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In the absence of external fluctuations acting on the atoms, the spontaneous dissociation of 
molecules is not strictly exponential, but occurs as if there is dynamic chaos and the mean lifetime 
T,, is quite long. Approximate formulas for T,, are obtained. A very simple model of 
dynamic dissociation is considered. An empirical dissociation curve is obtained numerically for it 
and compared with an exponential function. O 1995 Anterican Institute of Physics. 

1. INTRODUCTION with a high degree of confidence. The role of dynamical 
chaos in the purely dynamical theory of spontaneous disso- 

The work of ~ ramer '  has played a major role in shaping ciation was mentioned in Ref. 5 .  
the theory of the spontaneous dissociation of polyatomic The inequality arm% 1 signifies that although a mol- 
molecules. It marked the beginning of the creation of the ecule is unstable, its lifetime is very long, so that the dy- 
fluctuation theory of dissociation, in which the equations namic process in it does not differ much from the dynamical 

process in an absolutely stable molecule. Thus, we associate 
;,= fa(x)+ta( t) ,  a= 1, ..., s (I.') an unstable (more precisely, a metastable) molecule with a 

are taken with the uncorrelated Langevin forces ta( t )  as the 
starting equations (the case of s = O  was taken in Ref. 1). 
Then the fluctuation process x(t) in phase space is Markov- 
ian, and dissociation of the molecules reduces to a stochastic 
escape from a potential well. In this case the Markovian 
theory of reaching boundaries can be used (see, for example, 
Ref. 2 and 3), and the exponential character of spontaneous 
dissociation can easily be explained. The work in this area 
can be examined by consulting the collection of papers in 
Ref. 4 (Ref. 2 is also presented there). 

One shortcoming of that theory is the fact that the ap- 
pearance of Langevin forces cannot be regarded as com- 
pletely substantiated. If they are treated as external random 
forces acting on a dissociating molecule, its dissociation will 
not be spontaneous, but caused by the external forces. Under 
another interpretation of the forces ta( t ) ,  the variables 
X =  (x, ,..., x,) represent some of the dynamic variables of the 
molecule, and the t, depend on other variables. However, 
when the molecule has a finite number of degrees of free- 
dom, the ta( t )  cannot be exactly delta-correlated. In addi- 
tion, under this interpretation equations for the other vari- 
ables must be taken into account, and the theory should be 
much more complicated. 

In a purely dynamic theory of spontaneous dissociation 
we do not consider the speculative random forces, and in- 
stead of (1.1) we should use the nonfluctuational dynamic 
equations 

Strictly speaking, the dissociation process then loses its 
exponential character, as will be shown below. At best, it will 
resemble an exponential function to some extent (a) when 
there is dynamic chaos in the stable system associated with 
the initial system and (b) when the lifetime is long or, more 
precisely, when the inequality ar,,+ I, where a is the larg- 
est of the Lyapunov exponents of the stable system, holds 

stable molecule with a somewhat altered potential interac- 
tion. It is natural to expect that the more stable is a meta- 
stable molecule and the greater is T,,, the smaller is the 
difference between the distribution function F ( y )  
=P[r/raV>y] and the exponential function exp(-y) (here 
7 is a random lifetime), if, of course, the initial distribution 
w(x,to) is not degenerate. 

Approximate formulas for the mean lifetime will be ob- 
tained below. 

2. INTERNAL VARIABLES AND REGION IN PHASE SPACE 
WHERE MOLECULES A AND B ARE CONSIDERED 
BOUND IN C 

Let the molecule C consist of k3 atoms, whose positions 
are described by the radius vectors qP),...,ql:'. Assume that 

it is most readily capable of spontaneously dissociating into 
molecules A and B. The atoms of these molecules are located 
at points q ~ ) = q ~ ) ,  for a= 1, ..., kl  , and qC)=q&a, for 

a = 1 ,..., k, , respectively (kl + k2 = k3). AS in Ref. 5, we in- 
troduce the radius vectors of the centers of gravity 

ki 
rj= M,: 2 m2)qt) 

a= 1 
(2.1) 

