the S matrix. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

It is well known that in quantum electrodynamics (QED) 
the ultraviolet divergences can be removed from the S matrix 
and in the Green's functions, but cannot be removed from 
quantities characterizing the temporal evolution of the pro- 
cesses, since regularization of the scattering matrix leads to a 
situation in which divergent terms automatically appear in 
the Schrodinger equation and the Tomonaga-Schwinger 
equation.' For this reason these equations are of only formal 
importance to quantum field theory. 

Thus, the description of temporal evolution of QED sys- 
tems, which determines the energy and other characteristics 
of bound states, encounters unregularizable surface ultravio- 
let divergences. This leads, in particular, to difficulties in 
finding a consistent QED description of natural broadening 
of spectral line profiles in atomic systems. This problem, 
however, has only minor importance for most applications. 
The reasons are twofold. First, in most problems related to 
the description of atomic spectra the QED effects contribute 
little in comparison to other factors determining the broad- 
ening of spectral lines. Second, most excited states of atomic 
systems satisfy the condition of quasistationarity, so that the 
decay law is close to an exponential one. Here the spectral 
line is Lorentzian and is characterized by the energy and 
width of the corresponding energy levels, which can be cal- 
culated by standard QED methods. 

Recent progress in heavy-ion beam techniques, however, 
has made it possible to begin experimental studies of 
multiply-charged heavy ions, whose interaction with their 
own radiation field can no longer be considered a small per- 
turbation and, accordingly, the radiative broadening of spec- 
tral lines may be much greater than other types of broaden- 
ing. In the case of multiply-charged heavy ions there may, 
for example, be an overlap of energy levels with the same 
total angular momentum J ,  its projection J ,  , and parity. The 
decay law for such states may differ dramatically from the 
exponential one and, accordingly, the natural broadening of 

spectral lines differs from that of a Lorentzian line. The prob- 
lems associated with describing such states are described in 
Refs. 2-10. The difficulties that a researcher encounters in 
describing the radiative broadening of spectral lines and that 
are associated with surface divergences were discussed in 
Ref. 3. These difficulties arise in describing the natural 
broadening of spectral line profiles. In Ref. 3 it was noted, 
however, that at least in calculating with an accuracy of a2 
these difficulties do not arise. 

In this paper we will see that when energy levels with 
the same J ,  J , ,  and parity overlap, the situation with surface 
divergences is much more complicated than it was assumed 
to be. Already in calculating the corresponding line profiles 
in the lowest approximation such divergences come into 
play. This fact, on the one hand, stimulates the development 
of quantum electrodynamics to resolve the situation with sur- 
face divergences and, on the other, shows that the line pro- 
files of multiply-charged heavy ions can supply new infor- 
mation about the fundamental laws governing the QED 
interaction. We will examine the possibility of using the 
equation for the relativistic T matrix (see Refs. 5 and 11-14) 
to solve this problem. We will also show that the boundary 
condition for this equation can be formulated in such a way 
that no difficulties associated with surface divergences arise. 
Finally, we will show that the S matrix built via this equation 
coincides with the ordinary renormalized S matrix. 

2. THE METHOD OF THE RELATIVISTIC T-MATRIX 

A method for building a scattering matrix was developed 
in Refs. 5 and 1 1  - 14. Its main idea is to use the Feynman 
superposition in conjunction with the most gen- 
eral principles of axiomatic quantum field theory.17 As is 
known, two postulates lie at the base of the Feynman ap- 
proach to building quantum field theory. The first is the su- 
perposition principle applied to the probability amplitudes, 
according to which the probability amplitude of an event 
occurring is the sum of the amplitudes of the various alter- 
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native possibilities for this event to occur. In the Feynman 
approach this principle is used in the following way: the 
probability amplitude of a particle traveling from point q,, , 
where it was at time t,, to a point ql,, at which it arrives at 
time tl,, is the sum of contributions of the motion of a clas- 
sical particle along all conceivable paths connecting these 
points. In the case of quantum field theory the integral over 
all the paths is replaced by an integral over all field configu- 
rations. 

