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The development of the spectral-angular instability of an intense laser pulse in an extended 
resonant absorbing medium is investigated within the framework of the Maxwell-Bloch equations. 
By means of numerical analysis we show here for the first time that for a shift of the laser 
frequency in either direction from the resonant transition the given model provides a good 
description of all of the main experimentally observable spatial and frequency 
characteristics of laser beams scattered in a resonant medium. Based on our model calculations 
of the propagation of a laser pulse in an amplifying resonant medium, we show that the 
pulse experiences an instability analogous to the spectral-angular instability it experiences in an 
absorbing medium. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Investigations of various types of instabilities accompa- 
nying the propagation of intense laser radiation in resonant 
media are among the most urgent problems in nonlinear op- 
tics. One of the best known of these is the spectral-angular 
instability of laser beams propagating in resonant gaseous 
media (see, e.g., Refs. 1 and 2 and the references therein). 
Experimental studies in this area have shown that in the case 
of a high-frequency detuning A=wo- wL<O of the laser 
frequency w, from the frequency of the atomic transition 
wo the laser beam undergoes both a small-scale spatial insta- 
bility, manifested in the breakup of the beam into separate 
self-focusing filaments, and a large-scale instability, mani- 
fested as conical emission. It is characteristic of this instabil- 
ity that the observed spectrum of the scattered radiation con- 
tains a number of components frequency-shifted from wo, 
the wavelengths and intensities of which depend in a com- 
plicated way on the scattering angle. In particular, the conical 
emission spectrum mainly contains a component that is sig- 
nificantly shifted toward the red from the frequency of the 
exciting laser beam. As was theoretically predicted in Ref. 3 
and later confirmed experimentally in Refs. 4 and 5, an 
analogous, pronounced instability can also take place for 
A>O. 

To explain the origin of this instability, in particular the 
conical emission, a number of qualitative theoretical models 
have been proposed (reviews are given in Refs. 1 and 2): 
nondegenerate four-wave mixing (NFWM) with refraction of 
the shifted component at the boundary of the self-length fo- 
cusing tilament, NFWM under conditions of longitudinal 
wave synchronism, generation of Cherenkov radiation, 
downconversion, etc. However, they explain only separate 
aspects of this conlplicated problen~ and not one of them 

describes the entire manifold of experimental data. In this 
regard, as our experiments and their theoretical analysis475 
have shown, the most adequate description of the onset of 
the instability is provided by the NFWM without 
resort to additional considerations. However, if the pump 
wave is assumed given, as in Refs. 4 and 5, it describes only 
the linear stage of the instability: its growth rate determines 
only the possible spectral regions of amplification of the sat- 
ellites and their angular distribution. It should also be 
pointed out that in recent numerical calculations of NFWM 
processes8 good agreement was obtained between theory and 
experiment in the stationary case for low intensities. Partial 
qualitative confirmation of the observed effects was obtained 
in Ref. 1 by numerically modeling the time dependent case. 
An interesting observation was made in Ref. 1, namely that 
the spatially inhomogeneous distribution of the pulse when it 
enters the medium creates a quasiperiodic spatial and tempo- 
ral modulation of the polarization, which in turn can serve as 
a trigger for the onset of the small-scale instability even for a 
smooth initial profile. However, only the case A<O was cal- 
culated in Refs. l and 8; in Ref. l the calculations were 
carried out for a conservative system (i.e., relaxation pro- 
cesses were not taken into account) and short propagation 
lengths of the pulse, L,  so that the instability did not become 
fully developed. 

