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A quantum theory is developed for the scattering of a nonrelativistic particle in the field of a 
cosmic string regarded as a combination of magnetic and gravitational strings. Allowance 
is made for the effects due to the finite transverse dimensions of the string under fairly general 
assumptions about the distribution of the magnetic field and the spatial curvature in the 
string. It is shown that in a definite range of angles the differential scattering cross section at all 
absolute values of the wave vector of the incident particle depends strongly on the magnetic 
flux of the string. O 1995 American Institute of Physics. 

1. INTRODUCTION 

It is well known that in classical mechanics a complete 
description of electromagnetic effects can be made by means 
of the electromagnetic field strength, which acts directly on 
charged particles. In 1959, Aharonov and  ohm,' using the 
Schrodinger equation, considered the scattering of an elec- 
tron in an external static magnetic field produced by an infi- 
nitely long solenoid and found an effect that does not depend 
on the depth of penetration of the electrons into the region of 
magnetic force lines. This showed that in quantum mechan- 
ics the electromagnetic field acts on charged particles even in 
the case when the region in which the field is localized can- 
not be reached by the particles (see, for example, the reviews 
of Refs. 2 and 3). 

In this paper, we investigate the effect of curvature of 
space on the Aharonov-Bohm effect. Namely, we consider a 
situation in which there is not only a tube of magnetic force 
lines but also an external static cylindrically symmetric 
gravitational field with symmetry axis that coincides with the 
axis of the magnetic tube. It is assumed that at large dis- 
tances from the symmetry axis the space becomes locally flat 
and the region of spatial curvature (the gravitational tube) 
may either coincide with the magnetic tube or include it or, 
finally, be included in it. We pose and solve the problem of 
the scattering of a charged test particle in a space with gravi- 
tational and magnetic tubes. 

It is appropriate to point out here that the simultaneous 
existence of magnetic and gravitational tubes is rather typical 
of models with spontaneous breaking of gauge symmetries. 
In such models, there arise vacuum structures in the form of 
strings (for example, Abrikosov-Nielsen-Olesen 
vortices495), which are characterized, on the one hand, by a 
certain flux that one can reasonably call magnetic since it 
corresponds to the spontaneous breaking of a gauge degree 
of freedom and, on the other, by the value of a condensate 
that spontaneously breaks a symmetry. To this condensate 
there corresponds a uniform distribution of mass along the 
string axis, and this is the source of the gravitational field of 
the type described above. We note that this latter field is 
rather weak and it is apparently for this reason that it has 
effectively escaped the attention of investigators. In particu- 
lar, to the best of our knowledge the processes of scattering 

of particles by strings (vortices) usually take into account 
only the presence of the magnetic component, and the pres- 
ence of the gravitational component is ignored (see, for ex- 
ample, Refs. 6 and 7). It is to the correction of this, in our 
view, shortcoming that the present paper is devoted. We shall 
show that it is possible to take into account gravitational 
components of a much more general form than those inher- 
ent in strings in models with spontaneous breaking of gauge 
symmetries. 

In what follows, we shall, for definiteness, consider 
strings that are cosmological objects-so-called cosmic 
strings. According to modern ideas, the early stages in the 
evolution of the universe were characterized by high tem- 
peratures and a greater degree of symmetry than now, and as 
the universe cooled there was a series of phase transitions 
with spontaneous symmetry breaking8 The topological de- 
fects formed as a result (monopoles, strings, and domain 
walls) may be stable, and the mere fact of their existence 
leads to many important consequences in cosmology.9 Par- 
ticularly interesting cosmological objects are strings, which, 
in particular, can play the role of nucleation centers of gal- 
axies and gravitational ~enses . '~  

The energy-momentum tensor of a straight infinitesi- 
mally thin and infinitely long cosmic string is described by 

where the parameter M is the linear mass density of the 
string. The spacetime metric generated by the source ( I )  can 
be represented in one of the following three equivalent 
forms:''-13 
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where 

and r, is a parameter with the dimensions of length. In polar 
coordinates (r,4), the metric of a surface orthogonal to the 
coordinate lines corresponding to the variable z has a con- 
formal form; in the polar coordinates ;, 4 ,  the energy- 
momentum tensor takes the form (1) (x=; cos +, 
y = j sin 4); finally, in the polar coordinates p, 4 with incom- 
plete angle(p,$), the metric takes a manifestly flat form, and 
it becomes obvious that the surface z=const is isometric to 
the surface of a cone. It is also obvious that a fixed or slowly 
moving string does not interact with gravitating objects. At 
the same time, the conical nature of the space (2) leads to 
remarkable effects such as the doubling of the image of ob- 
jects situated behind the string (which may be an explanation 
of the double structure of quasars),10 fluctuations in the tem- 
perature of the microwave background,14 and the formation 
of wakes behind moving strings (which may play an impor- 
tant role in the formation of the large-scale structure of the 
universe)I5 (see the review of Ref. 16). 

It should be noted that spaces with the metric (2) have 
been known for quite a long time under the name of conical 

Apparently, one of the first to draw attention to 
such spaces and their interesting properties was M. Fierz (see 
the footnote in Ref. 17). Comparatively recently, scattering 
of test scalar and spinor particles by the singularity corre- 
sponding to the cone apex (r  =0) has been c~nsidered. '~-~ '  It 
was also shown long ago that the presence of a conical sin- 
gularity in space leads to a gravitational analog of the 
Aharonov-Bohm As noted above, we believe it is 
of interest to consider the situation in which there is flux of 
magnetic field along a gravitational string and to study the 
scattering of a test charged particle by such an object, in 
other words, to consider the standard (magnetic) Aharonov- 
Bohm effect in a Fierz space. 

This problem was actually posed for the first time in Ref. 
24, in which some results were obtained; in particular, atten- 
tion was drawn to the difference between the scattering for 
spinor and scalar particles. In this paper, we make a more 
systematic and complete study of the problem. We determine 
the S matrix for scattering in the case of combined singular 
magnetic and gravitational strings, establish the connection 
between the S matrix and the scattering amplitude in this and 
in the more general case of nonsingular strings, and also take 
into account effects due to the finite transverse dimensions of 
the strings. 

