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A model of the tunneling formation of a nucleating center of a stable phase on an Ising chain is 
considered. In the model, the states of the nucleating center are described by Bessel 
functions J , ( z ) ,  the argument z characterizing the strength of the weak perpendicular field, while 
the number v is related to the size of the nucleating center. An expression is obtained for 
the reciprocal of the lifetime of the metastable phase at zero temperature under the assumption 
that the spin-lattice interaction is fairly weak. In this case, the main channel of the 
irreversible transition is tunneling from the state of an elementary nucleating center to the state 
of a nucleating center of critical size with emission of one phonon. 63 1995 American 
Institute of Physics. 

1. At zero temperature, a phase transition from a meta- 
stable to a stable state occurs by the tunneling formation of a 
nucleating center of the stable phase. In Refs. 1 and 2, a 
theory of this process was developed for the case of large 
nucleating centers, for which the methods of macroscopic 
physics can be effectively used. It was shown in Ref. 3 that 
for the description of a quantum phase transition in discrete 
crystalline structures it is necessary to take into account the 
fact that the number of particles in a nucleating center is 
discrete even if this number is large. 

The present paper is devoted to the development of a 
theory of the tunneling formation of nucleating centers of 
any size in an exactly solvable one-dimensional model in 
which the static part of the Hamiltonian has the form of the 
(s= 112) Ising Hamiltonian, while the dynamical part is for- 
mulated in such a way that growth of the stable phase occurs 
only on the surface of a nucleating center. In this model, 
there is no formation of noncompact nucleating centers, 
which make the description of the process much harder. 

The stationary states of a nucleating center are described 
by a discrete Schrodinger equation, which has the form of a 
functional Bessel equation. An irreversible process of growth 
of a supercritical nucleating center occurs only if the spin 
subsystem interacts with a thermal bath, for example, with 
acoustic phonons. Allowance for the discreteness has the 
consequence that the logarithm of the lifetime of the meta- 
stable state at zero temperature increases quasilinearly with 
increasing size N ,  of the critical nucleating center: 

If we assume formally that the number of particles in a 
nucleating center is a continuous variable and apply the 
theory of Ref. I ,  then we obtain the stronger dependence 

Thus, neglect of the discreteness severely underestimates 
the rate of tunneling formation of supercritical nucleating 
centers (see Refs. 3 and 4). 

2. We consider a linear chain of N o  + x two-level sites 
described by the Hamiltonian 

Here h>O is a magnetic field or the energy of a two-level 
system, I,>O is the energy of the spin interaction between 
sites r and r + g  (r and g are integers), and Sf=nr-  112, 
where nr=O or 1. The energy of the metastable state when all 
the two-level systems are in excited states (all SF=-112, 
nr=O) is chosen equal to zero. 

We shall call the state of the system in which the spins at 
the sites r ,  r + 1,. . . , r  + n - 1 are directed upward and the 
remainder downward a compact nucleating center of n "par- 
ticles." In the model (2.1), the energy of this nucleating cen- 
ter is 

The first term on the right is the internal energy of the 
nucleating center, while the second is a "surface" energy. A 
nucleating center with number of particles no determined by 
the following inequalities has the maximum energy 

In what follows, we shall measure the energy in units of 
h ,  i.e., we set h = 1, and we assume that only I ,  and I, = I> 1 
are nonzero. In this case we have no=2, and the energy (2.2) 
for n 2 2  depends linearly on n: 

At zero temperature, the rate of the phase transition will 
be determined by the amplitude for tunneling from the state 
of the elementary nucleating center (n= I) to the state n, 
with a critical nucleating center, which is the smallest nucle- 
ating center whose energy is less than Eo(l): 
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(here [x]  is the integer part of the number x). If 6 is the 
fractional part of the number I, then the function (2.4) can be 
rewritten as 

We choose the dynamical part of the Hamiltonian so that 
it admits transitions only at the interface of the two phases: 

The operator $ realizes transitions between the states of 
the two-level system at site r ,  and 

is the operator of projection onto the boundary of the two 
phases, and it ensures compactness of the nucleating center 
during its growth. The Hamiltonian (2.7) can neither create 
nor annihilate an elementary nucleating center. Therefore, 
the number of nucleating centers in the system is conserved. 