Note that the majority of experimental studies of propa- 
gation of intense (powers around 1 M W / C ~ ~  and greater) 
laser radiation in resonant gaseous media have had a substan- 
tially time-dependent character: the laser pulse was of the 
order or shorter than the characteristic relaxation time of the 
atomic subsystem. Earlier theoretical studies, including nu- 
merical, of the evolution of time-dependent, intense electro- 
magnetic radiation in resonant media, besides Ref. I, have 
nlainly addressed 2m-pulses. Bol'shov ef a/."" showed that 
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2~-pulses in a two-level medium experience a transverse 
instability for either sign of the detuning. We point out that 
the analytic studies of the growth rates of this i n s t a b i ~ i t ~ ~ * ~ ~  
were performed only for spectrally degenerate modes. Nu- 
merical calculations were performed in Ref. l l ,  for the case 
of exact resonance of the carrier frequency of the 2~-pulse  
with the transition frequency, which confirmed the presence 
of this instability. However, the calculations in Ref. I 1  did 
not describe the fully developed instability. 

In the present paper we present a numerical time- 
dependent analysis of propagation of an intense laser pulse in 
a resonant-and, in contrast to Ref. 1, extended and 
absorbing-medium. Our analysis describes the nonlinear 
stage of the development of the instability and explains for 
the first time all the key experimental data, both those ob- 
tained earlier for A<O and those obtained in Refs. 4 and 5 
for A > 0 :  the development of the small-scale instability, the 
generation of one or several cones of radiation and their 
spectral makeup, significant spatial and frequency broaden- 
ing of the spectral components of the scattering, etc. We also 
examine the spectral-angular instability of a laser pulse 
propagating in an amplifying two-level medium. 

2. THEORY 

We study the evolution of an intense laser pulse propa- 
gating in a gas of two-level atoms. To describe the intensity 
of the total radiation field E(z,r,,t) in the medium we may 
use Maxwell's equation in the parabolic approximation of 
Langevin: 

Here k, is the wave vector of the laser wave. 
The first term on the right-hand side of this equation 

describes induced processes associated with the interaction 
of the radiation with the medium. The polarization induced 
in the medium is found by solving the equations for the 
components pjk ( j ,k=  1,2) of the density matrix of the two- 
level atom: 

where V =  - ,u2,E/2fi, ,u2, is the matrix element of the di- 
pole nlonlent, y ,  and y2 are the longitudinal and transverse 
relaxation rates of the two-level atoms with density N. Equa- 
tion (2), for convenience of the numerical calculations, uses 

a modification of the rotating wave approximation: the en- 
ergy of the photons of the radiation field is counted from the 
energy of the atomic transition. 

The second term F" on the right-hand side of Eq. 1 
describes the contribution due to spontaneous emission of 
the atoms. The most convenient way to calculate F"' with 

a Ism allowance for spontaneous emission is to use the form I '  
of the atom-photon density matrix,12 which was first used to 
calculate resonant fluorescence spectra by ~ak1anov.l~ For 
stationary fields this method has been substantially devel- 
oped by Sargent and coworkers (see Ref. 14). 

In the present paper we assume that the field strength of 
the laser pulse entering the medium has a Gaussian distribu- 
tion in the transverse spatial coordinate and in time: 

where 2a is the transverse diameter of the beam, and 2tp is 
the duration of the pulse. 

Note that in the stationary regime (or for very long 
~ulses) system of equations ( I ) ,  (2) can be transformed into a 
system of equations for the laser wave and a set of symmetri- 
cally detuned coupled modes E j  satisfying the wave synchro- 
nism condition: 

under the condition 

The coefficients and Pi are found from Eqs. (2), 
where the total field E is defined as 

For weak depletion of the pump wave E L S  C jEj, the coef- 
ficients cuj and pj can be calculated from perturbation theory 
and are described by the expressions for the absorption 
(gain) coefficients of the probe signal and four-wave mode 
coupling (see Refs. 7 and 15). Here, assuming spatial and 
temporal S-correlation of the quantities F j ,  the following 
relations hold: 

where iTjP and are Kronecker symbols, where the 
modes with indices j and j' are related by condition (7). The 
quantity A describes the resonant fluorescence spectrum of a 
two-level at~m,'"~'%nd C j  is the spontaneous source for the 
correlator (E,  Elf)  (Ref. 17). 

