
Rutherford scattering in the presence of a monochromatic light wave 
N. L. Manakov, S. I. Marmo, and A. G. Fainshtein 

Voronezh State University, 394693 Voronezh, Russia 
(Submitted 2 March 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 108, 1569-1588 (November 1995) 

A closed expression for the amplitude of two-photon free-free electron transitions in a Coulomb 
field is obtained in the form of a single integral of the hypergeometric functions 2F I . The 
singular part of the amplitude for the case of elastic scattering is identified. Also, the intensity- 
linear correction to the Rutherford scattering in the presence of a light wave is calculated. 
Finally, the specific "asymmetry" of the cross sections of elastic scattering and processes of 
stimulated bremsstrahlung and inverse bremsstrahlung caused by the dependence of the 
cross sections on the degree of circular polarization of the light field is studied. O 1995 American 
Institute of Physics. 

1. INTRODUCTION field, i.e., free-free transitions of an electron with momen- 
tum p into a state with momentum p; defined by the energy 

The Rutherford formula for the scattering cross section conservation law 
of a nonrelativistic electron with momentum p scattered 
through an angle 6 in the Coulomb field of a fixed charge pA2 p2 -=-+ 
Ze, -nfiw. 

2m 2m (3) 

is a fundamental physical formula, and calculations of cor- 
rections to this formula caused by various factors are of ob- 
vious interest. For instance, allowing for relativistic effects 
for an unpolarized electron leads to multiplication of the 
right-hand side of Eq. (1) by the Mott factor 

which significantly suppresses backscattering in the ul- 
trarelativistic limit (see Ref. 1, $80). Radiative corrections to 
(1) caused by the virtual interaction between the electron and 
the vacuum, which are of order a, the fine-structure con- 
stant, have also been calculated (Ref. 1, 5122). When Cou- 
lomb scattering takes place in the presence of a monochro- 
matic (laser) wave of intensity I and frequency w, induced 
radiative corrections to d o R  emerge. These corrections are 
caused by stimulated processes of reradiation of real photons 
by an electron without any change in the absolute value of 
momentum p. For intensities I small compared to the char- 
acteristic "atomic" intensity 

where a. is the Bohr radius, the induced corrections are lin- 
ear in I, so that the total scattering cross section is 

Potential scattering in the presence of a light wave has 
been studied by many researchers (the most complete review 
of the theoretical and experimental results is given in Ref. 2) 
in connection with problems of multiphoton stimulated 
bremsstrahlung and inverse bremsstrahlung (SBIB) in a laser 

The most general results were obtained by Bunkin and 
~ e d o r o v ~  and Kroll and   at son.^ In Ref. 3 it was shown that 
if the scattering potential is taken into account in perturba- 
tion theory (the Born approximation), the cross section d o n  
of n-photon SBIB has the form 

.-& ,(leF(p-p;)l) 
d o -  J ,  

P 
mfiw2 doB9 

where F is the amplitude of the light wave, J, is the Bessel 
function, and doB is the Born cross section in the absence of 
a light wave. Kroll and watson4 established that in the low- 
frequency limit (w+O) the cross section d u n  also has the 
form of (4), with d o B  replaced by the exact scattering cross 
section in the absence of a light field. Since for a Coulomb 
potential do ,=da=da , ,  expanding the Bessel function 
Jn in Eq. (4) in a power series for small values of F ,  we 
arrive in both cases considered at the following simple result 
for the cross section (2) corresponding to n = 0: 

~ e r s o n ~  found an expression for d a n  using an approximation 
in which electron motion was described classically and the 
emission or absorption of photons quantum mechanically. 
Consistent allowance for the Coulomb potential for a finite 
w is exceptionally difficult, and has been done only for the 
case of double bremsstrahlung and inverse bremsstrahlung in 
a weak (see also Ref. 8). Numerical calculations of 
the cross section of double bremsstrahlung for an electron 
scattered by atoms were done by ~ o r o l ?  A number of re- 
searchers did numerical calculations of the elastic scattering 
cross section in a strong field via numerical integration of the 
Schrodinger equation. Van de Ree, Kaminski, and ~ a v r i l a "  
did their calculation for an ultrastrong high-frequency field. 
Dimou and ~ a i s a l "  used the method of strong channel cou- 

860 JETP 81 (5). November 1995 1063-7761/95/110860-11$10.00 O 1995 American Institute of Physics 860 



pling to calculate the scattering cross section in a circularly 
polarized field with a frequency w=0.472Ry. The R-matrix 
method of calculation was developed by Diirr et al." 

