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Fluctuations of a passive scalar concentration in a random velocity field are considered. 
Statistical quantities related to the spatial derivatives of the concentration field are calculated in 
the presence of a nonzero mean concentration gradient in the delta-correlation 
approximation. This permits an estimation of the stationary variance of the concentration, which 
has a logarithmic dependence on the molecular diffusion coefficient. Conditions for the 
applicability of the delta-correlated approximation in this problem are obtained. O 1995 American 
Institute of Physics. 

1. GOVERNING EQUATIONS (q(r, ,t)q(r,,t)) which, for the simplest models of the veloc- 

The governing equations for 
passive tracers in random velocity 

the problem of diffusing 
fields are of the following 

two types: 

Equation (1) describes the evolution of the concentration 
field q(r,t) of a passive scalar, and (2) describes its spatial 
gradient p(r,t) = dq(r,t)ld r. The constant K is the molecular 
diffusion coefficient. In this paper, the velocity field u(r,t) is 
assumed to be a zero-mean random Gaussian incompressible 
field (div u=O), homogeneous and isotropic in space and sta- 
tionary in time with the covariance tensor 

and the spectral density E ( k , t )  of the energy of the fluid 
flow. The covariance tensor is determined by the formula 

ity field u, are also described by linear equations (see, e.g., 
Ref. 1). Here (...) denotes statistical averaging over the en- 
semble of realizations of the field u. However, because the 
diffusion term contains second-order derivatives, it is much 
more difficult to derive an equation describing the evolution 
of, for example, the one-point probability densities of solu- 
tions of (1). 

A description of the probability density of the concentra- 
tion requires consideration of Eqs. (2) for its spatial gradient, 
and generally, equations for derivatives of higher order. Also, 
one can write equations in variational derivatives (Hopf 
equations) for the characteristic functional (see, e.g., Ref. 2). 
However, at this time there are no satisfactory methods for 
solving and analyzing them. For these reasons, it is necessary 
to study approximate methods of analyzing statistical solu- 
tions of equation (I) and (2). Some of these methods have 
been recently developed in Ref. 3. 

In the present paper we discuss the evolution of the sta- 
tistical characteristics of a passive scalar concentration with a 
nonzero mean concentration gradient, i.e., we study Eqs. (I), 
(2) with the initial conditions 

qO(r) = G .  r,  po(r) = G. 
Recently, this problem has attracted considerable attention, 
both theoretically and experimentally in Refs. 4, 5. These 
papers used numerical modeling and construction of phe- 
nomenological models to analyze the behavior of the station- 
ary (as t 4 m )  probability density of the passive scalar gradi- 
ent, and the occurrence of distributions with "slowly 
decaying tails" of the exponential type. Note that in Ref. 5 it 

(4) was demonstrated that the stationary probability density of 
the scalar concentration also has a slowly decaying tail. 

For a general initial distribution qo(r) of the passive sca- 
lar, statistical analysis of the solutions of Eq. (I) is quite 2. SPLITTING THE COVARIANCE 
involved. The linearity of ( I )  makes it relatively easy to 

Representing concentration q(r,t) in the form study such simple statistical characteristics as the mean con- 
centration ( ( )  and the covariance function q ( r , t ) = G . r + i ( r , t ) ,  (5) 
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we obtain equation 

for the fluctuating component q" of the passive scalar concen- 
tration. Because of the statistical spatial homogeneity of field 
@(r,t), the analysis of Eq. (6) is substantially simpler than the 
analysis of problem ( 1 ) .  In particular, the statistical moment 

(q"(r,t)), which is independent of r,  satisfies the equation 

~ ( q " ~ - ~ ( r , t ) i j ~ ( r , t ) ) ,  (7) 

where 

To split the covariance (u?-') on the right-hand side of 
(7), we will use the Furutsu-Novikov f0rmula,5,~ 

(ui(r , t )F[u])= 1 dr' I d t t B i j ( r - r l , t - t ' )  

which is valid for any zero mean Gaussian field u and an 
arbitrary functional F[u] of this field. Now, Eq. (7) can be 
rewritten in the form 

d - (?(r,t))= - n(n- l )Gi  dr' dttBij 
dr I Id 

In the delta-correlated approximation, the covariance func- 
tion Bij(r,t) in (9) can be replaced by 