Note that good agreement between theory and experi- 
ment in the description of the conical emission was tirst ob- 
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tained in Ref. 8 by numerical solution of system of equations 
(4)-(6). It also bears pointing out that this same system of 
equations, but without the assumption of spatial S-cor- 
relatedness in relations (9) and (lo), was investigated in Ref. 
2, where it was shown that propagation of intense laser ra- 
diation in a resonant medium can be accompanied by gen- 
eration of Cherenkov radiation. 

In the present paper we carry out a numerical study of 
the propagation of a laser pulse for an amplifying and ab- 
sorbing two-level media. The calculations were carried out 
for short pulses ( t p 4  y y ' ,  y i l ) .  In this case it is possible to 
neglect the effect of spontaneous emission and drop the term 
Fst in Eq. (1);which substantially simplifies the calculations. 

3. NUMERICAL MODEL 

Equations (1) (without the term FSt) and (2) form the 
well-known system of Maxwell-Bloch equations. For con- 
venience in the numerical model, we put them in dimension- 
less form. Transforming first to the retarded time 
t' = t - z l  c, we obtain the following equations: 

where 

S E  [O;Skl. 

Here for the absorbing medium 

pII~+-rn=p2lf+-rn=O, (134 

and for an inverted medium 

pill--+-a= 1, ~211,-w=O. (13b) 

The boundary conditions on the pulse as it enters the me- 
dium have the form 

where the first term describes the laser pulse, and the sum 
describes the set of low-intensity noise harmonics which are 
introduced to investigate the influence of noise triggers (the 
role of spontaneous emission) on the propagation of the 
pulse. The dimensionless quantities in expressions (1 1)-(14) 
are defined as follows: 

where Es is the field strength of the sth mode of the noise 
triggers, and AS and K' are its detuning from resonance and 
the transverse component of the wave vector, respectively. 

The system (l l ) ,  (12) is evolutionary in both the vari- 
ables T and 5, and can be represented as a composition of a 
time problem [Eq. (1 l), where e is a known function] and a 
depth problem [Eq. (12), where p2 is a known function]. 
Each of these problems requires the development and appli- 
cation of specific numerical methods. 

In the given calculations the grid in the space ( ~ ~ 5 . 5 )  
was taken to be nonuniform-rectangular. The following se- 
quence of values of the grid functions corresponding to the 
unknown fields pl  , p2,  and e was used. First the time prob- 
lem is solved numerically at a fixed depth for which values 
of the function eh  at the grid-points are already known and 
are interpolated over the entire time axis with the help of a 
local cubic spline.'' Then, after calculating pf and p: at this 
same depth, a global step is made in 5. At the same time, 
p2 on the right-hand side of Eq. (12) is calculated using a 
special third-order interpolator constructed from the layers 
already calculated. As the end result, only the final layer 
remains in memory: p ( r,5, l k ) ,  p2 ( T, 5, Ck), and 
e( ~ , t ,  Ck), characterizing the readings of the sensors located 
at the depth lk. 

The solution of problem (l l ) ,  (13) in time is realized 
with the help of a software package called DUMKA which 
implements stable explicit difference schemes with variable 
steps in T for systems of rigid homogeneous differential 
equations.19 The time steps are determined by a special algo- 
rithm which takes account of the characteristics of the spec- 
trum of the problem and ensures an accelerated step in com- 
parison with classical schemes. To solve the problem (12), 
(14), we used special difference schemes of Crank-Nicolson 
type (in 5):' in which, to obtain a high order of accuracy 
(0 (h4)),  two positive steps were cyclically multiplied with 
one negative step. The equations arising in this manner were 
solved by five-point multiple-pass methods. Besides the 
methods above indicated, we may distinguish the three most 
important parts of the calculational section of the software 
package: 

a) use of adaptive grids in the transverse layer (6) and in 
time (5. 7); 

b) interpolation of the right-hand side of Eq. (12) in 
sparse regions of the grid; 

c) an algorithm for choosing the variable step in depth, 
which ensures a constant local error -2-3% in the solution. 