In this paper we obtain an analytic expression for the 
amplitucle of two-photon free-free transitions in a Coulonlb 
field and do a consistent calculation of the correction duind 
to the Rutherford cross section with exact allowance for the 
Coulomb potential. We also analyze the dependence of 
d ~ ~ , , ~  on the frequency and polarization of the light wave.') 
In contrast to processes of the SBIB type, there are additional 
difficulties in calculating the elastic scattering cross section 
caused by the singularity of the amplitude of a free-free 
transition between states with the same energy. These prob- 
lems are analyzed in Sec. 3 both for the Coulomb potential 
and for a simpler case of a short-range potential (a delta-like 
well). Section 4 discusses the specific polarization "asymme- 
try" of the cross sections of elastic scattering and SBIB-type 
processes, an asymmetry related to the dependence of d a  on 
the degree of circular polarization of the light wave. This 
effect is absent in the Born and low-frequency approxima- 
tions, and carries new information about the effect of laser 
radiation on collision processes. Section 5 examines a num- 
ber of limits and gives the results of numerical calculations 
of corrections to the Rutherford formula. 

2. A GENERAL EXPRESSION FOR THE CORRECTIONS TO 
THE ELASTIC SCATTERING CROSS SECTION 

The scattering of an electron on a static potential U(r) in 
an electromagnetic field with an electric vector 

is described by the Schrodinger equation (in what follows we 
use natural units: e = fi = m = 1 ) 

where 

- U ( r ) .  

It is convenient to express the operator V describing the 
electron-wave interaction in the dipole approximation in 
terms of the momentum operator: 

V =  V(+)exp( - iwt) + v(-)exp(iwt), 

The scattering function 'P has a quasienergy structure: 

The terms with $,,, describe the scattering of an electron 
accompanied by absorption (+ n )  or emission ( -  n )  of n 
photons, while fio(r) corresponds to elastic scattering. In a 
weak field, 

FIG. I .  

where Ip(+)) is the scattering function for the Hamiltonian 
H0 , and (Clb2)- F2.  Calculating @L2) perturbatively, we rep- 
resent the elastic scattering amplitude f ,  which determines, 
as usual, the asymptotic behavior of &(r) as r--+m, as the 
sum of the elastic scattering amplitude f0 in the absence of 
the field of the wave and a correction term f2- F': 

1 
f 2 = G ( p " - ) l ~ ( - ) ~ E + u ~ ( i ) +  v ( + ) G ~ -  w~(-)IP(+ ') .  

(9) 
Here Ip(-)) and I p(+)) are the wave functions (normalized to 
unit density) of the continuous spectrum of the Hamiltonian 
H0 that asymptotically behave like incoming and outgoing 
waves, and G8 is the Green's function of H0 that asymptoti- 
cally behaves like outgoing waves for -0. The two terms 
in Eq. (9) correspond to the process of absorption of a pho- 
ton that is subsequently emitted and to the reverse process. 
Graphically they can be depicted by a "direct" (Fig. l(a)) 
and "reverse" (Fig. l(b)) Feynman diagram. 

For the scattering cross section that allows for terms 
-F2, Eq. (8) yields 

where 

Thus, the corrections (induced by the light field) to the elas- 
tic scattering cross section have an interference structure 
(similar to vacuum radiative corrections), in contrast to the 
structure of the SBIB cross section, which is given by the 
square of the absolute values of the amplitudes f ,, , which 
are determined by the asyniptotic behavior of the $,, in (7). 