(M; = E ,my)) and the internal coordinates 

of the jth molecule. This transformation of (2.1) and (2.2), 
which has a unit Jacobian, induces a transformation of the 
momenta 

k 

p.= 2 p ' ~ ) ,  a Pjw= P,r Ci)L nlcr (;)P./M. J 
J .  

n = l  
(2.3) 

It is obvious that in this case 
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As in Ref. 5, we use the notation 

The variables x'j)= ( q j 2  ,p j2  ,...,qjk . ,pjk ) are internal vari- 
I I 

ables of the jth molecule. Here the variables 
.i(3)= (r21 ,P; , x ( ' ) , x ( ~ ) )  are equivalent to the variables d3) ,  
since the Jacobian of the transformations ~("2.i'~) is equal 
to unity. Any of these sets can be taken as the internal dy- 
namical variables x of molecule C .  The number of these 
variables is 2n = 6 ( k 3  - 1 ). It is significant that Eqs. (2.1)- 
(2.3) are valid both when A and B are joined in C and when 
A and B are isolated. 

In the transformation from the variables 
( q P 1  ...,qi,' ,pi,)) to the internal and external variables 
of molecule C, the Hamiltonian 

is transformed into the sum of the external Hamiltonian 
H y =  P : / ( ~ M ~ )  and the internal Harniltonian 

which depends on the internal variables. For brevity, the ki- 
netic energy appearing therein can be written in the form 

Here and in the following, summation over repeated indices 
is understood and (p32 ,.... p3k3) is denoted by ( p l  ,..., p n ) .  
Similarly, the internal coordinates of molecule C will be de- 
noted below by q ,  ,..., q n  . 

Molecule C does not dissociate at once, but exists for a 
fairly long time in a metastable state. For this reason the 
region of phase space corresponding to the existence of mol- 
ecule C in the still undissociated state is surrounded by a 
potential barrier, which cannot be overcome for a long time. 
This is represented by the potential energy U  in (2.4) and 
(2.5). 

We assume first that the barrier indicated has slopes on 
both sides of the "water parting" W, which is defined in the 
appendix and forms a closed hypersurface. It is simplest to 
consider molecule C undissociated, if the coordinates q cor- 
respond to a point within W, and the momenta are arbitrary. 
This is one of the definitions of the region R of the states of 
molecule C which have not dissociated into A and B. 

The region R can be defined more precisely. From the 
energy conservation law dT= - d U ,  which is consistent 
with Hamilton's equations, we obtain 

since qk= M i l p ' .  The points in phase space where the de- 
crease in potential energy ends would naturally be assumed 
to belong to the boundary I' of the region R ,  because the 
increase in T  occurs beyond it (this increase is interpreted as 
proof that the potential barrier has been successfully over- 
come). Under such a definition the boundary r is defined by 
the equation 

It is assumed that for each vector p= ( p l ,  . . . ,pn) this equation 
defines a closed hypersurface A ( p )  in an n-dimensional co- 
ordinate space. It is clear that the following symmetry prop- 
erty exists for each of the two definitions of the region R 
indicated: the point ( q ,  , - p  ', ...,qn , - p n )  belongs to T, if 
the point ( q  , ,..., q n  , p n )  belongs to T. 

Cases in which the potential barrier has only one slope, 
i.e., the water parting is at an infinite distance, are also pos- 
sible. An example of such a case is provided by the potential 
energy defined by painvise interactions 

with an ordinary form of @ ( r ) ,  say, the Lennard-Jones po- 
tential, which increases monotonically with increasing r after 
a certain value rl  . Therefore, the energy U  increases as one 
fixed configuration of atoms moves away from another fixed 
configuration of atoms, if the distance between them is not 
excessively small. 

In the absence of a closed water parting, i.e., in the ab- 
sence of a "slope" on the outside, the region R of states of 
molecule C can be defined, as in Ref. 5, by the inequality 

Here r 2 ] =  lr211, and ro  is a value which satisfies the condi- 
tions 

where u = VIN and rint is the interaction radius of the atoms. 
Of course, some arbitrariness is allowed here, since ro  is not 
uniquely defined by the inequalities (2.8). Under the defini- 
tion (2.7) the boundary hypersurface T in the 2n- 
dimensional phase space is the set of points where r2 ,=  r , ,  
and the other variables P;, x ,  , and x2 are arbitrary. 