Any wave function of the system with one nucleating 
center can be represented as an expansion in a complete set 
of functions with fixed position of the left-hand boundary r 
and number n of sites in the nucleating center: 

We shall assume that the state of the system is homoge- 
neous and the amplitudes $(r,n) do not depend on the co- 
ordinate r. In this case, 

1 - lr ,r+ 1 ,..., r + n -  l ) ,  
I n )=& r 

Then the stationary equation 

reduces to the simple system of recursion relations 

E*(l )=5$(2), (2.12) 

We introduce the notation 

in which Eq. (2.13) takes the standard form of the functional 
Bessel equation 

Thus, the stationary states of the nucleating center are 
described by the Bessel functions 

At the same time, Eq. (2.12) plays the role of a boundary 
condition that fixes the eigenvalues EN of the nondegenerate 
discrete spectrum. 

3. The form of the Nth state of the nucleating center 
depends on the values of two parameters, 5 and I. We con- 
sider the simplest case 

The eigenfunctions and corresponding eigenvalues of 
Eq. (2.13) are approximately 

Let 1=2. Then we have U(3)=0, and the states N= 1 and 
N=3 are in resonance. In such a case, the even superposition 
of these states has energy E3=-2E2, while the odd one has 
E,=O. 

If at the initial time there is one elementary nucleating 
center in the system, i.e., 

* I teo=  In= l), (3.5) 

then after a time of order I E ,  - E3 1 -' the following oscillat- 
ing state is established: 

Here, if there is no resonance, the nucleqting center has 
the minimum size 1 with a probability close to unity and the 
critical size 3 with probability 152/~(3)12. In the case of reso- 
nance, the two sizes have the same probability. 

The metastable state I N =  1) is destroyed and the system 
goes over irreversibly to supercritical states IN23) only if 
the interaction between the spin system and the thermal bath 
is included. 

The kinetics of the growth of the nucleating center will 
be considered in Sec. 6. 

4. Now suppose 

For z=25<1, the Bessel function J,,(z) for integer val- 
ues of the parameter v decreases rapidly as a function of Ivl: 
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The function 

at large integer values of N is a good approximation to the 
exact solution of the system of equations (2.12)-(2.13), since 
for small n this function is very small, and its truncation at 
the point n= 1 plays no role. The requirement that N be an 
integer gives the energy eigenvalues of the states (4.3) [see 
(2.6)]: 

Among the functions (4.3), the function that describes 
the critical nucleating center, 

has the largest value. 
The functions fll(n) and &(n), localized around the 

points n = 1 and 2, must be described by Bessel functions of 
fractional order. We do not require the highly excited state 
&(n). Under the condition (4. l), the energy E ,  and the val- 
ues of the function Ql(n) at small n are, as before, described 
by the expressions (3.2). The following amplitudes of this 
function can be readily obtained directly from Eq. (2.13) if in 
it we ignore &n+ l), or they can be obtained from the form 
of the Bessel function at small values of the argument z: 

Here T(x) is the gamma function. The theta function cuts off 
the state @L(n) at n>  N, , where the argument of the gamma 
function in the numerator is negative. 

If the distance from the level EL to the level ER is 
greater than 5 Nc- l, there is no resonance between the states 
L and R. Then during a time 1 ~ ~ -  E,I-' the elementary 
nucleating center is transformed into an oscillating state in 
which the "left-hand" state (4.6) is predominant and there is 

a very small ( - t2"S) admixture of the "right-hand" state 
(4.5). 

If without allowance for resonance EL - ER =0, then the 
strength of the repulsion of the resonance levels can be found 
by using the expression for the Bessel function that is valid 
for small value of the argument and small deviation of the 
negative parameter of the order from an integer value: 

Here the first term on the right describes a state that de- 
creases rapidly with decreasing v. Setting v= - U(n), we can 
show that up to a factor it is equal to (4.6). The second term, 
which is localized around v=O, can compete with the tirst 
only if Jsin(mv)l~O. For v=N, -n, this term goes over into 
(4.5). 