For the Coulomb potential U(r) = -Zlr  we have 

and Gd and Ip(')) in (9) are the Coulomb Green's function 
and the corresponding Coulomb wave functions: 

and 
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I ( - )  - ,(-)-  ( - )  

(12) 
Ip ) = q p ,  -Ap, exp(iplr)@(-ia1,I;-i(plr+p'r)) 

=AL~ 'exp{- ip ' r} (~(1  + i a ' , I ; i ( p ' r + p l r ) ) ,  

with ~ ~ ~ ' = e x ~ { ~ a / 2 } 1 ' ( 1  Tia) the normalization factors, 
and @(a,p;x )  the confluent hypergeometric function. 

3. CALCULATING THE AMPLITUDE OF A TWO-PHOTON 
FREE-FREE TRANSITION AND REMOVING 
SlNGULARlTlES IN THE ELASTIC SCATTERING AMPLITUDE 

The divergences in the matrix elements (9) at p l = p  
present an additional difficulty in studying elastic scattering, 
in comparison to SBIB processes related to absorption or 
emission of energy. The simplest way to establish the origin 
of the divergences is to examine the matrix element of a 
two-photon transition between the states of the continu- 
ous spectrum with certain values of energy and orbital angu- 
lar momentum I .  The asymptotic behavior, as 1 r l ~ ~ ,  of the 
integral of the product of the Green's function GAr , r1 )  and 

has the following form: 

where c ,  and c 2  are constants, and Sl is the scattering phase 
for the potential U(r) .  The presence of the second term os- 
cillating with the same frequency as the final-state wave 
function leads to a divergence in the matrix element 

(@E'lml(e',$)Gide$)l @Elm) 

at p '  = p .  2 ,  The two terms in Eq. (9) diverge for the same 
reason. In view of this, when calculating dcr,,,, , we assume 
that in Eq. (9) p '  # p and then pass to the limit p '  = p  only in 
the final analytic result. 

3.1. Amplitude of a two-photon free-free transition in a 
Coulomb field 

Consider the two-photon matrix element of the general 
form 

~ = ~ ( e ' . e . % ) =  ($L;)l(e1$)~,(e$)l @r'), (13) 

with the Coulomb Green's function Gr .  The result of $ 
operating on the Coulomb functions (12) can be written as 
follows: 

where 

Here the variables q and p are assumed to be independently 
differentiable, and then we must put q = p .  Note that the 
transformation (14) is essentially similar to that used earlier 

in bremsstrahlung theory,',l5 and proves to be convenient for 
analytic calculations of matrix elements not only of the first 
order but also of the second. 

Substituting (14) and a similar expression with ( IJ(- '  into 
(13) and applying the operator G,=(Ho- E)-I to $(", 

which are the eigenvectors of H,, we arrive at the following 
expression for M: 

It is convenient to calculate M ,  , M 2 ,  and M j  using para- 
bolic coordinates (5, v,cp), in which the vectors p and q are 
directed along the z axis and the vectors p' and q' lie in the 
xz plane. We write the Green's function as a series expansion 
in the eigenfunctions of the operator i, : 

In the chosen system of coordinates cp(+)  is independent of 
cp, with the result that terms with m # 0 in (16) vanish after 
integration with respect to cp. For G ~ = O  we use an integral 
representation obtained on the basis of the results of Ref. 16: 

where v= llm, with v=il  vl for ZbO, and I. is the 
modified Bessel function. 

The calculation of M  in Appendix A yields the following 
results: 

1 -ia 
x (en)p--,2F,(2-ia,l-ia';2;Xo) I P-P  

where 
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and 2F (a,b;c;x) is the hypergeometric function. 
The term M2 is obtained from (18) by interchanging 

primed and unprimed quantities (except for the normalizing 
factors A::'* and A:'): 

The term M j  can be expressed in terms of integrals of ,F,:  

I 
dXX-%v A ia- 1 B iul- lC- ia - i a l -2  

4p'I vl a x  + (eln ')(e,n- n ')  
B 

(1  - i a l )  

Above we have employed the following notation: 

C = ( l + ~ l v l ) ( l + p ' I v I )  

-x( l  -pIvl)(l  -P ' Iv I )~  

a= l +p lv l+x( l  -plvl), p= I + p ' I u l + ~ ( l  -plIvl) .  