More precisely, we consider the spacetime with metric 

where X = r cos 4 ,  Y  = r  sin +, and f  is the conformal factor 
of the metric of the surface z=const. This last surface has 
Gaussian curvature 

which satisfies the condition 

for r >  r, . With regard to the closure of the region, r G r K  , 
we assume that here K ( X , Y )  is a piecewise continuous func- 
tion with singularities at isolated points or on isolated lines 
that are integrable with respect to the measure f ( X , Y )  
d X d Y .  Then the total integrated curvature (in units of 27r) is 
given by 

As we showed in Ref. 25, for r > r K  [when the condition (5) 
is satisfied] the conformal factor takes the form 

Thus, taking into account (2) and (3), we obtain a relation- 
ship between the total curvature of the surface and the linear 
mass density of the cosmic string: 

In the case of a singular gravitational string, we have r,-t 0 
and 

Along the coordinate lines corresponding to the variable 
z in the spacetime (3) a static magnetic field B ( X , Y )  that 
satisfies the condition 

for r > r B  is directed. With regard to the closure of the re- 
gion, r< r , ,  we assume that here B ( X , Y )  is a piecewise 
continuous function with singularities at isolated points or on 
isolated lines that are integrable with respect to the measure 
f ( X , Y ) d X d Y .  Then the total magnetic flux (in London units 
2 r h c l e )  is given by 

where e is the coupling constant of the matter to the gauge 
minus field (-e is the charge of the test particle). In the case 
of a singular magnetic string, we have rB--1 0 and 

In accordance with what we have already said concern- 
ing the general case of strings in models with spontaneous 
breaking of a gauge symmetry, fairly small values of a, are 
currently considered in the phenomenology of cosmic 
strings; for example, for strings formed as a result 
of a phase transition at the scales of the symmetry breaking 
of the grand unification of the interactions, and ( b K - ~ ~ - 3 '  
for strings formed at the scales of the symmetry breaking of 
the electroweak interaction. We shall use the expression cos- 
mic strings in a wider sense as possible configurations of 
space with cylindrical symmetry that may also be character- 
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ized by much larger (and also negative) values of a,. With 
regard to the magnetic component and the actual gauge 
model of the string, we shall also make the most general 
assumptions, and the gauge symmetry group (Abelian or 
non-Abelian, spontaneously broken or exact) will not be in 
any way particularized. Putting it briefly, by a cosmic string 
we mean an object characterized by two parameters, @ and 
a,, which can take values in the ranges - a < @ < a  and 
- ~ < @ , < l ;  values in the range l < @ , < ~  are not consid- 
ered here (see Ref. 26). 

In this paper, we study the quantum-mechanical scatter- 
ing of nonrelativistic test particles by a cosmic string. Since 
the motion of the particles along the string axis z is free, we 
can make a restriction to considering the motion of particles 
on the surface z=const (for more details, see, for example, 

The operator H acts in the space of functions with scalar 
product 

In contrast, the Hamiltonian in the absence of a string (i.e., 
for @=@,=O), 

acts on the space of functions with scalar product 

Ref. 24). The Schrodinger equation for the wave function 
describing the stationary scattering state has the form 

(13) 
We introduce a transformation of the operator and of the 
functions that leaves the form of Eq. (1 3) unchanged: 

where m and k are, respectively, the mass of the particle and 
I I h2k2 

the absolute value of its wave vector. Under the condition of H = E H E - ~ ,  $=z$, H$=- 4. 
2m (24) 

axial symmetry of the magnetic field strength and the Gauss- 
ian curvature, Choosing 

we obtain for the Hamiltonian the expression we obtain for the transformed Hamiltonian the expression 

e 1 + Y-2 d4- i - V+ - i u ( 1 -  (dpy)) [ tic 2 I' 
where e 

+u- y - l ( d p ~ )  ; 
i ic I (26) 

V(r)= drrfB, W(r)= 1,' (16) 
then in the space of the transformed functions the scalar 

U=U~=(:!~) in the case of a spinor particle ($ is a two- 
product is defined in accordance with (23), rather than (21). 

We regard Ho (22) as an unperturbed Hamiltonian and 
component column function) and u=O in the case of a scalar 
particle ($ is a single-component function). As radial vari- AH=H-H, (27) 
able, it is convenient to use the geodesic length in the radial 
direction: as an operator that describes a perturbing interaction, and we 

shall attempt to construct a scattering theory. Taking into 

p =  /idrfl". 
account (22) and (26), we represent the operator (27) in the 

(I7) form 

Then the metric (3) (under the condition of axial symmetry) 
takes the form AH=u(x)+vj(x)  - i  7 +v" (x) -, , ( d ) ( dX2i 1 
where where we have introduced the notation x=(x' ,x2),  

n l = p c o s  4, x2=p  sin 4, and j , j t=1,2 .  
Y(P)=r(p)d?-mi9 (19) If the coefficient functions u, uJ, and uJi' decrease as 

O(p-I-') as p+w (E>O), then in accordance with Ref. 27 
and the Hamiltonian (15) can be represented as follows: 

the perturbation AH (28) has a short range and scattering 
e I theory can be constructed in the usual manner (see, for ex- 

H = - -  y-Id d +y-2  d + - i - V + - i u ( 1  
2m 1 p Y  [ I L c  2 ample, Refs. 28 and 29). However, even for particle scatter- 

ing by a purely magnetic string (@ZO and @,=0) the per- 
e turbation AH has a long range since the coefficient function 

vJ decreases in the limit p+w as 0(pP1) .  Because of the 
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interaction, it is impossible to choose a plane wave as the 
incident wave, as noted by Aharonov and  ohm.' Neverthe- 
less, in this case it is possible to develop a scattering theory 
and obtain in its framework the Aharonov-Bohm scattering 
amplitude (see Ref. 30). 

~ o r m a n d e r ' ~  considered a class of perturbations of the 
form (28) containing both a short-range part and a long- 
range part characterized by real coefficient functions that de- 
crease in the limit p 4 w  as O(p-7 (0< ed 1), and he formu- 
lated certain additional requirements under which scattering 
theory can be developed. As he notes on p. 417 of the trans- 
lation of his monograph of Ref. 27, "the existence of modi- 
fied wave operators is proved under the weakest sufficient 
conditions among all those known at the present time." 

Hormander's conditions are satisfied by the perturbation 
in the problem of scattering by a purely magnetic string, 

v - - ~ ( p - ~ )  and v j - ~ ( p - ' ) ,  p 4 m  

(v and vi are real functions, and vii'=O) and, for example, 
the perturbation in the problem of scattering by a Coulomb 
center : 

. ..I 
(v is a real function, and vJ=vJJ =O). In contrast, the per- 
turbation in the problem of scattering by a cosmic string 
( Q f  0 and QK#O) does not satisfy Hormander's conditions: 

v - ~ ( p - ~ ) ,  vi-0(p- ')  and u j j r - - ~ ( l ) ,  p+m, 
(29) 

where vi, in contrast to v and vii', is a complex function 
(more precisely, the imaginary part of vi of order p-I is due 
to the nondecrease of the real quantity vii' in the limit 
p+m). Nevertheless, even in this last case it is possible to 
develop a scattering theory, and in the present paper we shall 
construct wave operators explicitly. 