The second postulate states that the contribution of each 
path to the probability amplitude is exp{iShu[g(t)]lh), where 
S,,,[g(t)] is the classical action integral calculated for the 
path g(t) .  The first postulate determines the general scheme 
that must be used in quantum mechanics to calculate prob- 
abilities. The second invests this scheme with specific con- 
tent, indicating a way of determining the amplitude corre- 
sponding to a definite way in which this event occurs. 
Essentially, this postulate is the quantum generalization of 
the classical principle of least action. 

On the other hand, principles have been formulated 
within the framework of axiomatic quantum field theory that 
are mandatory for any feasible quantum theory.18 Among 
these are the causality principle, the unitarity of the S matrix, 
and the assumptions of relativistic quantum theory about the 
properties of free states, assumptions that constitute what is 
known as the zeroth axiom of quantum field theory. As 
shown in Refs. 1 1 - 14, in building the scattering matrix these 
"mandatory" physical principles can be used instead of Fey- 
nman's second principle. 

Let us examine the scattering S matrix. It describes scat- 
tering processes in which measurements in the system are 
conducted only as t--, - and t+ + w and, accordingly, no 
attempts are made to determine the beginning and end of the 
interaction in the system. According to the basic Feynman 
postulate, the scattering amplitude can be represented as the 
sum of contributions of possible ways in which the given 
scattering process can be realized. Since no attempts are 
made to determine the beginning or end of the interaction in 
the system, we can assign any values to these times. Each 
specific pair of time values t l  and t2 of the beginning and 
end of the interaction correspond to definite ways of imple- 
menting the events described by the scattering matrix. 

According to Feynman, each of these ways contribute to 
the scattering amplitude, which is simply the sum of these 
contributions: 

where ( ( P ~ I S ( ~ ~ ,  t 1)1 c p I )  is the probability amplitude that if at 
t+ - the state of the system was 1 in, cp , ) ,  then the inter- 
action in the system begins at time t2 and at t+ + m  the 
system is found in the state lout,cp2). The first term on the 
right-hand side of Eq. (I)  corresponds to the situation in 
which the system's particles do not interact at any time. The 
following relationship is the Lorentz-invariant generalization 
of ( 1 ) :  

where (cp2)S(cr2 ,u,)I  (P ,) is the amplitude corresponding to 
the variant of the evolution in which the interaction occurs in 
the space-time region between the hypersurfaces (7, and 
a2. Here a stands for the hypersurface xq = a, where q is 
the unit time-like vector pointing to the future. The ampli- 
tude ( I  cp2S(t2 ,t ,)I cp ,) can itself be represented by the sum 
of amplitudes corresponding to the alternative realizations of 
the event represented by this amplitude. For instance, in non- 
relativistic quantum mechanics the amplitude 
(cp2(S(t2,tl)(cpI) can be written in the form of integrals 
along all conceivable paths corresponding to processes in 
which the interaction begins at t i  and ends at t2 .  If, follow- 
ing the second postulate of the Feynman method, we assume 
that each path provides a contribution proportional to the 
exponential function of the respective action integral and 
substitute the expression obtained in this manner into Eq. ( I ) ,  
we arrive at the ordinary expression for the Feynman ampli- 
tude. 

In Refs. 11-14 it was found that building the scattering 
matrix does not require using the second postulate of the 
Feynman method, i.e., we need not assume that the ampli- 
tudes (cp21S(t2 ,tl)l v I )  and (cp21S"(u2 , u I ) ( q 1 )  are specified 
by exponential functions of the action integral, which in 
quantum mechanics corresponds to each path and in quan- 
tum field theory to each field configuration. At the same time 
this approach uses the main idea of the Feynman formalism, 
namely, that such amplitudes as (cp21i(t2, t and 
( ( ~ ~ 1 S ( u ~ , u , ) I c p ~ ) ,  which correspond to the various possi- 
bilities of an event occurring, have physical meaning. It ap- 
pears that by combining these amplitudes with the most gen- 
eral principles of axiomatic quantum field theory we can 
define a relativistic T matrix and derive a dynamic equation 
for it. 