Equations (18)-(20) are written on the assumption that the 
intermediate-state energy is positive: m 0 .  For %<O we 
have v= I /  -, which is real, so that in Eqs. (18)-(20) 
we must substitute - i v for I vl . The infinitesimal imaginary 
terms, which indent the integration contour about singular 
points, result from the regularization of integrals with oscil- 
lating functions in (9), a process achieved by the substitution 

G n ( r , r l ) - - ' e x p [ - e ( r + r ' ) ] C , ( r , r l ) ,  E>O,  

The above formulas are highly symmetric in relation to 
the momenta p and p' and fully determine the matrix ele- 
ment of a two-photon transition in the continuous spectrum 

with p '  # p .  They can be used, in particular, to calculate the 
cross sections of double bremsstrahlung and inverse brems- 
strahlung. Note that to within a multiplicative factor, the 
terms M I  and M 2  coincide with the amplitudes of ordinary 
bremsstrahlung involving photons with polarizations e and 
e', respectively, written in symmetric form in relation to the 
variables p and p' (a similar expression for one-photon am- 
plitudes can be found in Gavrila's review2. The matrix ele- 
ments M I  and M 2  contain the Born limit of M, since the 
integral term M,,  as Eq. (19) shows, is proportional to z2. 
Interestingly, the two-photon amplitude contains integrals of 
hypergeometric functions with the same parameters as in the 
bremsstrahlung amplitude. The two-photon transition ampli- 
tude between the continuous-spectrum states with fixed or- 
bital angular momenta 1 and 1' = 1, 1 2 2  has a similar 
form.17 Gavrila et ~ 1 . ~  and Florescu and ~ j a m o ~  calculated 
the matrix element (1 3) using the double bremsstrahlung and 
inverse bremsstrahlung data with a different technique (in- 
volving the momentum representation of the Green's func- 
tion). Their results are also expressed in terms of integrals 
like (19), but have a more complicated structure, e.g., do not 
contain integral-free terms like M I and M 2 .  

3.2. Removing singuiarities from the elastic scattering 
amplitude 

Sending p'  to p in Eqs. (18) and (19), we can easily see 
that M I  , M, , and M3 diverge, whereas the final expression 
in (10) for da,,, must remain finite. To resolve the indeter- 
minacy, one must isolate the divergent terms in M I ,  M 2 ,  
and M g  explicitly. For the integral-free terms M I  and M2 
this is easily done by expanding the hypergeometric function 
,F1 in a series in the inverse powers of the argument. As a 
result we arrive at the following expression for the singular 
part: 

+(eln ')(en')  + (eln)(en)]ln(- A,), (21) 

where 

c 1 , 2 = c l , 2 ( ~ , ~ , 6 ) .  

Isolating the singularities in M,,  which is done in Appendix 
B, requires more subtle transformations and leads to the fol- 
lowing expression: 

+ (e1n')(en')  + (etn)(en)]ln( - Ao). (22) 

Thus, the logarithmic divergences in M , , M2 , and M3 are 
partially compensated for, and the remaining singularities 
cancel out when the two matrix elements are added in the 
amplitude (9): 
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The tinal expression for the correction tern1 in (10) has the 
form 

+ 2  ~ e [ f , * ( h r ) +  hi-))]dil ,  (23) 

where 

hi-)= hl+)(u-+ - w,e--te*), 

2 x 4  I +  i a )  

C 

X2F,(2-ia,2-ia;3;A). 

Here 

K =  - v 1 5 e x p ( ~ a ) [ ~ ( 1  - ia)12, 

and A ,  C, a, and A are defined in (20), where we must set 
p ' = p. In this case 

B = A = ( I - ~ ~ ~ v ~ ~ ) ( I  -x)+iO, 

The functions 2F I in the integrals in (24) have a branch point 
at X = 1,  which lies on the integration path. The choice of the 
necessary analytic branch is determined by the imaginary 
indentation term in (25). 

Note that the first (integral-free) term in (23) is exactly 
the correction to d u R  in (5) and hence determines the Born 
and low-frequency limits of du,,. 