In Sec. 2, we determine the S matrix and the scattering 
amplitude in the case of a singular cosmic string (rB= 0 and 
rK=O). In Sec. 3, we take into account the effects of the 
gravitational structure of the string (the finiteness of the 
transverse dimensions of the region of curvature of space, 
rK>O) and in Sec. 4 the effects of the magnetic structure of 
the string (finiteness of the transverse dimensions of the re- 
gion of magnetic flux, rB> 0). Section 5 is devoted to dis- 
cussion of the results. Details of the derivation of the basic 
relations are given in Appendices A, B, and C .  

2. THE S MATRIX AND SCATTERING AMPLITUDE IN THE 
CASE OF A SINGULAR COSMIC STRING 

In the case rB=O and rK  =O, we have 

and the Hamiltonian H (20), which is identical to the trans- 
formed Hamiltonian 1? (26), takes the form 

We consider the action of the operator H I  (31) in the space 
of the transformed functions [with scalar product defined in 
accordance with (23)]; in what follows, we shall omit the 
tilde for brevity. In Appendix A we show how the resolvent 
of the operator H I  (3 1) is found and then how, using it, one 
can find the evolution operator exp(-ih- ' H  ,t). We give 
here the result: 

where 

im m p p  m ( p 2 + p r 2 )  
un (p ,p t . t )= -  lil Ja,,(&)exp[i[ 2hr 

J,(u) is a Bessel function, 

and henceforth a= 5 1 for the upper or lower components of 
a spinor wave function and u=O for a scalar wave function. 

By means of the evolution operator, we find 

where 

in which Ho is the free Hamiltonian (22). We define the 
(Mdller) wave operators 

, H ~ =  lim exp(ifr-'H lt)exp(- ifr - 'Hot). 
I+=" 

Going over to the corresponding limits in (35) and (36), we 
obtain 

~ f q ( p ; p ' ) ,  (37) 

where 
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The S matrix is defined by 

where the asterisk denotes the Hermitian conjugate. 
Taking into account (37) and (38), we obtain 

The same expression for the S matrix can be obtained by 
means of an analysis based on the Lippmann-Schwinger 
equation (see Appendix B). 

Let y5 and be certain functions that belong to the 
space of functions with scalar product defined in accordance 
with (23). Taking into account the periodicity in 4 of the 
functions 

and using (39), we can readily obtain expressions for the 
function 

and the matrix element 

The solution of Eq. (13) in which the operator H  is replaced 
by Ho (22) can be represented in the form 

where x=(p cos +,p sin +) and k=(k cos + k ,  k sin +k). US- 
ing (41) and taking into account (39), we determine the ma- 
trix element 

To find the amplitude and scattering cross section, it is 
necessary to determine the transition matrix on the energy 
shell (see, for example, Refs. 28 and 29): 

where the identity operator I is characterized by the singular 
kernel 

6(k- k ')  
I (k ,+;kl ,+ ' )=  JZF A(+- +t)7 

Note that the right-hand side of (45) is equal to the general- 
ized function 6(k-k') rewritten in polar coordinates (k 
=(k cos 4, k sin 4) and kl=(k'  cos +', k' sin 4')); the gen- 
eralized function A(+) (46) is to be understood as a 
functional that acts on periodic (with period 2lr) functions: 

[ '~'F(+')A(+- +')= F(+), if F(++2lr)=F(r$). (47) 

The scattering amplitude can be determined by means of the 
expression 

where the t matrix is related to the T matrix by 

T=  - 2 l r i s  - (k2-kt2)  t. [ F I (49) 

As a result, the relation between the S matrix and the scat- 
tering amplitude f '  takes the form 

We sum over n in the expression (39) for the S matrix. 
Using the elementary relation 

4 
cot - [sin(n+ I)+-sin n+]=cos(n+ l )++cos  n+,  

2 

whereupon 

which in conjunction with the definition (46) gives 
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In its turn, using the last relation, we obtain 

where 

and integ-(u) is the integer part of the number u (the integer 
that is closest to and smaller than u or is equal to u); the 
divergences in the two last terms in (54) in the limit 
+-+l~(-CPw)(mod 274 [like the divergence in the final 
term in (53) in the limit + + 0 (mod 2 4 1  is to be under- 
stood in the principal-value sense. 

Taking into account (45), (SO), and (54), we conclude 
that the scattering amplitude f' is a singular (generalized) 
function of the angle variable. 

This is a manifestation of the long-range nature of the 
perturbing operator A H  = H I  - H o  . The fact that the scatter- 
ing amplitude determined in the standard manner is a singu- 
lar function was noted earlier in Ref. 30 for the case of a 
purely magnetic string and in Ref. 20 for the case of a purely 
gravitational string. As we have already noted in the Intro- 
duction, the fact, first established by Aharonov and  ohm,' 
that as incident wave in the case of scattering by a purely 
magnetic string it is necessary to choose the discontinuous 
function t$O)(x,k)exp[i@(+- +k- w)] rather than the plane 
wave &')(x,k) (42) is also associated with the long-range 
interaction of the noted type. Since despite the long-range 
interaction an evolution operator and S matrix can be defined 
[see (32), (33), and (39)], it is necessary to modify the stan- 
dard definition of the transition matrix and the scattering 
amplitude. The physical motivation is that, in contrast to the 
S matrix, the amplitude and scattering cross section must be 
interpreted in terms of ordinary functions rather than in terms 
of functionals (generalized functions). Thus, the problem re- 
duces to a certain change in the form of the identity operator 
in order to include in it the entire singular (with respect to 
the angle variable) part of the S matrix. 

We define the scattering amplitude by means of the re- 
lation 

where the modified identity operator I' in the case of an S 
matrix in the form (54) is characterized by the singular ker- 
ne l 

As a result, we obtain the scattering amplitude in the form 

Note that an expression for the scattering amplitude, or 
rather for 

was obtained in Ref. 24. Upon the replacement of 
@-(ff/2)aK by ~ E J C - ~ ,  (58) goes over into the expression 
obtained even earlier in Ref. 21 for the scattering amplitude 
of a relativistic test particle with energy E by a singular 
gravitational string with spin J. However, the very existence 
of gravitational strings with nonzero spin violates causality, 
as the authors of Ref. 21 themselves note (see also Ref. 31). 