Bij(r , t)  = 2 ~ ~ 5 ~ ~  ( r )  6 ( t ) ,  (10) 

where 

A justification of this approximation can be found, for 
example, in Ref. I; later on we shall give the conditions for 
its applicability to the problem (6) .  The variational derivative 

on the right-hand side of (9) is expressed in terms of the 
quantity 6+(r,t)l &u j (r ' ,  t - O), which can be determined di- 
rectly from the original Eq. (6): 

Substituting (10) and ( 1  1 )  into (9), we obtain the equation 

d 
- dt (qU(r , t ) )=n(n-  1 ) D , ~ ~ ( q " - ~ ( r , t ) ) -  ~ n ( n -  1 ) 

~ ( T - ~ ( r , t ) f i ~ ( r , t ) ) ,  (12) 

where 

and N is the spatial dimension (i.e., N=3 or 2). 

3. STATIONARY REGIME 

In the stationary regime ( t+m),  we obtain from (12) the 
following equation for the time-independent statistical char- 
acteristics: 

D , G ~  
(("-2(r,r)ij2(r,t)) = 7 (q"n-2(r,t)). (13) 

In particular, for n = 2,  it follows from (13) that the station- 
ary value of the second moment of the gradient of the fluc- 
tuation is 

(fi2(r,t)) = ([vq"(r,t)12) = D ' G ~ I K  (13') 

and consequently, Eq. (13) can be rewritten in the form 

(T-2(r,t)fi2(r,t))=(fi2(r,t))(?-2(r,r)). (13") 

i.e., in the stationary regime, the quantities q"(r,t) and fi2(r,t) 
are statistically uncorrelated. Equation (12) can be rewritten 
in the form 

where 

K 
f (r , t )=  1 - 7 g2(r,t).  

DIG 

It follows from (14) that the variance of concentration field 
Y(r, t )  0 )  = 0) is 

In the absence of molecular diffusion we have f ( r )  = 1 ,  and 

(Y2(r , t ) )=20 ,G2t .  (16) 

In this case, the one-point distribution of the field y(r,t) is 
Gaussian q"(r,t) is uncorrelated with its spatial derivatives. In 
the general case, the solution (16) is valid for sufficiently 
small times. 

Notice that, in the above approximation, the covariance 
function 
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satisfies the equation 

+ ~ G ~ G ~ B ~ ~ ~ ~  (r) ,  

and, consequently, the stationary values r(r)=lim,,, r(,,t) 
are described by 

GiGj Bigff ( r )  = - [Bigff (0) 

Setting r = O  in this equation, we obtain Eq. (1 3 '). Differen- 
tiating the equation twice with respect to r and putting r=O, 
we get 

where the coefficient D, is determined by the equation 

that is 

To evaluate (i2(r,t))lt,, in (15) we need information 
about the time evolution of the second moment (fj2(r,t)). 
That information can be obtained by considering Eq. (2), in 
which the molecular diffusion term is neglected. Although 
this approximation for Eq. (2) is good only for a finite time 
interval? knowledge of the exact value (13') will give us an 
opportunity to estimate the stationary value of the variance 
of the passive scalar concentration in the presence of mo- 
lecular diffusion. 

We introduce the function 

@t,r(p)= G(P(~ ,~) -P) ,  

satisfying the Liouville equation 

with the initial condition 

@o,r(p)= 6(G-P). 

Averaging Eq. (17) over the ensemble of realizations of the 
random field u, and using the Furutsu-Novikov formula (8), 
the delta-correlated approximation (10) for the random field 
u, a formula for the variational derivative 

derived from (17) and, finally, the statistical homogeneity of 
the field p(r,t), we obtain the Fokker-Planck equation 

of the probability density P,(p) = (@,,,(p)) of the gradient 
of the passive scalar concentration. 