The T matrix is defined as follows: 

where In,q) is the state vector in the interaction picture re- 
lated to vector q ,  i.e., 

Here J n , a )  are the eigenvectors of the total 4-momentum 
p,, that describe the free states of the system on the hyper- 
sudace cr, and n stands for the entire set of discrete and 
continuous variables that characterize the system in full. The 
relativistic T matrix defined in this way is related to the S 
matrix by 
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and satisfies the following relationship: 

Note that Eq. (5 )  was derived as a corollary of the most 
general physical principles: the Feynman superposition prin- 
ciple, the unitarity of the S matrix, and the assumptions of 
relativistic quantum theory about the properties of free states. 
If a boundary condition for (cp21 ~ ( z , q ) l  cp,)  is specified, we 
can think of (5 )  as being a difference equation. In Ref. 12 it 
was found that the boundary condition at which the dynam- 
ics determined by this equation proves to be equivalent to the 
Hamiltonian dynamics has the following form: 

where H , ( x )  is the interaction Hamiltonian density. With 
such a boundary condition applied in nonrelativistic quantum 
mechanics, Eq. (5)  yields the ~ i ~ ~ m a n n - ~ c h w i n g e r ~ ~  and 
~ c h r o d i n ~ e r ' ~  equations. In quantum field theory the solution 
of Eq. (5) with the boundary condition (6) leads to the ordi- 
nary representation of the S matrix in the form of a T expo- 
nential function. 

Note that only in nonrelativistic quantum mechanics is 
the definition of the T matrix via (3) equivalent to the defi- 
nition of the T matrix in formal scattering theory. Indeed, as 
is well known, quantum field theory does not allow using the 
standard definition of the scattering matrix in quantum 
mechanics-it must be modified because in quantum field 
theory bare particles, described by the free Hamiltonian, do 
not coincide with physical particles, described by the total 
Hamiltonian. 

What is important is that the T matrix determined by (5) 
describes the self-action of particles. The presence of the 
corresponding matrix elements leads to a situation in which 
Eq. (5 )  proves to be essentially singular in the physical re- 
gion. This difficulty, however, can be overcome by 
reduction,".13 which amounts to the propagator Go(z,q) de- 
scribing the evolution of free particles being replaced by the 
propagator G(z,q) describing the evolution of particles in- 
teracting with the vacuum and, accordingly, T(z,q) being 
replaced by M(z,q), which describes particle interactions 
proper. These operators are related as follows: 

As a result of such reduction, equations were ~btained' . '~ 
that made it possible to tind M(z,y)  and the propagator 
G(z ,q)  that determines the kinematics of real particles inter- 
acting with the vacuum. In the process it proved more con- 
venient to set up equations not for the propagator G(z,q) but 
for the amplitude C(z,q;n) specified by the following rela- 
tionship: 

The poles of (n2,qlG(z,q)ln,  ,q)  determine the physical 
masses of the particles. 

3. ELECTRODYNAMICS IN THE FIELD OF THE NUCLEUS 
AND NATURAL BROADENING IN THAT FIELD 

In Refs. 2 and 5  a theory of unstable states of atomic 
systems was built that enabled describing these states with- 
out resorting to the quasistationary approximation and per- 
turbation theory. The gist of the theory is as follows. "Bare" 
bound states of electrons in the field of the nucleus are de- 
fined for the case where all the interaction in the system 
reduces to that of an electron and the field of the nucleus, 
which can be interpreted as an externa, unquantized field. 
Real states can be obtained from such states by allowing for 
the interaction of the electrons with their radiation field and 
with each other. Here for the space of free states one uses the 
space 3Va, constructed on the basis of the bound states of 
electrons in the field of the nucleus and the free states of 
electrons and positrons. However, it is more convenient to 
take for the free states the states of electrons in the field of 
the nucleus belonging to the discrete and continuous spectra. 
In this case the interaction of electrons and positrons with the 
Coulomb field of the nucleus has already been accounted for 
in these states. With such a choice of the "free" states, Eq. 
(5 )  describes the interaction of electrons and positrons with 
each other and with their radiation field. 