In Refs. 21 and 24, the scattering amplitude was deter- 
mined by an analysis of the asymptotic behavior of the wave 
function at large distances from the string. Indeed, the solu- 
tion of the Schrodinger equation (13) with the Hamiltonian 
H I  (3 1) can be represented in the form 

where x=(p cos 4,p sin 4) and kl=(k cos +',k sin 4'). Go- 
ing over to the p+m asymptotic behavior in (59), we obtain 

where the summation is over integer values of 1 that satisfy 
the condition 
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and the function J'(k,+) is given by (58). In accordance with 
the generally accepted interpretation, the factor of the outgo- 
ing wave (2mdp)-' exp(ikp) is the scattering amplitude, 
while the term of order O(1)  is the incident wave. As can be 
seen from (60),  the incident wave has discontinuities at 
+-+'=(*p7r) (mod 271.); the scattering amplitude (58) di- 
verges at the same values of the angle variable. Thus, the 
asymptotic expansion (60) has meaning only when 
+ - 4 ' f  (-+P.rr) (mod 27r). However, the original function 
(59) is finite and continuous for all values of the angle vari- 
able. In particular, for (4- + ' + P ~ ) k p G l  and kp+ 1 ( P Z N  
- I, where N= 1,2,3 ,...) we have 

where the summation is over the integers 1 that satisfy the 
condition 

1 1 
- - ( 1  + P ) ( l +  ( 1  + P ) ( l T  I ) .  2 (63) 

For (4-+'+7r-N7r)kpel and k p a l  (P=N- I, where 
N =  1,2,3 ,... ), we have 

i e x p ( i ~ p m ) x  exp 
I 

(64) 
where the summation is over the integers 1 that satisfy the 
condition 

Thus, despite the extremely strong long-range interac- 
tion in the problem of the scattering of a nonrelativistic par- 
ticle by a singular cosmic string (the perturbation 
AH = H ,  - H ,  does not even satisfy Hormander's conditions 
for long-range perturbations27), the S matrix and scattering 
amplitude can be determined. A particular feature of this 
problem associated with the long-range interaction is that in 
the evolutionary description of the scattering process the 
definition of the transition matrix [in accordance with (56) 
and (57)] is modified, while in the steady-state description of 
the scattering process a discontinuous function is chosen as 
the incident wave [see (60)l. 

3. ALLOWANCE FOR THE GRAVITATIONAL STRUCTURE OF 
THE COSMIC STRING 

Let us assume that the size of the region of curvature of 
space is appreciably greater than the size of the region of 
magnetic flux, rKS=rB;  if the effects of the magnetic struc- 
ture are ignored, the magnetic field strength will be given by 
the expression (12). With regard to the Gaussian curvature, 
in this section we shall proceed from a more general form of 
it than was discussed in the Introduction, namely 

where K t  for r> r ,  satisfies the condition (5)  and for r =S r ,  
is a piecewise continuous function with singularities at iso- 
latedpoints or on isolated lines that are integrable with re- 
spect to the measure f ( X , Y ) d X d Y ;  at the same time, 

We assume further that K' satisfies the condition (14) of 
axial symmetry and that @iO)<l; the latter means that the 
geodesic length in the radial direction in the region of cur- 
vature of space is finite: 

for r s r ,  . Then in the region outside the string, we have 
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i - 'I' K 

r > r ~ ,  

where 

(70) 

In the present case, the Hamiltonian H (26) takes the form 

and outside the string we have 

r > r K .  (72) 

Taking into account the relation 

f l i2 ,uo=f l ;2  , u l f l i l  ,u,, 7 

we can represent the linearly independent solutions of the 
Schrodinger equation (13) with the Hamiltonian H in the 
form H2 (71) as follows: 

* O), 
H Z  . H I X  (73) 

where x(+) and x(-)  are linearly independent solutions of the 
Schrodinger equation with Hamiltonian H in the form HI 
(31) determined in accordance with (38) and (42) by 

1 

(74) 

[note that $('I and x(') belong the space of functions with 
the scalar product defined in accordance with (23)].  The S 
matrix can be represented in the form [cf. (43)] 

~(k,4k;k'.4k~)=(x(-)(k),(fi~,,H,?*fi$~,H,~(+) 

Thus, the problem is reduced to finding the wave operators 

f l i2 ,~ ,  and f l , 2 , ~ l  or the functions #(+) and I&). This 
problem could conveniently be solved with the help of the 
Lippmann-Schwinger equation 

g(')(x,k) =x ( ' ) ( x ,k ) -  ( G ' v ~ @ ( ' ) ) ( x , ~ ) ,  (76) 

where 

V 1 = H 2 - H I ,  (77) 

Using the expression (A9) in Appendix A for the resolvent of 
the operator H ,, we can obtain for the Green's functions the 
expression 

where 

[ H ~ ' ) ( u )  and H ~ ~ ) ( U )  are Hankel functions] . 
The solution of the Schrodinger equation (13) with the 

Hamiltonian H in the form H2 (71) can be represented as 
follows: 

1 
m 

K ( x , ~ ) =  - 2 exp[in(#'- @k)]Kn(p,k), (82) 2~ n = - m  

where the function ~ , ( p , k )  satisfies the equation 

By virtue of the conditions (7)  for r>  r ,  and (68) for r s r ,  , 
Eq. (83) has a unique solution (up to a factor that depends 
only on k)  that is regular at the point p=O; in what follows, 
we shall understand by ~ , ( p , k )  precisely such a solution. 

We define 

and find the Wronskian of the functions @')(pK) and 
@ 2 ' ( ~ K ) :  

W[~@')(PK)~.@~)(PK)I={@~)(P)[~~@~)(P)I 

-[a,.@ i ) ( p ) ] . f 1 2 )  

x (p) ) Ip=pK.  (85) 

The Lippmann-Schwinger equation (76) is solved in 
Appendix B. We give here the main results. The wave func- 
tions (73) in the region outside the string have the form 
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The S matrix has the form 

Determining a modified identity operator characterized 
by a singular kernel of the form 

and using the relation (56), we obtain for the scattering am- 
plitude the expression 

In contrast to the series in (88)- the series in (90) is 
absolutely convergent and therefore does not contain diver- 
gences with respect to the angle variable; in addition, in the 
limit k 4 0  the series in (90) decreases at least as 
0{ ln - ' [k (pK + ( ) I } ,  and therefore at small values of the ab- 
solute magnitude of the wave vector the effects of the gravi- 
tational structure of the string become unimportant. 