Let c a ( x )  be the vector of the normal to T at the point x .  
It is defined as follows: if x and x+ 6x belong to T, to within 
terms of higher order in 6x we have c a ( x )  axa= 0. The vec- 
tor c a  is the vector of an external normal, if c a ( x ) 6 x a ~ 0  
holds at the point x+ 6x lying outside r and R and if x 
E r. 

Under either of the definitions of R described, the hyper- 
surface I' can be represented as the union of two subsurfaces 
I', and I ' - .  The outlet subsurface I'- is defined by the 
additional condition 

and the inlet subsurface is defined by the condition 
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(points satisfying ,f,ca=O can be assigned to either of the 
subsurfaces). 

Owing to the motion of points in the phase space, a 
probability flux g,(x) = f,(x)w(x) appears in it. The total 
flux through the boundary 

is simply the probability that the image point leaves R in a 
unit of time. The vector dT" of the area of an element of the 
hypersurface is collinear to the vector of the external normal 
ca. If that element coincides with the parallelepiped con- 
structed on the basis of the infinitesimal vectors ax:), ..., 
ax(,"- I )  lying in r, then 

Here the tensor ea...w is equal to E"...~ or - , 
being the completely antisymmetric tensor whose nonzero 
elements are equal to 1 or - 1. The sign of E ~ . . . "  is taken so 
that the vector d r "  is aligned in the same direction as the 
vector of the external normal. In particular, if we take the 
infinitesimal vectors 

we have 

(dx 2... dx2,=dq 2...dqndp1...dpn). In the case (2.6) it is not 
difficult to obtain 

For the region R defined by the water parting W, we have 
cj= bi(q), cn+j= 0, where bj(9) is the vector of an external 
normal to W (see Appendix). Here we have 

3. STABLE MOLECULE WITH WHICH THE METASTABLE 
MOLECULE C IS COMPARED 

If we place an ideally reflecting wall on the boundary 
hypersurface T, i.e., if we supplement the Hamiltonian (2.5) 
with the potential energy 

0 i n R ,  "=[_ outside R, 

the molecule becomes completely stable. Let us consider the 
stationary distribution corresponding to it. Before the exter- 
nal dynamic variables were eliminated, the following single- 
valued motion integrals existed: the momentum P3 of the 
center of mass, the energy H 3 ,  and the angular momentum. 
Elimination of the momentum P3 from the treatment means 
that thereafter we have, as it were, P3=0. In fact Eq. (2.5) is 
consistent with the equalities ' 

Therefore, the only constants of motion remaining after the 
transition to the internal variables are H: and the angular 
momentum 

the q(,3)- r3 being expressed in terms of q32 ,...,q,,,. 
Therefore, the stationary distribution has the form 

Next, the three-dimensional coordinate system can be rotated 
into an orientation in which the vector m has the form 
(0,0,lml) or, say, (lm1,0,0). Therefore, we can also consider 
the stationary distribution 

which depends on two parameters, E and m = 1 ml . 

4. MEAN LIFETIME ACCORDING TO THE DYNAMICAL 
THEORY 

Equations (1.2), which are simply Hamilton's equations, 
correspond to the Liouville equation 

for the probability density w,(x) in the phase space. Here the 
summation is understood to extend from 1 to 2n. 

The solution of Eqs. (1.2) under the initial conditions 
x(to)=xO (outside this section we shall set to=O) can, in 
principle, be written in the form 

~ a ( t ) = ~ a ( x O ? t - t o ) ,  (4.2) 

where G1 ,..., GZn are the corresponding functions. They have 
the property G , ( X ~ , O ) = X ~ .  If the initial distribution 
wto(x) = wo(x) is chosen, the solution of Eq. (4.1) can be 
written in the form 

If we integrate w,(x) with respect to x within the region 
R ,  we obtain the probability 

that molecule C has not yet dissociated at the time t, i.e., that 
its lifetime T is greater than t - to. It is clear that to obtain 
the probability density p ( r )  of the random lifetime T it is 
sufficient to differentiate (4.4) with respect to t and to re- 
verse the sign: 