We set 

Bearing in mind that the number v=N,- n + E  in the 
expression (4.7) is very close to its nearest integer value, we 
obtain 

where m = N ,  - n is an integer. We substitute this function in 
Eq. (2.12): 

From this we find the half-separation between the reso- 
nance levels: 

As was to be expected, the wave functions (4.9) with 
these values of E are smallest in absolute value near 
n=N,/2. 

Usually, resonant states are sought as superpositions of 
states localized to the left, (4.6), and to the right, (429, of the 
potential barrier: 

The nonorthogonality of the states L and R plays no role. 
The distance between the resonance levels is determined by 

which, as it must, is equal to E (4.1 1). 
5. Now suppose 

In this case, the potential energy (2.4) changes little 
compared with the transition amplitude when the size of the 
nucleating center changes by unity, and it would appear that 
the size can be regarded as a continuous parameter. However, 
for z =25 + 14 the Bessel function behaves as 

and for z < 1 vl 

Therefore the recursion relation (2.13) or (2.15) cannot 
be replaced for any values of the parameters by a differential 
equation of Schrodinger type. 
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It follows from (5.2) and (5.3) that the stationary states 
of the nucleating center have a localization radius A n z z .  
Under the condition (5.1), this localization radius is small 
compared with the size N ,  of the critical nucleating center. 
This means that, as in the previous cases with 5 + 1, the 
wave functions can be divided into an isolated "left-hand" 
state with energy E = - t2/CJ(2) and a set of equidistant 
( 6 E =  1) "right-hand" states with centers at the integer points 
N .  

Finally, in the case 

the localization of the stationary wave functions of the nucle- 
ating center is large compared with N , ,  and the potential 
barrier plays an insignificant role. In this case the initial state 
with one elementary nucleating center is effectively abso- 
lutely unstable. The rate of decay of this state is limited 
solely by the interaction of the spin system with the thermal 
bath. 

6. We now consider the growth kinetics of a nucleating 
center in the presence of a thermal bath, the role of which 
can be played, for example, by the phonon subsystem. At 
zero temperature, transition of the nucleating center to super- 
critical states through the potential barrier U(n), 
2 C n C N c -  1, is impossible. The system relaxes via a tun- 
neling transition from the state ) N = l )  to the critical state 
I N , )  with emission of a phonon. 

The irreversible process of tunneling of a nucleating cen- 
ter in the discrete space of sizes of the center is considered in 
detail in Ref. 3. 

Since a complicated three-dimensional model was inves- 
tigated in that study, it is worth calculating the lifetime of the 
metastable phase for the one-dimensional system from the 
beginning. 

It is well-known that the relaxation of a quantum sub- 
system that interacts with a thermal bath is described by a 
kinetic equation for the density matrix fob : 

Here H= H, + H ,  is the Hamiltonian (2.1), (2.7) of the quan- 
tum subsystem, and the "collision integral" in the Born ap- 
proximation in the interaction V with the thermal bath is 

where Tr denotes summation over the states {a} of the ther- 
mal bath, and is the equilibrium density matrix of the ther- 
mal bath. The underlining of an operator expresses the en- 
ergy conservation law: 

For definiteness, we choose the interaction in the multi- 
plicative form 

Here nk(a : )  is the operator of absorption (respectively, cre- 
ation) of a phonon. 

In this model, the matrix elements of the collision inte- 
gral are 

J o b =  A o c A ~ f c / b + f u c A ~ A d b - A u c f ~ d A , l h -  A ~ f c d A d  t 

At zero temperature, fiotb is nonzero only if 
EUb = Ea - Eb>O holds and phonon emission is possible. We 
then have 

where w, is the Debye frequency, and wo is a quantity that 
depends on the amplitude B ~ ~ .  The index d is equal to unity 
if a vibration of the chain is excited, and d=3 if a three- 
dimensional acoustic phonon is emitted. 