To conclude this section, we give specific examples of 
gravitational structure of the string. We choose 

Y P  1 P O<P<PK (9  1) 

and 

Then the solution of Eq. (83) that is regular at the point p=O 
takes the form 

~ , ( p , k )  = c,(k)J,lp)(kp), (93) 

where 

Note that the structure (91)-(92) in the case @P)=o is 
known as a structure of flower-pot type.32 

Considerably more interesting is the example of a struc- 
ture with continuous distribution of the curvature within the 
string. We choose 

( I  - Q K ) ( 1  -a+')) 
Y ( P ) ' ( P K + ~  ( @ K - @ p ) )  

O<P<PK 

and 

Then Eq. (83) reduces to a hypergeometrical differential 
equation. Indeed, introducing the notation 

and taking into account (94), we obtain 
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Let where 

112 112 112-/I,, uj;l(s,k)= pK,(- ln s )  s ( 1 

where the plus and minus signs correspond to the cases 
@ , > c D ~ )  or @,<@$). As a result, the solution of Eq. (83) 
that is regular at the point p=O takes the form 

~ , , ( p , k )  = c,,(k)pP l i2  exp - dk)  - 1 - I " P:oll exp 

and 

where .Fl (a ,b ;c ;s )  is the hypergeometric function.33 

4. ALLOWANCE FOR MAGNETIC STRUCTURE OF THE 
COSMIC STRING 

In this section, in contrast to the previous one, we as- 
sume that the dimensions of the region of curvature of space 
do not exceed those of the region of magnetic Bux: r K < r B .  
By means of the formalism presented earlier, it is possible to 
develop a scattering theory in this case too. Omitting the 
details, we give here the results. 

Let ~ , , ( p , k )  be the solution of the following equation, 
which is regular at the point p=O: 

+k2  ~ ~ ( p , k ) = O ,  O<p<pK J 
840 JETP 81 (5), November 1995 

and d, ')(p,k) and r:?)(p,k) be two linearly independent so- 
lutions of the equation 

We define 

Then we obtain the following expressions for the S matrix 
and the scattering amplitude: 

In (107), we have denoted by fo(k,+) the amplitude for 
scattering by the singular string (58). 

In contrast to the series in (106), the series in (107) is 
absolutely convergent and therefore does not contain diver- 
gences with respect to the angle variable. In the limit k-, 0, 
the series in (107) decreases at least as 0{ln-'[k(pB+ c)] ), 
and therefore at small values of the absolute magnitude of 
the wave vector the effects of the structure (both gravita- 
tional and magnetic) become unimportant. 

If the region of curvature of space coincides with the 
region of magnetic flux, r K =  r B ,  then we obtain 
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If the size of the region of magnetic flux appreciably exceeds 
that of the region of spatial curvature, r B % r K ,  then it fol- 
lows from (107) that the effects of the gravitational structure 
hidden deep within the magnetic structure are unimportant 
over a very extensive range of the wave vector: 
O<k<(pK+t)- ' ;  at the same time, we obtain 

where as 7 i 1 ) ( p , k )  we have chosen the solution of Eq. (104) 
that is regular in the limit pK+O. 

Note that the above expressions are also valid when the 
magnetic field strength and the Gaussian curvature are given 
in a more general form than was discussed in the Introduc- 
tion. Namely, the Gaussian curvature is specified in the same 
form as in the preceding section [see (66)-(68)], and the 
magnetic field strength is given in the form 

where B ' for r> rB satisfies the condition (10) and for r 6  r,  
is a piecewise continuous function with singularities at iso- 
latedpoints or on isolated lines that are integrable with re- 
spect to the measure f(X,Y)dXdY; at the same time 

both B' and K t  satisfy the condition of axial symmetry (14). 
We consider specific examples of string structure. Let 

the gravitational structure be specified in accordance with 
(95) and (96) and the magnetic structure be given as follows: 

where 

Then the regular solution of Eq. (102) can be represented in 
the form of (100) and (101) (in which it is necessary to 
replace Q, by do) ), and the two linearly independent solu- 
tions of Eq. (104) can be represented in the form 

and 

where 

Here I . 'F,(a;b;s)  is the Kummer confluent hypergeometric 
function, and q ( a ; h ; s )  is the Tricomi confluent hypergeo- 
metric function;" at the same time, by definition, 

zlr(a;b;-s)= lim q ( a ; b ; - s + i e ) .  
€-to + 

Note that in the limit pK+O the solution (1 15) goes over into 
a function that is regular at the point p=O. 

As a further example, we consider the situation in which 
the string is surrounded by a potential barrier, i.e., the Hamil- 
tonian fi (26) is replaced by ~ + fi, where 
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I 0, rn<r<m. 

In the limit k,.+m, the structure of the string is completely 
screened, and the wave function of the test particle satisfies 
the Dirichlet condition on the boundary of the string: 

91,=rs=0. (119) 

In this case, the scattering amplitude takes the form 

The dependence of the modulus of the scattering amplitude 
(120) on the magnetic flux of the string describes a purely 
quantum (not possessing classical analogs) effect, since by 
virtue of the condition (1 19) a direct effect of the magnetic 
field on test particles is completely excluded. In accordance 
with what we have already noted in the more general case, 
the expression (120) goes over for k(pB + 5) G 1 into the ex- 
pression for the amplitude of scattering by the singular string 
(58). For k(pB+ t ) +  1, we obtain (see Appendix C) 

XC cos - J ( 4 -  ~ + 2 1 7 - r )  
I I 

Xexp i @ - - a Q K  ( 4 - ~ + 2 1 7 r )  I (  : 1 

where the summation is over the integers I that satisfy the 
condition [cf. (6 l)] 

x{1 + O [ ( ~ T P ~ - ~ ) ~ ( P B + ~ ) I }  

+ W 0 ( 1 ) ,  

( 4 T P r ) k ( ~ n + S ) e  (123) 

where p#N- 1 (N= 1,2,3 ,... ), 

where P=N- 1 (N= 1,2,3 ,... ). 