AT)= - w , ~ + ~ =  - /R~~,,,+T(x)dx. (4.5) 

Hence we find the mean lifetime 

I,: M - ( r ) =  - rk,"+. dr=  l:Wil+, d ~ .  (4.6) 
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We now set wo(x)  = 6(x  - xO) in (4.3).  The correspond- 
ing solution 

satisfies not only Eq. (4.1), but also the adjoint differential 
equation 

which is a nonfluctuational special case of Kolmogorov's 
first equation like (4.39) from Ref. 3. If we integrate (4.7) 
with respect to x within R and take into account Eq. (4.4),  
we obtain W ,  = f ,(xO) Jw,  l ax:. Integration of this relation 
with respect to t from to to gives the following equation 
for M as a function of the initial point: 

Here (4.6) has been taken into account. This is a nonfluctua- 
tional case of the Pontryagin-Andronov-Vitt equation from 
Ref. 2 [the equation coming after (V)]. The boundary condi- 
tion for it is M(xO)  = 0 when x0 E r - . Knowing the function 
M(xO)  and the initial distribution w o ( x ) ,  we have an exact 
equation for the mean lifetime 

Since the characteristics of Eq. (4.8) are the same as 
those of Eq. (4.1) and are specified by Eqs. (1.2), the general 
formal solution of M(xO)  is written in terms of the former 
functions G a ( x , t -  to)  appearing in (4.2): 

where F is an arbitrary function determined from the bound- 
ary condition. If the outlet hypersurface T- is assigned by 
the equation cp-(xl ,..., x2,) =0, then after the function F is 
defined, we have 

which implicitly determines M(xO) .  
The dependence of the mean lifetime (4.9) on the initial 

distribution can be eliminated by the following nonrigorous 
argument. We assume that 

1 when X E A ,  
wo(x )  = const 

0 when x d A ,  

where A C R is a certain subregion having a nonzero measure 

Then, owing to the existence of dynamic chaos during a time 
several times greater than a (where a is a Lyapunov expo- 
nent) the distribution (4.3) "becomes similar" to w S t ( x ) ,  if a 
reflecting wall is erected on the boundary hypersurface. 
When there is no reflecting wall, but ar,,>> I holds, the pro- 
cess of reaching the boundary can be conceived as two alter- 
nately occurring processes: a relatively rapicl process of es- 
tablishing the stationary distribution w , , ( x )  and a very slow 

process of reaching the boundary under the original distribu- 
tion w , , (x) .  Therefore, in (4.9) we can replace wo(xO) by 
w ,,(xO) and obtain 

If exponential dissociation were possible, the solution 

( $ w , ( x ) d x =  I ) of Eq. (4.1) with a zero boundary condition 
on the inlet hypersurface T+ would exist. Plugging (4.10) 
into (4.1) gives 

with the boundary condition w ,  ( x )  = 0 when x E T + . An 
analysis shows that only the zero solution w,(x)=O of Eq. 
(4.11) is possible with this equation. 

In fact, the general solution of Eq. (4.1 1 )  has the form 

F ( G l ( x , -  y-lln w * )  ,.... G2, (x , -  y-lln w , ) ) = O ,  

where F is an arbitrary function. It cannot be determined 
from the boundary condition w , ( x )  = 0 when x E l7 + holds 
[i.e., when we have cp+ ( x ,  ,..., x2,) = 01, suggesting that 
strictly exponential dissociation is impossible. 