3.3. Short-range potential 

To examine the emergence and removal of divergences 
in the elastic process, we take a simple example and study 
the correction to the cross section of elastic scattering by a 
delta-like potential. As is known, the amplitude f o  in (8) in 
this case is given by the following relationship: 

where K =  Jq, and Eo is the energy of the single bound 
state in the delta-like well. The matrix element 
M = M(e1 ,e, %) in (1 3) can be expressed in terms of elemen- 
tary functions as follows: '' 

so one can easily establish that divergences - l l ( p  ' - p )  ap- 
pear as p '  --+p (in contrast to the Coulomb case, no logarith- 
mic singularities appear here), and that these singularities 
disappear when the two diagrams of Figs. l(a) and (b) are 
added. The final expression for the cross section (10) is 

4. POLARIZATION DEPENDENCE OF THE CROSS SECTION 

We start with the polarization dependence of the matrix 
element of a two-photon transition of the general type (13). 
Since M(ef,e,i5) is a linear function of the polarization vec- 
tors e and e', the amplitude can obviously be written as a 
sum of products of linearly independent combinations of 
vectors e, e' and n, n' with invariant amplitudes that depend 
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solely on p ,  I?',  6, anti w. For the independent combina- 
tions of e, e' and n, n' we can take, for example, the fol- 
lowing five con~binations: 

which enter into the matrix element (18), (19) for the case of 
a Coulomb field. In the general case of distinct photons e and 
e', all the above combinations are complex-valued, so that 
the inelastic scattering cross section exhibits complicated po- 
larization and angular structure. 

For elastic scattering, where e' =e*, we have (Dl  = 1 
and Q2=Q3*, while the coefficients of the real-valued com- 
binations @ 4  and a, must be equal because of the invariance 
of the amplitude under time reversal, i.e., under the follow- 
ing substitutions: 

As a result, the polarization dependence of the amplitude 
f 2  and the cross section da,,, of (10) are determined by four 
terms, and dac,ldQ for scattering by an arbitrary potential 
U ( r )  can be written as 

where the Q i  for the case of Coulomb scattering can be ex- 
pressed in an obvious way in terms of f o  and the coefficients 
Ni in (23) and (24). 

The easily verifiable relationship 

where k is the photon's wave vector, shows that the last term 
on the right-hand side of (27) leads to a dependence of the 
cross section on the sign of 5, the degree of the wave's 
circular polarization: 

The effect is at its maximum for scattering through an angle 
of ~ T T  and propagation of light at right angles to the scatter- 
ing plane. The difference in the scattering cross sections for 
light with left- and right-circular polarizations, 

= - Q4 - [nn'] , (I:, 1 
is determined by a distinctive interference of the amplitudes 
f o  and f;: 

Q4=2 Re(f,*) Re(P4)-2 Im(f;) Im(P4), 

where P 4  is the coefficient of Im{(e.n)(e*.nl)) in the ex- 
pansion of f 2  similar to (27). For Coulomb scattering, P4  can 
be expressed in terms of the coefficients N i  in (24): 

FIG. 2. Angular dependence of ~ - ~ ~ ~ ( d u / d C k )  for right- ((= 1 )  and left- 
(.$= - 1) circularly polarized light waves (curves 1 and 2). and of the asym- 
metry ratio (do( .$= + 1 ) - d o ( ( =  - l ) ) l ( da (5=  + l )+du( .$=  - 1 ) )  
(curve 3) at o l p 2  = 0.1 and Zlp = 1. The light propagates at right angles to 
the electron scattering plane. 

An illustration of the numerical value of A(daldQ) in given 
in Fig. 2, which depicts the dependence of du,,,ldfl on the 
angle 6 for left- and right-circular polarization of the light 
wave, as well as the angular dependence of the ratio 

For the selected values of the parameters, wlp2=0.1 and 
Zlp= 1, the "asymmetry" of the correction term 
daco,,ldQ is perfectly clear. 

Asymmetry of the cross section similar to (29) also 
emerges in other collisions in the presence of a light wave 
and, we believe, is of interest for experimental observation. 
Note that this effect was not discussed in the work on SBIB 
cited above, since it is absent in the first Born and low- 
frequency approximations. The reason is that the combina- 
tion of vectors (28) involves the vectors p, and p,, while in 
these approximations the amplitude depends only on the mo- 
mentum transfer q= p2 - p, . Formally this follows from the 
invariance of the cross section calculated in the first Born 
approximation under reversal of the signs of electron and 
photon momenta (see Ref. 1, $93). 