The interaction of the particles in the system with their 
radiation field and with each other can be described by the 
equations for the operators M ( z )  and G(z) mentioned ear- 
lier. Here and in what follows we employ a system of coor- 
dinates in which vector q is directed along the time axis. In 
this case the matrix elements 

where Inl) corresponds to the discrete part of the spectrum, 
characterize the interaction of atoms with their radiation and 
the interaction of the electrons of an atom with each other. 
While for the ground state this interaction results in a shift in 
the energy level, for the excited states (nz21G(z)lml) has no 
poles, with the result that no definite energy can be associ- 
ated with these states. Such states are characterized by a 
certain energy distribution defined by the functions C(z,m). 
The elements of the M-matrix describe the emission and 
absorption of photons in the atomic system, various scatter- 
ing processes in the system, and transitions between the vari- 
ous states of the electron-positron field. 
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The natural broadening of spectral line profiles is deter- 
mined by the probability of a photon being emitted with 
energy w as the atomic system goes from the ith excited 
state to the ground state:225 

where A is a normalization factor, and k and e h  are, respec- 
tively, the photon's momentum and polarization. The 
ground-state energy E l  already incorporates the correction 
due to the interaction of the atom in the ground state with the 
vacuum. Equation (8) holds when the contribution of inter- 
ference terms can be ignored. If within the limits of the spec- 
tral line profile we can ignore the z-dependence of Cj(z), we 
can put 

Equation (8) implies that AEj  and Ti can be interpreted, 
accordingly, as a shift in energy caused by the interaction of 
the atom with the vacuum and the width of the energy level. 

4. SPECTRAL LINE PROFILE AND SURFACE 
DIVERGENCES 

The equations used in the method under discussion can 
be solved iteratively when the coupling constant is fairly 
small. This approach was used in Refs. 5 and 7 to find the 
solutions that determine the natural broadening of spectral 
line profiles. For instance, in the first order of the iterative 
solution we have 

In the next order, for Ci(z) and (ilM(z)lj) we have 

c i2)(z)=( i lX(z) l i ) -  lim ( i l H , G o ( z 2 ) ~  I l i )+c; ( im) ,  
i 2 - + i m  

( 1  1) 

where 

and li) is the state vector describing the ith state of the atom. 
If the distance between the energy levels with the same val- 
ues of J, J , ,  and parity is much larger than the widths of 
these levels, in solving the problem to within a2 we can 
ignore the radiative transitions between different states of the 
atom, which are described by (il M (z) 1 j) , with (9) providing 
Ci(z) to the given accuracy. 

At z =  E, the right-hand side of (9) can be reduced to a 
form coinciding with the ordinary QED expression for the 
radiative shift of an atomic energy level. If, however, energy 
levels with the same values of J, J ,  , and parity overlap, we 
allow for transitions between these states, which means we 
cannot limit ourselves to the second-order iterative solution 
in determining C i ( z ) .  

In the next order we arrive at the following expression7 
for the spectral line profile, defined by (8), for a three-level 
atomic system: 

where z = E l  + w .  If we ignore the z-dependence of 
( i(Z(z)l  j) and (i lZ(z)(i)  within the line profile and set 
( j lC(z) 1 j )  = AE,- ( i /2) r , ,  the above expression coincides 
in form with the expression for the emission probability ob- 
tained in Ref. I as a result of summing an infinite perturba- 
tion series. 

Note that the solution as a result of which we obtained 
(15) is of a formal nature and does not take into account the 
problem of ultraviolet divergences mentioned earlier. When 
energy levels with the same values of J ,  J,, and parity do 
not overlap, these problems are solved by a standard method 
if we assume that the line is Lorentzian. In this case the line 
profile is determined by the quantity C,(z= E,), which coin- 
cides with ( i lZ(z=Ei) l i )  (we ignore the second and third 
terms on the right-hand side of (12), which can be incorpo- 
rated into the renormalization constants). The quantity 

( i )Z(z  = E ,)li) can be calculated via the ordinary renormal- 
ization method. 