The form of the kinetic equation (6.1) depends on the 
choice of the representation. To obtain expressions that are 
valid simultaneously for both the resonant and nonresonant 
cases, it is most convenient to describe the irreversible tun- 
neling of the nucleating center in the representation (3.2)- 
(3.4) or (4.3), (4.6). In this representation, there is coherent 
tunneling, which is characterized by the amplitude of transi- 
tion from the "left-hand" state L ( N =  I )  to the "right-hand" 
state R ( N  = N , ) ,  i.e., by a matrix element of the Hamiltonian 
H L R ,  and incoherent tunneling, which is accompanied by 
phonon emission and is characterized by the probability 
y,, = A i R A R L  . In the models (3. I), (4. I), the corresponding 
quantities are 

The coefficient a in the final expression is approximately 
equal to 

N,- 1 

The kinetics of the process is described by the elements 
f L L ,  f R R  , and fLR of the density matrix. The equation for 
the nondiagonal element f L R  of the density matrix has the 
form 

where 

Ignoring in (6.10) the time derivative, we obtain 
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This quantity must be substituted into the equations for 
the diagonal elements of the density matrix: 

~ R R -  ~ H L R  Im ~ L R =  - ~ ~ ~ R R + ~ Y L R ~ L L  (6.15) 

Substituting here fLL-fRR- exp(-tlr), we find the re- 
ciprocal of the time of formation of a supercritical nucleating 
center: 

This expression is analogous to the expression that de- 
termines the quantum diffusion of particles in crystak5 

We shall assume that 

r e i ,  (6.17) 

i.e., that r, which determines the width of the level ENc, is 
small compared with the distance h = 1 between the levels. It 
is then possible to have the case in which I'<ELR<l holds 
and the incoherent process dominates, since both terms of 
the numerator in (6.16) are l2 times smaller than y,, . If 
ELR=O holds, then we have Y L ~ =  Y=O, and the relaxation 
takes place through the coherent channel: 

In (6.14) and, accordingly, in (6.16), we have omitted the 
terms that describe the incoherent nonresonant transitions 
L+N to the supercritical states N a  Nc+ 1. These terms are 
certainly small as long as the inequality (6.17) holds. 

In the case (5.1), the kinetics is, as before, described by 
the expressions of this section, but the accuracy of the esti- 
mates decreases, since they do not take into account the 
modifications (5.2) of the eigenfunctions in the region where 
/ ~ ( n ) l < t  holds. 

Finally, we discuss the dependence of the lifetime of the 
metastable state on the extent to which it is an equilibrium 
state. The closer it is to equilibrium, the greater is the size Nc 
of the critical nucleating center. All the terms of (6.16) have 
the same explicit dependence on N,-llh: 

Here we have gone over from measurement of the energy in 
units of h to the ordinary energy units, and we have used 
Stirling's formula In I ' (x ) rx  In(x1e). If formally we replace 
the expression in the square brackets on the right-hand side 
of (2.13) by 2&,/1+251C,", then we obtain a differential Schro- 
dinger equation with effective mass rn-5- ', from which 
there follows the semiclassical formula 

The dependences (6.19) and (6.20) are given in Sec. 1 [see 
(1.1) and (1.2)]. It may be more correct to characterize the 
degree of disequilibrium by the strength of the longitudinal 
magnetic field h for fixed values of I and (. In this notation, 
the expressions (6.19) and (6.20) take the form 

Thus, neglect of the discrete nature of the number of 
particles in a nucleating center gives a result that is substan- 
tially too large if the static part of the energy is large com- 
pared with the dynamic part, lac. 

In this paper, the interaction with the thermal bath was 
taken into account in the Born approximation, and only one 
phonon participated in the formation of the critical nucleat- 
ing center. For three-dimensional phonons, this is valid if the 
separation between the levels is sufficiently small (hew,). 
For one-dimensional phonons, the opposite inequality is re- 
quired. The problem of multiphonon relaxation of a discrete 
nucleating center ("tunneling with dissipation") requires 
special consideration (see Ref. 4). 
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