The expression for A(du1dbl) has an especially simple 
form in the case of scattering by a short-range potential, 
which follows from Eqs. (26) and (27): 
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Note the complicated frequency depentlence of A(dulc l0) .  
1 2  Specifically, A(w) has a break at w = 71) because the energy 

of the Green's function in the second term in (9) becomes 
negative and the "virtual recombination" channel opens. In a 
certain sense this is similar to the situation in which the 
amplitude of light scattering on a bound state at above- 
threshold frequencies, when the one-photon ionization chan- 
nel opens, acquires an imaginary part. Also, the cross section 
(26) increases drastically as the frequency w approaches 
we,= I E ~ ~ +  f 1 2 ~ 3 ~ ~  which corresponds to electron recombi- 
nation into a bound state with energy Eo.  At w= w,, the 
cross section (26) has a pole, whose removal requires intro- 
ducing a ground-state width, which determines the probabil- 
ity of photoemission. 

The vector combination (28) also enters into the cross 
section of ordinary bremsstrahlung and describes the emis- 
sion of a circularly polarized photon by an unpolarized elec- 
tron. It is not forbidden by general symmetry considerations, 
and in this connection is discussed in Ref. 1, $93, but we do 
not know of any quantitative calculations of the effect, al- 
though they could be done on the basis of the known results 
of the theory of bremsstrahlung in a Coulomb field (see Ref. 
1, $92). In particular, if under conditions in which the Born 
approximation is valid we keep only the first two Born terms, 
the differential cross section for emission in the frequency 
interval d w  has the form 

where 

The term with 5 comes from the interference of the first and 
second Born amplitudes. Equation (30) also demonstrates the 
smallness (of order w) of the "asymmetric" term in the low- 
frequency limit w+O. SBIB in the scattering of electrons 
with an energy of approximately 11 eV by argon atoms was 
first observed by Andrick and ~ a n ~ h a u s , ' ~  who used linearly 
polarized radiation from a C 0 2  laser. Under such conditions 
the Born approximation is invalid, and as estimates have 
shown, the difference between the cross sections with left- 
and right-circular polarized light can be observed experimen- 
tally. 

5. ANALYSIS OF LIMITING CASES AND NUMERICAL 
RESULTS 

In analyzing the dependence of the Qi in (27) on Z, p ,  
w, and 6, it is convenient to use the dimensionless quantities 
2, a = Z / p ,  w21p2, and &=sin2(~9/2). Then from (23) it fol- 
lows that 

with no further factorization of variables possible. It is inter- 
esting to compare the dependence on the variables in (32) 
with the results of approximate  calculation^.^^' In the Born 
region, da,,,, can be expressed as a power-law function of 
the foregoing parameters, 

~ ~ - a ' " - " ( w l p ~ ) - ~  

[see Eq. (33)], while the semiclassical approximation5 gives 
for ei an expression of the self-similar type, 

ei= a'4fi(awlp2 ,&). 

The complicated structure of (23) does not, in particular, 
enable one to approximate du,,, by a simple expression 
over a broad range of the variable values. 

For the same reason, finding the limits for du,,, is a 
cumbersome problem, requiring fairly intricate asymptotic 
estimates in the different parameter ranges. Below we exam- 
ine some of the limiting domains of parameter values in 
which du,,, becomes considerably simpler. 

5.1. Low frequencies (w/$ sin2(9R)el) 

The leading term in the series expansion of du,,, in 
powers of w is specified by the Kroll-Watson low-frequency 
asymptotic behavior: 

Since the accuracy of the Kroll-Watson approximation has 
long been under discussion (see, e.g., Ref. 2), we give ex- 
pressions for Qi that determine, according to (27), not only 
the leading term (33) but also two corrections to this term: 

where 

is the Born factor, 

@(x) = d(ln 17(x))/dx is the digamma function, and 
y=0.57721 ... is Euler's constant. 