5. ANOTHER METHOD FOR APPROXIMATE 
DETERMINATION OF THE MEAN LIFETIME 

The present method involves the determination of the 
first few coefficients of the Taylor expansions 

or the expansion 

u ( T ) =  - In W,=b,r+  $b2r2+ ..., (5.3) 

Clearly, from the equality u= - In W, and (5.2) we find 

To find { a ,  ,...,ar) and then { b l  ,..., b,) ,  where the choice of 
the number of terms r in the approximating expansion de- 
pends on the treatment accuracy chosen, we use Eq. (4.5), 
which, owing to (4 .  l), can be written for to=O in the form 

The application of Gauss' equation to the right-hand side 
gives 

The result coincides with (2.9).  The integral over the inlet 
hypersurface is absent from (5.4), since it is assumed that we 
have w,f,c"=O f0r.r E I T +  . 
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To find the coefficients a l ,  a 2 ,  ... we use Eq. (5.4). 
Differentiating both sides of (5.4) with respect to T at the 
zero point j times, as a consequence of (5.1) we find 

Then, using (4.1) several times, we obtain 

d2w, d2w,  
(5.6) 

etc. Choosing wSt(x) as the initial distribution, from (5.5) 
and (5.6) we obtain 

In a very rough (first) approximation we take into account 
only one term of expansion (5.3), i.e., the term with 
b l = a l .  This gives 

P [ T >  t ]=e -b l ' ,  

i-e., in this approximation 

In a more exact treatment, in which r> 1 holds, we identify 
W,= $ ; p ( r ' ) d ~ '  with the function 

Then y= 1 / ~ , ,  can be determined by minimizing the integral 

The condition for an extremum dJ( y) ld  y= 0  takes the form 

It is expedient to determine ra,= l ly from it numerically. 

6. SIMPLE HAMlLTONlAN MODEL OF DYNAMIC 
DISSOCIATION; COMPARISON WITH RESULTS OF THE 
NUMERICAL CALCULATION 

Two-dimensional motion, i.e., motion in a plane, is con- 
sidered in the simplest dynamical model of a polyatomic 
molecule. All the atoms apart from the subject atom are as- 
sumed to be stationary. If the interaction between the atoms 
is reduced to the repulsion between rigid spheres, the speci- 
fied atom can be considered a mass point, and the radii of the 
other atoms are increased accordingly. The attraction of the 
atoms is replaced by a condition of nondeparture (in the case 
of a stable molecule) from a square with a side I. 

I t  is simpler to assume that there is only one stationary 
atom with an effective radius r apart from the mobile sub- 
ject atom (Fig. 1). Finally, for simplicity we assume that a 

FIG. 1 .  Square with a cut-out circle as the region where the particle moves. 

periodic continuation is carried out beyond the lateral walls 
OL and NM, i.e., the square is bent into a cylinder by iden- 
tifying the segment OL with NM. The molecule is unstable 
if the mobile mass point can escape through the opening FG 
with a length of l o ,  which symbolizes dissociation. 

In the model under discussion there are two coordinates 
and two components of the momentum vector. Owing to the 
energy conservation law, reflection from segments LM, OF, 
and CN,  as well as the circle, takes place according to the 
law of elastic impact, so that the magnitude of the momen- 
tum or the velocity is conserved. Therefore, we can consider 
motion in a three-dimensional space with the coordinates 
q l ,  q 2 ,  and cp, where cp E [ 0 , 2 ~ ]  is the angle indicating the 
direction of the velocity vector v= (vocoscp,vosincp). 

In the case of a stable molecule there is dynamical chaos 
in the system under consideration. The stationary distribution 
is described by the expression { r 2 -  T in R ,  

w,,(q, 9) = 
outside R, 

(6.1) 

where R is the direct product of the area of the interior of the 
square (minus the area of the interior of the circle) and the 
interval [ 0 , 2 ~ ) .  Equation (6.1) follows from the microca- 
nonical distribution 

which indicates that the distribution in R should be uniform. 
When the opening FC (Fig. 1) is sufficiently small, the 

lifetime of the "molecule" is large and is specified approxi- 
mately by means of (5.8) and (5.7), i.e., 

where v =  (0,- 1 ). Therefore, when (6.1) is taken into ac- 
count, we have 

T,,= 7r(12- ~ r r ~ ) / ( / ~ u ~ ) .  (6.2) 

The dissociation process in this model and its closeness to 
exponential dissociation were calculated nunierically by 0. 
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FIG. 2. Empirical dissociation curve and ex- 
ponential function (y = v O ~ / l ) .  