But the situation changes drastically when the energy 
levels of such states do overlap. In this case the spectral line 
profiles strongly depend on the law by which the system 
evolves. It is, therefore, natural to assume that difficulties 
associated with surface divergences must be encountered 
here. For (15) this becomes apparent in calculations of 
( j(x (z) 1 i)  , which describes transitions between states 1 i )  
and 1 j) with different energies, i.e., ( j lC(z)J i )  is obviously a 
quantity whose calculation involves dealing with surface di- 
vergences. 

We now discuss this question in greater detail. For the 
sake of simplicity we examine the case of a one-electron 
atom. 

At z =  Ei the expression (14) for ( j lZ (z ) J i )  can be rep- 
resented in the form 
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where 

Z ( x , x f )  is the mass operator, and the tc/P(r) are the time- 
independent electron wave functions. Using the representa- 
tion 

we can rewrite Eqs. (17)  and (18) as 

The necessary regularization here reduces to replacing 
XE(r , r  ) by the renormalized mass operator Z$) ( r , r  ' ) . But 
since x $ ) ( r , r f  ) behaves like E In E as E A  m, the integrals 
in (19)  and (20)  diverge at large values of E ,  which is the 
manifestation of the surface divergences mentioned above. 

At Ei=Ei  this difficulty is not present because in this 
case the sum of integrals (19)  and (20)  is equal to S g )  
x ( r , r f  ), and (16)  reduces to 

But Ei is not equal to E,. Otherwise, the state l i )  would 
coincide with I j ) ,  in which case Eq. (16) would be an ex- 
pression for the self-energy shift c 1 2 ) ( ~ ; ) .  As for the off- 
diagonal elements ( j l Z ( z )  1 i ) ,  this expression cannot be used 
even as the first approximation, since the sum of the integrals 
(19) and (20)  diverges for an arbitrarily small value of 
E ; - E , .  

Thus, ( j l  Z ( 2 )  1 i )  remains divergent even after renormal- 
ization, and hence Eq. (16)  is meaningless. The fact that 
difficulties associated with surface divergences emerge in the 
given problem, which is related to the description of tempo- 
ral evolution, is quite natural. But it must be stressed that, as 
noted earlier, when energy levels with the same values of J, 
J,, and parity overlap, these difficulties cannot be ignored 
even in the lowest approximation. In this case the ultraviolet 
divergences cannot be removed by standard QED methods. 

In studying the natural broadening of spectral line 
profiles: when levels with the same value of J, J,, and 
parity overlapped, the equation for ( i l ~ ( z ) l  j )  was dropped 
from the system of equations, because of the difficulties dis- 
cussed above. In the process it was assumed that 

Such a model made it possible to investigate how strongly 
the natural broadening of line profiles depends on the overlap 
of energy levels. However, in a consistent QED calculation 
of the line profiles the problem under consideration cannot 
be ignored. 

5. ULTRAVIOLET DIVERGENCES AND THE T-MATRIX 
EQUATION 

As is known, removing ultraviolet divergences does not 
settle the difficulties of quantum field theory since the infini- 
ties go from the matrix elements to the interaction Hamil- 
tonian. The problem under discussion is a perfect illustration 
of this. On the other hand, solving the problem in full re- 
quires a thorough modification of the theory. Since ultravio- 
let divergences are related to the local nature of the theory, it 
seems natural to resolve the problem through a nonlocality in 
the theory. But nonlocal quantum field theory has its own 
difficulties, which have proved to be more serious than the 
difficulties of the local theory associated with ultraviolet di- 
vergences. 

For instance, an attempt to introduce a nonlocal form 
factor into the interaction Hamiltonian density S l ( x )  fails 
because it violates the integrability condition 

[ ~ l ( x ) , . % l ( x ' ) ] = O ,  ( x - x ' ) ~ < o ,  (21)  

which is the compatibility condition of the Tomonaga- 
Schwinger equation. 

We now examine Eq. ( 5 )  with the boundary condition 
(6) .  In Ref. 13 it was found that for Eq. (5) to be compatible 
with the boundary condition (6) ,  B 1 ( x )  in Eq. (7) must sat- 
isfy condition (21) .  This means that a nonlocal form factor 
cannot be introduced into (6) .  