The term with Q l  in (27) has a higher order of small- 
ness, 
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and contributes nothing to the cross section in this approxi- 
mation. 

The above results show that the expansion of the Q, is in 
the parameters a wlp2, a w 1 / 7 ~ ~ ,  and (awlp2)ln(awlp2e), 
whose values determine the accuracy of the Kroll-Watson 
approximation for a Coulonib potential. Note that no loga- 
rithmic terms appear in the corrections if one deals with a 
short-range potential. For instance, in the second order, 

5.2. High momenta ( a e l )  

The leading term in the asymptotic behavior is again 
(33). That the leading terms du,,,, in the low-frequency and 
Born limits coincide is characteristic only of the Coulomb 
field and can be explained by the fact that the Born approxi- 
mation yields an expression for the Rutherford scattering 
cross section coinciding with the exact expression. Using 
(26), one can easily verify that in the case of a delta-like 
potential the expressions for da,,,, in these regions differ. 
The terms with integrals in (24) are of order z3 and deter- 
mine the correction to the first Born approximation. If in the 
integrands we put Z =  0, the integrals can easily be expressed 
in terms of elementary functions, but the results prove to be 
very cumbersome. Hence, to simplify our discussion we ex- 
amine several special cases where the corrections to the first 
Born approximation are simple. 

5.2.1. Low frequencies [ w l p 2  sin2(9/2)e1] 

r a w  a w  w2 
Q 2 = - B  ( I + -  P2 1. Q4= - 2 B - - T l n ( V )  . 

P 4P & 

This coincides with (34) if in the latter we leave only the 
first-order correction in wlp2 and pass to the limit a 6  1 .  

5.2.2. Low frequencies (olp2<. 1 ) and small angles 
( 9 1 ( w / p 2 ) 9  1 )  

To determine the contribution of these terms to the cross 
section (27) we must bear in mind that for small angles, 
le(n-nf)12-62 and Im{(en)(e*n'))-6. 

5.2.3. High frequencies (wlp2% 1 ), small angles (i)< 1 ), and 
a In 9 e 1  

In the above limits the correction ducorr, as 6 + 0 ,  has a 
smaller singularity than the Rutherford cross section d a R .  
The situation is the same for arbitrary values of the param- 
eters a and wlp2. 

5.3. High frequencies (o/p'2%-1) 

The expression for the Q i  has the form Q ~ = F ~ R ~ / W ~ ,  
but the functions R,(Z,p, il) are still complicated. Note that 
the dependence on w is the same as in the low-frequency and 
Born limits, but the terms Q and Q 3 ,  together with Q 2 ,  
contribute to the cross section (27). In this limit the asyni- 
metric term with Q4 is absent. 

5.4. Resonant frequencies 

If the photon energy is higher than the electron energy 
and 

dc~,,,, contains resonances caused by virtual recombination 
and ionization processes. The resonant structure of the cross 
section (capture-escape resonances) was studied by Dimou 
and ~ a i s a l  ' by numerical methods. 

In the resonant frequency range 1 S Z v < m ,  the integrals 
in (24) diverge at x =  0 and must be transformed into contour 
integrals by the substitution 

(35) 

The resonance terms can be found from (24) and (35) by the 
residue theorem. For instance, at n = 1 we have 

267ra'3 exp( - 4a  arccot a )  
du,,JdlR = F' 

z6(  1 1 - exp( - 27ra) 

where A = w-2'12 -p212. The same result follows from 
the general expression (10) for the cross section if in the 
amplitude (9) we leave only the resonance term 

When A-+0, we must substitute A -iT/2 for A, where r is 
the width of ground-state level (the ionization width associ- 
ated with the possibility of photoemission). 