A. Chichigina for the values r 11 = 0.2 and lo 11 = 0.034. A 
uniform distribution in the region 0.4% q 11 < 0.6, 
0.73<q211 <0.76,0 < cp< 2 rr was chosen as the initial distri- 
bution. The initial values of the dynamical variables q , ,  
q,, and cp were determined in this region using a table of 
random numbers. 

The empirical distribution function FN(y) 
=P[d  ~,,>y] for the lifetime was obtained for N trajecto- 
ries. It was approximated by the exponential function 
exp(-y) using Eq. (5.9), where cp, must be replaced by 
F N .  The distribution function and the approximating expo- 
nential function for N =  200 are shown in Fig. 2. The expo- 
nential function corresponds to uOr~J1= 88. The empirical 
mean lifetime , which was obtained directly as the arith- 
metic mean lifetime, was uor:J1= 84, while Eq. (6.2) gives 
the value v o T " ~ l l  = 80.8. 

It can be assumed that the relative disparity between the 
values obtained will be smaller when the length of the open- 
ing lo is smaller; however, the influence of the discretization 
noise in the computer calculation increases in that case due 
to the increase in the lifetime. 

In conclusion, it should be noted that this investigation 
was financially supported in part by Grant ND13000 of the 
International Science Foundation. 

APPENDIX A: 

Concept of a water parting for a potential-energy 
hypersurface 

Both with the set of internal variables x = x ( ~ )  and with 
the set x = i('), the internal Hamiltonian H '" of a molecule 
can be written as 

The Lagrangian correspontling to this Hamiltonian is 

Let MI', be a positive definite root of the positive definite 
matrix M = I I M ~ ' ~  1. If we introduce the new variables 
Y i =  (M 1'2)ijq j ,  the Lagrangian (Al) and the Hamiltonian 
take the form 

where ni= y is the momentum conjugate to y . The multidi- 
mensional graph of the function U ,(y , ,...,y ,) in (n + 1 )- 
dimensional space can be interpreted as the "relief" of an 
n-dimensional surface in analogy to the relief of a two- 
dimensional surface. We call the curve whose parametric 
representation y (A) satisfies the equation 

the path of steepest descent. If we go over from y ..., y, to 
the original variables q ,  , ..., q,,  Eq. (A2) takes the form 

The paths of steepest descent end either at a minimum point 
(which may be local) of the potential U or at a saddle point 
(there are very few such lines), or they may go on to infinity. 
If there are lines of descent of different types, an 
(n - l )-dimensional surface, i.e., a separatrix W, which 
separates the lines ending at a minimum from the lines going 
on to infinity can, in principle, be drawn. This separatrix is 
the water parting of the multidimensional relief just cited. If 
the surface has several water partings, we are interested only 
in the outer water parting having the form of a closed surface 
which includes all the minima not lying at infinity. 

We introduce the vector of the normal b k ( y )  to W at the 
point q .  This means that h k ( q )  6qk= 0 holds to within terms 
of higher orcler in 6clL, if both cl and y  + r7cl belong to W .  
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The paths of Steepest descent cannot intersect W ,  enter W ,  or 'R. L. Stratonovich, Tc)/?ics it1 the 7'11eory of Rut~(k)m Noise, Gordon and 
leave W ,  i.e., some paths lie entirely in W. Therefore, the Breach, New York, 1963. 

b k d q , ( ~ ) , d ~  = 0 or b k ~ ,  1 du,dyl= 0 holds ' ~ o i s e  iu N o n l i ~ ~ e u r  Dyt~ut t~ icul  Sysfe~ns, Vols. 1-3, edited by F. Moss and 

when q ~  W. P. V. E. McClintock, Cambridge Univ. Press, Cambridge and other cities, 
1989. 

'R. L. Stratonovich, Zh. ~ k s p .  Teor. Fiz. 98, 1233 (1990) [Sov. Phys. JETP 
'H. A. Kramers, Physica 7, 284 (1940). 71, 690 (1990)l. 
2 ~ .  S. Pontryagin, A. A. Andronov, and A. A. Vitt, Zh. ~ k s p .  Teor. Fiz. 3, 

165 (1933). Translated by P. Shelnitz 

735 JETP 81 (4), October 1995 R. L. Stratonovich 735 