In Refs. 13 and 14 a more general boundary condition 
for Eq. ( 5 )  was formulated. This condition is specified not for 
the T matrix but for an operator S(x2  , x i )  (see Refs. 13 and 
14) related to the operator @a2 , a l )  through the following 
expression: 

The meaning of introducing the operator S(x2 , x l ) ,  an 
operator-valued function of the two points x2 and x ,  , arises 
from its difference from S(a2,al), which is a function of 
the surfaces u2 and a ,  . The covariance of expressions be- 
comes more evident. For instance, the expression (2) for the 
S matrix can be written as 

where 
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- 
In Refs. 13 and 14 the boundary condition for S(x2 , x i )  is 
given as 

with (n21 SN(x2 ,x l  ) 1 n  describing an "elementary" interac- 
tion with the system. If (n21SN(x2 , x l ) l n  ,) is specified in the 
form 

where the an~plitude (n2ISh(x2 ,X [ ) I n  I )  has no singularity at 
the point x2 = x I , then the boundary condition (24) proves to 
be equivalent to the boundary condition (6). 

The boundary condition (24) opens up new possibilities 
for solving the problem of ultraviolet divergences. Indeed, 
the integrability condition (21), which actually allows only 
for local interaction, limits the development of the theory 
when the boundary condition (6) is employed. Equation (25) 
demonstrates this clearly since ( x )  is a local characteris- 
tic. 

On the other hand, ( n 2 1 S ~ ( x 2 , x l ) l n l )  in (24) is essen- 
tially nonlocal, since it describes a process in which the in- 
teraction takes place in a finite space-time region deter- 
mined by the points x2 and x l .  This means that the 
amplitudes (n21 SN(x2 ,x l ) l  n  can be specified by form fac- 
tors that determine the behavior of the amplitudes as func- 
tions of particle momenta. 

In QED the operator SN(x2 , x I ) ,  which specifies the el- 
ementary interaction in the system, must generally have the 
following form: 

where F ( x 2  - X  I ,y I - x I ,y - x I )  is a Lorentz-invariant form 
factor, j,(x) is the current density operator, and A p ( x )  is the 
electromagnetic - field potential. The compatibility condition 
for S ( x 2 , x I ) ,  which is a generalization of the condition on 
.7P(x), has the form 

when x4 and x 3  are spatially similar to the points x2 and 
x l .  For S N ( x 2 , x l )  defined by (26) to satisfy (27), the form 
factor F ( x 2 - x I  , y I - x I  , y 2 - x I )  must be nonzero only if 
y ,  and y2  lie within the space-time region limited by two 
light cones with their vertices at points x2 and x l :  

( X I  - Y  1,2)2>0, (x2-Y 1.2)2>0> X ~ > Y  1,2>x1. 

Obviously, F ( x 2 -  x I ,y I - x I ,y2 - X  ,) can be chosen in such 
a way that the amplitudes (n21sN(x2 , x I ) l n  as functions of 
particle momenta will have the "right" properties. However, 
according to (24), as x2+x I  the behavior of 
(n21SN(x2,x , ) ln , )  is important only when the region in 
which F ( x 2 - x l  , y l  - x l  , y 2 - X I )  is nonzero collapses to a 
point. 

Obviously, for all In ,) and ltz,), we can write the fol- 
lowing relationship for (n21iN(X2 , x l ) l n  ,) in a snlall enough 
neighborhood of the point x2  = x  : 

where 

From this it follows that for all I n l )  and In2) we can select a 
z such that 

If F ( x 2 - x 1  , y  I - X I  , y2-x , )  has no singularity at 
x2 -x l=O similar to the one in (25), the function g(z ,q) ,  
according to (30), must tend to zero as z+iw. 

But does Eq. (5) have a nontrivial solution when 

Sending z2 to iw in Eq. (5) and then interchanging the order 
of integration and taking the limit on the right-hand side of 
the equation, which cannot be done in general, we find that 

for all values of z.  This situation resembles the "zero- 
charge" problem in QED. 