4. CLOSED SET OF MOMENT EQUATIONS 

The specific structure of Eq. (19) permits us to derive a 
closed set of equations 

for the moment functions of the gradient field p(r, t) and, 
consequently, 

(plpln)=GIGIn exp [D2n(N+n+2)(N- l ) t ]  (21) 

and, in particular, 

(p(r,t))= G, (Ifj(r,t)12)=G2{ exp [2D2(N+2) 

where fj(r, t)= dq"(r, t)ld r is the gradient of the fluctuation 
of the passive scalar concentration. Thus the moments of the 
magnitude of the concentration gradient grow exponentially 
in time, and the normalized quantity IGI-'lp(r, t)l has a log- 
normal probability distribution, i.e., the quantity 
~ ( r ,  t)=ln{lGI-'lp(r, t)l} has a Gaussian distribution with 
parameters 

The log-normal probability distribution of the concentra- 
tion gradient was, apparently, first discovered in Ref. 7 (al- 
though equations like (19) do not appear there), and its prop- 
erties can be found, for example, in Ref. 8. 

As we indicated earlier, the log-normal approximation of 
the probability density (in the absence of molecular diffu- 
sion) and, in particular, the exponential growth of (22) in 
time are valid only for a finite time interval. However, the 
exact knowledge of (13') allows us to use the exponential 
law (22) to approximate the time behavior of the quantity 
(fj2(r, t)) in the presence of molecular diffusion up to the 
time 
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when it attains its stationary value (p2) described by Eq. 
(13'). In other words, we use Eq. (2) without the molecular D , ( ~ , K ) =  - 

N- 
l d r l  dk~(k , r ) exp ( -  K T  k2). (28) 

N 
diffusion term for r <  to and Eq. ( 13') for t> to. Hence, we 
have Jrdtf(t)-to and, by (15), we get the stationary vari- 
ance of the field q"(r,t), i.e., Hence the condition for the applicability of the diffusion ap- 

proximation is 
1 

I - + ~  K D , ( ~ , K ) G ~ T ~ <  I .  
(25) 

(29) 

Using D ,- u :TO and D 1 / ~ 2 - r &  where a : is the vari- For the delta-correlated approximation, in addition to 
ance of velocity fluctuations, and TO and ro are, respectively, (291, one assumes 
its time and space correlation radii, we find from (24), (25) 
that the time to, in view of its logarithmic dependence on K, 
cannot be too large. In addition, K T ~ / ~ : <  1, and t S r 0 .  (30) 

2 
a, 70 

(4')-G2r; In - 2 , K < U , T ~ .  Then, from (12') the coefficient D ,(t, K) - D l  , and condition 
K (29) can be rewritten in the form 

Earlier, we observed that the passive scalar concentration 
is uncorrelated with the square of its gradient, both in the U : G ~ < ~  1. 
stationary regime and in the initial time interval (in which 

(31) 

molecular diffusion effects are not important). If this were 
true over the whole time interval, we would have found from Also, recall that in the derivation of the stationary value of 

E ~ .  (14) that the one-point disbibution of the field @ is (G2) [see (15)1, we needed information about the evolution 

Gaussian. However, as follows from Ref. 5 (see also Ref. 9), of the random field p. This was provided by Eq. (22), whose 

this is not the case, and the existence of such a correlation is validity depended on the condition D 2 ~ 0 <  1,  or equivalently 

the most important factor in the formation of the stationary 
regime for fluctuations of q". 2 2  2 a, To e r O .  (32) 

5. APPLICABILITY CONDITIONS Thus, we finally conclude that Eqs. (30)-(32) are the 

In conclusion, we present conditions for the applicability 
of the delta-correlated approximation of a random filed u. 

We begin with a more general diffusion approximation 
(see, e.g., Ref. l), which neglects the influence of the field u 
at scales of order TO. In this case Eq. (9) for the quantity 
(qn(r,t)) is exact. Since the principal contribution in the time 
integral on the right-hand side of (9) comes from t - t' - 70, 

we can neglect the fluctuation terms in the corresponding 
equation for the variational derivative. As a result, we find 
that 

G@(r,t) 
= - exp [ ~ ( t -  tl)A] 

Guj(r',tr) 

(26) 

where A is the Laplacian. In the same time interval 

q"(r,tr)= exp [ -  ~ ( t -  t l )A]i(r , t ) .  

In view of the spatial homogeneity, the first term on the 
right-hand side of (26) makes no contribution, and we obtain 
the equation 

conditions for the applicability of the delta-correlated ap- 
proximation used throughout this paper. They require that 
both the fluctuations of the velocity field and the molecular 
diffusion coefficient be small. These requirements are not 
severe limitations in the analysis of, for instance, geophysi- 
cal flows. 
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