
Third moment of an NMR spectrum in a rotating frame 
V. E. Zobov and M. A. Popov 

Krasnoyarsk State University, 660041 Krasnoyarsk, Russia; and L. V.  Kirenskii Institute of Physics, Russian 
Acaden~y of Sciences, Siberian Branch, 660036 Krasnoyarsk, Russia 
(Submitted 23 March 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 108, 1450-1455 (October 1995) 

Our previously derived expression for the third moment of an NMR spectrum in a rotating frame 
is supplemented by a new term containing lattice sums with a smaller number of summation 
indices. The spectrum of a model system in which the spins interact equally with one another is 
found in order to verify the final result. O 1995 American Institute of Physics. 

One of the fundamental problems of nuclear magnetic 
resonance (NMR) in solids is the calculation of the absorp- 
tion line shape (the spectrum). The interaction determining 
its form, i.e., the dipole-dipole interaction for traditional 
NMR' or the effective interaction created from the dipolar 
interaction by a strong radio-frequency (rf) field in the case 
of NMR in a rotating frame?3 ultimately couples all the 
spins in the system to one another. Therefore, this many- 
particle problem does not have an exact solution. However, 
exact expressions can be obtained for integrated characteris- 
tics of the spectra, viz., the moments M, (Ref. l), at least for 
the first few. The first moment M, characterizes the position 
of the center of a line, M2 describes its width, and M3 speci- 
fies its asymmetry. Moments have played an important role 
in devising the theory of the line shape, since, first, they are 
used, first to verify the expressions obtained is verified on 
their basis and, second, to determine the parameters in ap- 
proximate equations. 

The complexity of the calculation increases very rapidly 
with increasing order of the moment. In NMR in a rotating 
frame the difficulties are heightened by the fact that the ef- 
fective interaction is a three-spin interaction. Therefore, 
while the moments have been calculated up to the eighth 
order inclusively in conventional NMR? only M, and M2 
are known in a rotating frame.2'3.5 We recently derived an 
expression for the third rn~ment .~  Zaltsev and Sabirov pre- 
sented their expression in Ref. 7. The results do not coincide. 
In the present work we find the NMR spectrum in a rotating 
frame for a model system in which each spin interacts 
equally with all the other spins.8 It is used to verify the 
coefficients in front of the various lattice sums and to obtain 
an exact analytical expression for the third moment. The lat- 
tice sums and the numerical value of M, are calculated for a 
simple cubic lattice. 

To begin, we consider a system of N spins (S= 112) 
interacting equally with one another in a strong constant tield 
and a strong rf field. The effective Hamiltonian in the rotat- 
ing consists of one- (.?/,), two- (.22)r and three- 
spin (.k3) interactions. Mere .>, expresses the shift of the 
~IIC'II,  , ,ion frequency in the effective tield, which we 
inclutle in its value (w, . ) .  We transform the other two parts so 
as to express them in terms of the conlponents of the vector 

A A A 

operator of the total spin of the system {S, ,S,. ,S;}: 

where i2 = i:+ i; + i:, m = (3cos20- 1)12, c =  sin220, 
s = sin40, a2 = ~ 1 4 ,  A = 9 b2/ ( 160,) b is the dipole coupling 
constant, and 0 is the angle between the directions of the 
effective field (the z axis) and the constant magnetic field. 

The eigenfunctions of the Hamiltonian (1) are eigen- 
functions of the total spin of the system and its z projection, 
which are characterized by the pair of quantum numbers 
(S,S,). The eigenstates with assigned values of (S,Sz) are 
multiply degenerate. For example, the degeneracy multiplic- 
ity for even N is expressed as the difference between two 
binomial  coefficient^:^ 

Transitions caused by a resonant field which is orthogonal to 
the effective field3 (with operator i- = 2,- ii,) occur be- 
tween states with identical values for the total spin and val- 
ues of S, differing by unity. The transition between the 
(S,Sz+ 1)  and (S,S,) states produces a line in the spectrum 
with a frequency measured relative to w, 

-(4c-s)(3s;+3sZ+ 1)+2u2(c+s)-c} 

(3) 

and an intensity 

where c = ~r{,!?-i+) = N .  2N- ' is a normalization factor. 
The simplest system which exhibits the interaction .2y3 

is a system of three spins. Its spectrum consists of four lines 
with the frequencies 

and with the intensities 
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P ( + , -  $)= 116, P ( $ , -  +)= 113. 