But the reason for the current difficulty is obvious and 
lies in the fact that generally one cannot employ the above 
method for solving Eq. (5). Indeed, to be able to interchange 
the integration and the limit we must make sure that the 
respective integrals converge. But in view of ultraviolet di- 
vergences, this is obviously not the case. On the other hand, 
z2 in Eq. (5) can be chosen as large as one wishes, which 
means that Eq. (5) can be solved perturbatively, assuming 
that the operator T ( z 2  ,q )  is known. 

Thus, we arrive at the following expression: 

where 
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Obviously, the S matrix is related to (n21s(z2) ln  via the 
formula 

If a certain cutoff momentum is introduced, then according 
to Eq. (29) we can choose a z such that for all states In) in 
which the particle momenta are smaller than the cutoff mo- 
mentum, the matrix element ( n 2 J  H ,  (cr ;z2) l  n ) coincides 
with the respective matrix elements of the ordinary local in- 
teraction Hamiltonian. 

Thus, the expression for the S matrix determined by (3 1) 
and (32) essentially coincides with the ordinary expression 
for the S matrix regularized by introducing a "cutoff" form 
factor. If in (31) we renormalize by going over to physical 
masses and charge and then sending z2 to iw, we arrive at 
the ordinary expression for the renormalized S matrix. Since 
all parameters used to build the S matrix are reduced in the 
process to physical masses and charge, the expression for the 
S matrix is clearly independent of the type of form factor in 
(26). This is obviously a reflection of the law as a conse- 
quence of which in ordinary theory the renormalized S ma- 
trix is independent of the way in which intermediate regular- 
ization is performed. Thus, the theory according to which the 
dynamics is determined by the boundary conditions (24) and 
(26) manifests itself as an ordinary theory in describing the 
scattering matrix. 

On the other hand, using such a boundary condition of- 
fers the possibility of describing processes whose depiction 
in ordinary theory involves surface divergences. In such pro- 
cesses the dependence on a specific type of form factor in 
(26) may have some effect. 

For this reason there is a need to establish what class of 
form factors in (26) is admissible in principle. To this end, 
using the integro-differential form of Eq. (3) (see Ref. 12) 
and the representation (3), we can derive the following equa- 
tion: 

Combining this with (24), we see that when ( J ~ - ~ ( J ~ ,  the 
following relationship holds: 

where 

The form factors in (24) must be such that (34) holds for all 
values of q.  Thus, Eq. (34) determines the class of admis- 
sible form factors. Such form factors (for which (34) holds) 
can be shown to exist. This problem, however, requires a 
separate discussion and is not considered here. 

6. CONCLUSION 

We have shown that calculating (j l  C ( 2 )  1 i) encounters 
difficulties related to surface divergences. On the other hand, 
as Eq. (15) implies, the natural broadening of line profiles 
strongly depends on ( j l x ( z ) l i )  if its value is comparable to 
the distances between the corresponding energy levels. Such 
a situation can occur only in multiply-charged heavy ions, in 
which the interaction of an ion with its own field cannot be 
considered a small perturbation. This means that such ions 
have states for which calculations of the respective line pro- 
files cannot be done by standard QED methods even in the 
lowest approximation. 

We also found that the boundary condition for Eq. (24) 
can be formulated in such a way that no difficulties with 
surface divergences arise in describing the temporal evolu- 
tion of QED systems; solution of the equation by perturba- 
tive techniques leads to the ordinary renormalized expression 
for the S matrix. For this the boundary condition must be 
such that the physical electron mass and charge, which in 
this case are found by solving the equations of the method, 
coincide with the respective experimental values. 

Such a statement of the problem in which the boundary 
condition is chosen on the basis of the values of the physical 
electron mass and charge is entirely in keeping with the 
renormalization scheme common in QED. But in our case 
such renormalization is finite, which opens up the possibility 
for calculations of the natural broadening of spectral line 
profiles free of surface divergences. This proves important in 
describing the spectra of multiply-charged heavy ions, in 
which the natural broadening plays a dominant role and one 
cannot ignore corrections whose description with standard 
methods involves surface divergences. 
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