5. DISCUSSION OF THE RESULTS 

In this paper, we have developed the quantum theory of 
the scattering of nonrelativistic particles with spin 0 and 112 
in the field of a cosmic string (-m<@<m and -~<@,<1). 
The operator A H  (27), which describes a perturbing interac- 
tion in the given case, is a differential operator of the same 
order as the unperturbed Hamiltonian H o  (22); moreover, 
only the part of A H  having the form of an interaction poten- 
tial can be regarded as having a short range; the remaining 
part of A H  containing differentiation describes a fairly 
strong long-range interaction (so strong that the Hormander 
conditions29 are not satisfied). Despite the actual nondecrease 
of the perturbing interaction at large distances from the 
string, an S matrix can be defined both in the case of the 
singular string (54) and when allowance is made for gravita- 
tional (88) or magnetic and gravitational (106) structures of 
the string. In the framework of the theory that we have de- 
veloped, we have obtained the scattering amplitude [see (58), 
(90), and (107), respectively]. The effects of the structure of 
the cosmic string are taken into account in the most general 
form; we have also given specific examples of structure, in- 
cluding an example of a structure that cannot be reached by 
test particles. 

If in any of the expressions (58), (90), and (107) we 
make the substitution @ 4 @ + N  (where N is an integer), 
then we obtain the relation 

from which it follows that the differential scattering cross 
section d a l d  4= 1 f 1 is a periodic function (with period 1) of 
the magnetic flux @. Therefore, as in the case of scattering 
by a purely magnetic string (@ f 0 and cPK =O), only the frac- 
tional part of the magnetic flux, and not its entire value, has 
physical meaning. 

In contrast to scattering by a purely magnetic string, the 
scattering by the cosmic string depends on the spin of the 
scattered nonrelativistic particle, as follows from the explicit 
form of the expressions obtained for the scattering amplitude 
(where a = + 1 for the upper or lower component of a spinor 
particle and a = O  for a scalar particle). Another difference is 
that the scattering amplitude, as a function of the scattering 
angle, does not diverge in the forward direction but in two 
directions symmetric with respect to the forward direction 
with deflection determined by the integrated curvature QK ; a 
divergence is contained only in the term that describes the 
scattering by a singular string. The angular divergence of the 
scattering amplitude is due to the long-range interaction; the 
long-range interaction, which is probably stronger than in the 
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case of scattering by a purely magnetic string, leads to diver- d a  I ( 1 1 
gence at one rather than two values of the angle. G= 4nk [ 2 sin2[(~+,Bn)12] + 2 s in2[ (+-~n) /2]  

At small values of the absolute magnitude of the wave 
vector of the test particle (k+O), the effects of the string 

- 
cos[2p( 1 +P).rr- (2 v+ I )pT]  

structure become unimportant, and the differential cross sec- sin[(4+Pn)/2]sin[(+-Pz-)/2] 
tion is given by the expressions that describe the scattering 
by a singular string. With allowance for (.58), these can be 
represented in the form for scalar (cr=O) and polarized spinor (u= +- I )  particles and 

for unpolarized spinor particles; here p ,  v, and P are deter- dcr 1 
mined by the relations (59, and -- - (pi?+&)( I -@,I2 

dq5 Z 

I - 
Note that because of the divergence of the expressions (126) - 
and (127) as q5 +(+-fir) (mod 2 ~ )  the total cross section for 
scattering by a singular string 

2 

Xcos - K" ( 4 -  71+21.rr)]] 1 9 

is infinite. where the summation is over the integers 1 that satisfy the 

At large absolute values of the wave vector of the test condition (122), and & and p, are determined by the relations 

particle (k+co), the structure effects become predominant, (70) and (103) (r,S r,). In the case @, =0, we obtain 

and the term that describes the scattering by the singular 
string can be ignored. In this region, the difference between d a  1 4 

d 4 - 2  
rB sin- (0<4<2.rr) 

scattering by a purely magnetic string (aK =0) and scattering 2 ( 130) 

by a cosmic string with @,#0 is, in our view, most remark- 
able. 

In the case @,=0, the contribution of the string structure 
to the scattering amplitude in the limit k+w is, like the in- 
cident wave, proportional to a phase factor that depends on 
@; therefore, the cross section in this region does not depend 
on @. In the case @,f 0, the contribution of the structure to 
the scattering amplitude as k+w is, like the incident wave 
[see (60)], equal to a sum of terms that is each proportional 
to a phase factor that depends on @ ; therefore, the cross 
section in this region depends on @ as a consequence of the 
interference of the different phase factors. This last result 
appears somewhat surprising, since the region k+w corre- 
sponds to the classical limit h+O, and one might expect that 
in this limit the quantum effects, which include the depen- 
dence of the cross section on @, would vanish (as happens in 
the case <DK=O). 

In this connection, the most interesting situation appears 
to be the one in which the cosmic string is contained in an 
impenetrable shell (119), i.e., direct effect of the magnetic 
field and the Gaussian curvature on test particles is com- 
pletely ruled out. Taking into account (121), we obtain for 
the differential scattering cross section in the limit k+w the 
expression 

the differential cross section for scattering of a classical 
pointlike particle by an impenetrable cylinder of radius r,. 
Before we turn to analysis of the relation (129) in the case 
@,#O, we make a small digression concerning the scattering 
of test particles by a cosmic string in classical mechanics. 

If we ignore structure effects or enclose the string in an 
impenetrable shell, the magnetic component of the string 
does not affect the classical trajectories of the motion of test 
particles. With regard to the gravitational component, its ef- 
fect on the classical trajectories of the motion is purely kine- 
matic in the case of a singular string, since the mere presence 
of the string changes the global properties of the space [see 
(2)]. Bearing in mind that in the polar coordinates p,& there 
is no scattering, and going over to the polar coordinates p,4 
[with allowance for the relation (8)], we obtain the of clas- 
sical trajectories shown in Figs. 1 and 2, in which the string 
is directed perpendicular to the plane of the figure and the 
position at which it intersects the plane is indicated by the 
dot. The scattering angle does not depend on the impact pa- 
rameter and is equal to wp or -up ( O ~ w ~ ~ . r r )  depending on 
the side from which the particle approaches the string. De- 
pending on the value of @, , the trajectories either do not 
intersect (Fig. 1) or do intersect (Fig. 2); the value of the 
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n,=3 outside the shadow and n l = 4  inside the shadow and so 
forth with increasing value of n l .  In particular, in the case 
O<cD,< 112, which is the most interesting from the phenom- 
enological point of view, we obtain the following expres- 
sions for the differential cross section for scattering of scalar 
(a=O) and polarized spinor ( u = +  1) particles in the limit 
k+m: 

cla 1 
- 

cl+ 2 

and 
FIG. I .  Scattering of test particles by a singular cosmic string in classical 
mechanics for -m<@,<O: wp= -0 .rr, (2t1- 1 )/2tr<@,<211/(2tr + I ) d a  
(rial): op=(2n-P).n. -- 

d +  
- ( ~ ~ + 5 ) ( 1 - @ ~ ) ~  

angle wp itself depends on QK (or P). It is natural to call the 
region of angles -up<+ <wp the region of the classical 
shadow of the string. 