The moments of the spectrum are determined from the for- 
mula 

Mt,= ; f l t l ( + , -  $+$l t1 ($ ,+)+in1l (+ , -  + )+$In($ , -  i). 
In particular, 

~ , = ~ ~ ( 2 9 c ~ -  14cs+2s2) +(3mb)2 /2 ,  (5) 

M3= - 3 ~ ( 3 m b ) ~ ( 5 c - s ) / 2 + ~ ~ ( 5 2 c ~  

-60c2s+21cs2-2s3).  (6) 

Equations (2)-(4) specify the spectrum for N = 4 ,  etc. 
We proceed at once to the case of large N,  since the limit 
N - i w  makes it possible to isolate the contribution of the 
lattice sums with the largest number of summations to the 
moments. In this case, instead of calculating the spectrum 
itself, it is convenient to calculate its Fourier transform, i.e., 
the free-precession signal, in the rotating frame: 

_&(t)  = Tr(exp(i&t)i-exp(- i&t)i+)l Tr{i-i+). 
(7) 

Taking the eigenfunctions of the Hamiltonian (1) as a basis 
and using Eqs. (2)-(4), we obtain from (7) 

Equation (8)  describes systems of an arbitrary number of 
spins. It can be simplified significantly in the limit of large 
N. Let us, first of all, determine the order of magnitude with 
respect to N of the various contributions to the frequency 
0 ( S , S z ) .  In the high-temperature limit under consideration 
the mean value of the components of the total spin vanishes, 
while for their squares we find 

Therefore, the first term in (3) is of order N'". The second 
term in (3) is of the same order, since the increase in the 
power of S, in it is compensated by the factor we N1I2 in 
the denominator of the coefficient A. The amplitude of the 
effective field is determined by the amplitude of the mean 
local field from the dipolar interaction, which it must exceed 
in order to cause narrowing of the NMR line in the rotating 
frame. 

According to the evaluations performed, when only the 
principal terms with respect to N are retained in Eqs. (2)-(4), 
from (8) we obtain 

where 

Performing the integration, we find 

The desired moments can be obtained' by expanding 
(10) in powers of the time: 

We now take the expression which we presented in Ref.6 
for M3 in real systems, and we replace the b i j  by b in the 
lattice sums. As result we obtain P = P2 = L ,  = L2 = L3 
=L4=L5=L6= 1 and 

MFE= - 3 ~ m ~ ( M ~ ) ~ ~ ~ ( 5 ~ - ~ ) / 4 ,  

These expressions are identical with the corresponding ex- 
pressions (12), since M;= 9Nb2/4= 9b2a2  and K2 
= 9 b 2 a 2 / o : .  It is easy to prove that the expressions for 
M2 coincide. 

Zaitsev and sabirov7 presented an expression for M3 
when 8= 0,=54"44', from which we find ( M ,  /Mi1*\ 
= 1.8 when b i j = b ,  while a value of 2.37 follows from ( 1 1 )  
and (12). The relation between the coefficients in the differ- 
ent lattice sums with four lattice indices is illustrated by the 
ratio between the corresponding contributions ( 4 ~ 3 )  from 
the two papers 

where we are obliged to copy the coefficient in front of L6 
from Ref. 7 together with the f. 

On the other hand, since M2 and MY (Ref. 6 )  are ex- 
pressed in terms of lattice sums with three indices, these 
contributions can be compared with the results (5) and (6) 
for a three-spin system. In this system M i =  9b212, P I  = P2 
= 112, and we obtain agreement between the results. 

In addition to M y E ,  (6)  contains another contribution, 
which we did not take into account in Ref. 6 .  After perform- 
ing the necessary calculations in the general case, we ob- 
tained the following expression for it: 

where ~ ; = 9 ~ / 4 ,  K ~ =  M : / O : ,  and we have introduced the 
lattice sums 
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I I TABLE I.  

in which the summation is carried out over all the indices, 
except those which coincide. This term did not make a con- 
tribution to (12),  since it is smaller than 4 ~ ! E  by a factor of 
order N due to the smaller number of summation indices in 
the lattice sums. Although the sums P I  and P2 in the contri- 
bution from M y E  (Ref. 6) retained in (12) also have three 
summation indices, a smaller power of o, appears in front of 
them in the denominator of the coefficient. 

For a system of three spins with an equal interaction 
B = 2b2 ,  we find Q , = Q 2  = Q 3  = 114, and (13) is transformed 
into (6). 

A contribution similar to (13) can be distinguished in the 
expression for M g  in Ref. 7 .  The coefficients in front of 
Q 2  and Q 3  coincided with those obtained in (13) when 
8= OM, while the coefficient in front of Q turned out to be 
four times larger. 

We calculated the lattice sums appearing in (13) for the 
case of a simple cubic lattice by summing over the spins 
located around the specified spin in a cube with an edge 
equal to 12 lattice constants for three orientations of the con- 
stant magnetic field relative to the crystallographic axes. The 
results are presented in Table I. The table also presents our 
calculated values of the ratio of the total third moment for 
8= OM, i.e., M3 = 4 ~ y + 3 ~ y  to M Y ,  which decreased 
by 4% in the [ I 0 0 1  orientation and by 1% in the other two 
orientations after the contribution of 3 ~ f E  was taken into 
account. (The calculation in the [I  1 1 1  orientation was per- 

formed with refined lattice sums: P2 = 0.141, L , = 0.87 1 ,  
L2 = 0.132). When 8  deviates from OM, the relative contri- 
bution of 3 ~ f E  decreases rapidly as a consequence of the 
increase in M ? ~ .  This refinement of M 3  scarcely alters the 
results of the calculation of the free-precession signal in a 
rotating frame in CaF2. Conversely, in systems with a small 
number of neighbors, for example, systems consisting of 
quasi-isolated groups or one-dimensional chains, the propor- 
tion of the 3 ~ : E  contribution can increase, and it can no 
longer be disregarded. 
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