For arbitrary values of p ,  ,tY, and w, the integrals Ni 
with hypergeometric functions in (24) can quite easily be 
evaluated numerically. Calculations show a fairly strong de- 
pendence of da,,,,ldR on the variables Z l p  and olp2. For 
instance, in Figs. 3(a) and 3(b) the values of Zlp  are the 
same, while the values of wlp2 differ by a factor of ten. As 
the results show, when the frequency varies by a factor of 
ten, the characteristic values of Qi vary by a factor of 10"o 
lo4 (the Rutherford cross section does not change in the 
process). Considered as functions of the scattering angle 6 ,  
the Qi  must oscillate near the point i)= O owing to the phase 
factor [sin(312)]-~'" that appears in the product f:f2 in the 
small-angle limit. As 6 varies from 5" to 180°, the Qi 
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FIG. 3. Angular dependence of IO~~F-*Z'Q,I for 
the following values of the parameters: a) 
~/,I~=O.O~ and Zlp=O.l; b) olp2=0.1 and 
Z l p = O . i .  The sign of Q , ( 9 )  is displayed near 
each curve. 

smoothly decrease by several orders of magnitude. Here, 
since the Qi are not of fixed sign, they can reverse sign at 
finite values of 6, say, as Q3 does in Fig. 3(b). 

Partial financial support for this work was provided by 
the International Science Foundation under Grant No. 
RJ4300. By integrating with respect to cp' (in M 3  only c p ( - )  depends 

on the polar angles) via the well-known relationship 

fo2r exp(icu cos cp)dcp= 27rJo(cr), APPENDIX A 

We calculate M 3  of (15), assuming that w<p2/2 and 
v=il vl. Without altering the notation of Sec. 3, we intro- 
duce the change of variables 

we write M 3  as a multiple integral: 

I vlp-+p (and similarly for p', q, and q ' ) ,  

r/J v( -+r (and similarly for r ', 5, 5', 7 , ~ ' )  

and drop the normalizing factors. Then in parabolic coordi- 
nates c p ( + )  assumes the form 

For the function c p ( - )  we use the following integral represen- 
tation: 

(+-)* 

Here we have introduced the notation 

The integrals with respect to the parabolic coordinates 5, 
( I ,  7, and 7 are evaluated via the following well-known 
formulas20: 

Here we have allowed for the fact that in the chosen system 
of coordinates (see Sec. 3), 

As a result, M3 assumes the form In terms of the new variables, 
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corresponding to the diagrams in Figs. [(a) and (b) are 
added. We transform the integrand in I+ via the following 
relationship: 

The integral with respect to t can be found by using the 
integral representation of the Appel function 
F l ( - i a l , - i a , l + i a , l ; x , y ) ,  which can be reduced2' to 

2Ft: 

If in (A2) we differentiate with respect to q and q', revert to 
the original variables, and restore the normalizing factors, we 
arrive at the expression (19) for M3. The same approach can 
be used to calculate M, . Representing I ) - )  in a way similar 
to (Al) and integrating via (A2), we arrive at (18). Note that 
a matrix element like MI  appears in bremsstrahlung theory 
and can be calculated by applying methods of contour 
it1te~rati0n.l~'~~ 

APPENDIX B 

We isolate the singular part in the integral terms in the 
elastic scattering amplitude. As Eq. (19) shows, the second 
and third terms in M3 diverge as p l + p ;  the sum of these 
two terms we denote by M'. Since the divergence is loga- 
rithmic, we can set p l = p  in the integrand everywhere ex- 
cept at A and B: 

f ( X ) = X ~ - ~ ~  A ia-  I B i a - I C - 2 i u - 2  a 2 F I ( 1  -ia,2-ia;2;h). 

Using the identity 

we write M' in the form 

M 1 = C - I - + C + I + ,  

where 

It can be verified that I- leads at p 1 = p  to a finite expres- 
sion, which drops out when the two matrix elements (13) 

( F ( a , b , c , ~ ) = ~ F ~ ( a , b ; c ; x ) ,  and F' is the derivative of F 
with respect to its argument), which can be verified by turn- 
ing to the formula2' 

Noting that 

at p l = p  and integrating in I+ by parts, we arrive at formula 
(22) for the divergent part (M3) sing of the expression (19) for 

M3. 

' )A  brief description of the present work is given in Ref. 13. 
' ) ~ o t e  that ~ o r o l ' ~  obtained all the singular terms of the matrix element of 

a one-photon transition in the continuous spectrum, ( $ E ,  p ,,,, le.61 
which emerge at p' = p for the same reason as noted earlier in the text. 
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