Returning to the quantum-mechanical scattering, we 
note first that it is A(+- 4'- wp) and A(+- +'+up) that OC- 
cur in the definition of the modified identity operator in the 
case of scattering by both a singular string and by a string 
possessing structure [see (57) and (89)]. Note also that the 
amplitude and scattering cross section in the case of a singu- 
lar string diverge as + + + wp [see (58), (1 26), and (127)], 
while the incident wave has discontinuities at 4-+'=+op 
[see (60)]. Finally, taking into account (122), we find that the 
number of terms in the expression for the amplitude of scat- 
tering by the structured string (121) that do no decrease as 
k+w-in what follows we denote this number by n,-is 
even in the region of the classical shadow of the string and 
odd outside this region; moreover, in the case of a, values 
corresponding to Fig. 1 the value of n ,  outside the shadow is 
one greater than the value of n ,  in the shadow, while in the 
case of a, values corresponding to Fig. 2 the value of n I in 
the shadow exceeds by unity the value of n ,  outside the 
shadow. More precisely, in the case -w<Q,<O we have 
n l =  1 outside the shadow and n , = O  in the shadow [at the 
same time, the main contribution to the scattering cross sec- 
tion in this region is the small quantity 
(pB+ 5)0{[k(pB+ E)]-113}]; in the case 0<@,<1/2, we 
have n,= l outside the shadow and n l=2  in the shadow; in 
the case 1/2<QK<2/3, we have n,=3 outside the shadow 
and nl=2 in the shadow; in the case 213<@,<3/4, we have 

x cos (2@- a a K ) w + 4 k ( p B +  5) i 
- op< +< o p .  

In the strictly forward direction, we have 

In conclusion, we note also that in the limit k+w the 
total scattering cross section is finite: 

This last relation is valid not only in the case O<@,< 112 but 
also in the case of all possible values -w<@,< 1 considered 
in the present study; as in (129)-(133), we have omitted in 
(134) terms (pB+ 5)0{[k(pB + 0 1 -  'I3} that decrease as 
k+m. 

We thank the State Committee for Science and Technol- 
ogy of Ukraine and the International Science Foundation for 
support. 

APPENDIX A 

Resolvent of the operator H, 

We define the resolvent of the operator H I  (31) as fol- 
lows: 

The kernel of the resolvent 

FIG. 2. The same as in Fig. I for O<cPK<l/2: wp=/3rr; 
~ ~ ( p , + ; p ' , + ' ) = ( x l ~ O I x ' )  

~ I I / ( ~ I I +  1)<aK<(2tz+ I ) / (2n+2)  (112 I ) :  wP=(P-2tr)~.  satisfies the equation 
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where A(+-4') is determined by the expression (46). Tak- 
ing into account the explicit form of the operator H ,  (31) and 
representing the kernel of the resolvent in the form 

we find that the function R y  satisfies the equation 

where a ,  is determined by the expression (34). We deter- 
mine 

The general solution of Eq. (A4) has the form 

where 

From the condition of regularity of the solution as p+O, we 
obtain 

c;"(p1)= c1,2)(pr), ('47) 

and from the condition of regularity of the solution as pw+w 
[namely, taking into account (A5), from the condition that 
the solution in the limit p-+m has asymptotic behavior in the 
form -(2n-,/p)-'exp(ip,/w)], we obtain 

c!:'(~') = ~ q j ( p '  6 ) .  ('48) 

Taking (A7) and (A8) into account, we find 

We determine the inverse Hilbert transform for the func- 
tion R::: 

We also define the function 

xexp[ in(4-  4 ' ) ] a ~ ( p ; p r ) .  (A1 1) 

For the decornposition of the identity of the operator H ,  we 
have 

from which we obtain for a function of the operator H ,  the 
relation 

(A131 

Using the last relation for the evolution operator (32), we 
find 

Taking (A10) into account and integrating over s in (A14), 
we obtain (33). 

APPENDIX B 

Lippmann-Schwinger equation in the case of short- and 
long-range perturbations 

Let 

(BI) 

where rC, and x belong to the space of functions with scalar 
product defined in accordance with (23). The two linearly 
independent solutions of the first of Eqs. (Bl) can be ex- 
pressed in terms of two linearly independent solutions of the 
second of Eqs. ( H  I ): 

The last relation can be represented in the form of the 
Lippmann-Schwinger equation 

+(2+- ) (~ ,k )=X() ) (x ,k ) -  ( ~ * V q / / ( ~ ) ) ( x , k ) ,  033) 

where 

V =  H- H,, 

- h2k2 - I  

G'= lim H,- - j 2m i i . 1  . 
t + O +  

845 JETP 81 (5), November 1995 Yu. A. Sitenko and A. V. Mishchenko 845 



Defining the S matrix as 

we can obtain 

x ( x ( - ) ( k ) , f $ ( + ) ( k l ) ) ,  

( B 6 )  

from which, taking into account the definition ( 4 9 )  of the t 
matrix, we find 

t ( k , $ -  4 ' )  = ( x ' - ) ( k ) , f $ ( + ) ( k ' ) ) .  0 3 7 )  

We choose as operator H o  the operator H ,  ( 3  1). Then the 
Green's functions G +  and G-  are described by the expres- 
sions (79)-(81) .  

Let the operator f ( B 4 )  be the operator of multiplication 
by a square integrable function: 

( q * ) ( x ) = v ( x > * ( x ) ,  ( B 8 )  

where 

Then, taking into account the asymptotic behavior of the 
Green's function as p-+m and pr<m, 

where we have used the relation ( 7 4 ) ,  we obtain 

where x = ( p  cos 4, p sin @),  k = ( k  cos 4, k  sin 4 ) ,  and 
k l = ( k  cos - $', k  sin 4 ' ) .  If in place of H I  ( 3  1) we choose H o  
( 2 2 )  as H o ,  then in the above expressions we must replace 
X(') by 4') (42) .  

Defining the scattering amplitude f r  by means of the 
relation 

and taking ( B 7 )  and (B11)  into account, we arrive at ( 4 8 )  and 
( 5 0 ) .  We emphasize that these last relations are also valid in 
the case when instead of H o  ( 2 2 )  we choose H I  (31) .  Of 
decisive importance here is the short-range interaction of the 
perturbing operator V determined, for example, by the con- 
ditions ( B 8 )  and ( B 9 ) .  

Neither the operator V ,  ( 7 7 )  nor the operator 

V o = H l - H o  ( B  13) 

satisfies the conditions ( B 8 )  and ( B 9 ) ;  moreover, if the op- 
erator V ,  satisfies the Hormander conditions for long-range 
 perturbation^:^ the operator V o  does not satisfy the last con- 
ditions. Nevertheless, even in the case of q in the form ( 7 7 )  
or (B13)  an S matrix can be defined, as will be shown below 
by means of the formalism of the Lippmann-Schwinger 
equation. 

First of all, we represent the functions in the relation 
( 7 3 )  in the form 

X ( k ) A n ( p , k ) ,  ( B  15) 

where the function K ,  satisfies Eq. (83) ,  and the function A, 
the equation 

( d ~ + p - ' d p - p - 2 a ~ + k 2 ) ~ ( p , k ) = ~ .  ( B  16) 

The Lippmann-Schwinger equations for the radial compo- 
nents of the functions 4') and x(') have the form 

where G: and G, are determined by the expressions ( 8 0 )  
and ( 8  l ) ,  
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Equation ( B 1 8 )  has been written down with allowance for 
the explicit form of the expansion ( 4 2 )  of the plane wave 
0'); note also the relation 

Substituting the regular distribution of Eq. ( B  16) in ex- 
plicit form [the function J , , , ( k p ) ]  in (B18)  and integrating, 

we determine the coefficients bj,"(k) and obtain for the 
function X(')(x,k) the expression (74) .  We now turn to the 
determination of the coefficients a i 2 ) ( k ) .  

Taking into account the definition of the Wronskian (85)  
and the relation 

= p l W C ~ n ( P 1  , k ) ? h , ( P l  , k ) l  

- P Z W [ K ~ ( P ~ , ~ ) * A ~ ( P ~  , k ) l *  0324)  

we obtain from Eq. ( B  17) 

a : ( k )  lim ~ w [ H ~ ~ ( ~ P ) , K . ( P , ~ ) I  
P j m  

Taking into account (72) ,  we obtain in the region outside the 
string 

~ , ( p , k ) =  J - [ C : ) ( ~ ) H : ) ( ~ ( ~ +  o ) + c ~ )  

Substituting ( B 2 6 )  in (B25) ,  we obtain 

From the condition of smoothness of the solution ~ , , ( p , k )  on 
the boundary of the string 

we find 

from which, taking into account (B27) ,  we obtain 

a , ( k ) c r ) ( k ) =  - - exp - i a n n - i k t  [: ] 

Taking into account (B27)  and (B30) ,  we find that in the 
region outside the string the functions t$+)(x,k) and 4 - ) ( x , k )  
are described by the expressions (86)  and ( 8 7 ) .  

We determine the S matrix: 

By means of Eq. (83) ,  we can obtain 

Integrating (B32)  with allowance for the regularity of K,, at 
the point p=O and the asymptotic behavior of K,, as p--cc, 
we find 

from which, taking into account (B27)  and (B30) ,  we obtain 
for the S matrix (B31)  the expression (88) .  
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APPENDIX C 

Asymptotic behavior of the scattering amplitude as k+m 

We denote the infinite sum that occurs in the definition 
of the scattering amplitude (120) by 

Taking into account the relation 

where s =  k ( p , +  [). We consider first the sum 

for o > s ,  we obtain the relation 

where 

Taking into account the asymptotic behavior of the cylinder 
functions - - j w d r  sinh T exp[2s(sinh T -  T cosh T ) ]  

I + P  0 

1 2 s ' I3 
+ =  ( ( j  + 0 ( 1 )  ( C 7 )  

as S+W, where F(z) is the gamma function. By means of the 
last relation, we obtain the estimate 

where c l  depends neither on s nor on 4. 
We now consider the finite sum 

Ja,,(s) 
22(s,$)= 2 e x p [ i n + - i ( ~ ~ - l n l ) ~ l  

a,,<s Ha,, ( s )  
for O<s<s,,,,<w, we obtain 

m I 
1 

Z I ( ~ , $ ) =  2 2 exp ~ [ ( n - ~ ) ~ ( l + p ) 2 - ~ 2 ] l n  
n = s +  I 

s 
X I 1  - 

(n - p I 2 (  1 + m2 I '"I 

where 
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and integ+(u) is the next integer number greater than 1 4 ,  is 
equal to cc if 11 is an integer. Taking into account the asymp- 
totic behavior 

+ i w  cos-I - [ I  +o(s-I)] ,  
S "I (CI 1) 

for w < smin<s<m, we obtain 

Taking the Fourier expansion, we can obtain the relation 

Let n2 - n ,a 1 and f (u)  be a function that is convex upward 
on the interval n <u < n2 : 

We can now show that only a finite number of terms of the 
series on the right-hand side of (C14) makes the main con- 
tribution, and we can obtain the relations 

0<1,<12 (or 1,<12<0),  (C 17) 

where 

lI=(dfldu)II,=,,, and l ~ - ( d f / d u ) l , = ~ , .  

Let s + l  and g(r )  be a function that is convex upward on 
the interval r1 <T < 72, 

Then by means of the method of stationary phase (see, for 
example, Ref. 34), we can obtain the relations 

Using (C14)-(C21), we obtain 

g+m-21%- 
- 2 i s  cos 

2( 1 + P )  I 
where the summation is over the integers 1 that satisfy the 
condition 
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9 - W +  21W][-iT cos 4- n + 2 1 a ] ~ ~ ~ + ~ ~  
COs 2 ( l + p )  2( 1 + P )  

where the summation is over the integers I that satisfy the 
condition 

At the same time 

Combining (C22) and (C24) and taking into account (C12), 
we obtain 

- 2is cos 
2(1 + P )  

where the summation is over the integers 1 that satisfy the 
condition (122). Similarly, for ( 4  TP?r)s<l we obtain 

-2is sin E] N js in  g) 'I2+ O( I 1, 

- 2 1 ) ~ - 2 i s  sin - 

where the summation is over the integers I that satisfy the 
condition 

Taking into account (C8) and (C27)-(C29), we obtain the 
relations (121), (123), and (124). 
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