These algorithms and methods allowed us not only to 
substantially shorten (by several orders of magnitude) the 
run time of the calculations in comparison with stanclard 
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FIG. 1 .  Shape of the laser pulse as it enters the medium. 

methods for solving problems of the given type,'.* but also to 
significantly broaden the region of permissible values of the 
parameters. Moreover, the numerical modeling in Refs. 1 and 
8 was performed on powerful Cray computers, whereas the 
calculations in the present paper were carried out on a PC 
DX2-486. 

4. NUMERICAL RESULTS 

A. Pulse propagation in an absorbing medium 

Here we will present results of our calculations of the 
evolution of a laser pulse of duration 2t,=0.1 ns and inten- 
sity 1=0.64 w/cm2, entering the medium with the shape 
shown in Fig. 1. Figures 2-7 present the results of two- 
dimensional (with one transverse coordinate) calculations of 
the modification of the space-time and frequency-angular 
characteristics of the laser pulse as it propagates along the z 
axis in absorbing media [initial conditions (13a)l with reso- 
nant particle density N =  1.7. loL4 cm-3 for two symmetric 
laser detunings A = -+ 48 GHz and with the lower density 
N =  4.1 . 1013 cmP3 at exact resonance A = 0, which is asso- 
ciated with significantly larger absorption in this case. The 
atomic transition parameters in the calculations were taken to 
be those of the 0 2  line of sodium (A=588.995 nm), 
y2= 5 y, = 5 y ( y is the radiative relaxation rate). The choice 

I ,  arb. units 

8.01 

of a relatively short pulse was determined by the limitations 
of the computer, on which a reasonable calculation time was 
determined by the condition Vt,< lo3. 

The calculations of the space-time evolution of the laser 
pulse (see Figs. 2 and 3) show that in the initial stage of 
propagation in a resonant medium the pulse breaks up into 
2~-pulses, resulting in the formation of several regular 
large-scale solitons. Note that the formation of a multisoliton 
structure in the propagation of short pulses in a resonant 
medium is well known and associated with the phenomenon 
of self-induced transparency.2' 

We introduce, following Ref. 21, the dimensionless area 
of the pulse 

I a c t )  d r = 2 ~ n ,  (15) 

where Sl(t)=2V(t) is the Rabi frequency. For the given 
values of the pulse parameters and of the medium itself, n is 
approximately equal to 10. This value is in agreement with 
the results of calculations at the depth z=  0.75 cm (see Figs. 
2 and 3), where nine peaks are distinctly revealed along the 
axis of the pulse, independent of the sign of the detuning. 
Note that as the laser pulse propagates, it is observed to slow 
down, this being a characteristic property of 2~-pulses. Our 
results are in agreement with the calculations of Ref. 1, 
which were restricted to moderate depths. 

In the present calculations we have succeeded in tracing 
the space-time evolution of the shape of the pulse to a sig- 
nificantly later stage. It is found that as the pulse propagates 
into the resonant medium, the large-scale regular soliton 
structure gradually washes out and is replaced by numerous 
small-scale formations (see Fig. 2, z=  3 cm and Fig. 4). It is 
particularly important that, as can be seen from Figs. 2 and 4 
(see also Figs. 5-7), at large depths the small-scale instabil- 
ity (filament formation) is observed not only at h<O, but 
contrary to the generally accepted degenerate instability 
model of ~ e s ~ a l o v - ~ a l a n o v ~ ~  (a partial case of which for a 
resonant medium is the Javan-Kelley instability23) also for 
A>O, which confirms the conclusions of the theory devel- 
oped in Ref. 3 and is in line with the experimental observa- 
tion of this effect in Refs. 4 and 5. Linear analysis3-5 shows 
that this instability is due to NFWM. 

The spectral-angular structure of the scattered laser 
beam, obtained by taking the Fourier transform of its space- 

r, arb. units ! 

I,. 
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FIG. 3. Modification of the space-time structure of a laser pulse as it propa- 
gates in a resonant medium for A = ? 48 GHz, (other parameters as in Fig. 
2). 

time structure, is shown in Figs. 5-7. It follows from Fig. 5 
that for detuning A < 0  the spectral-angular characteristics 
of the laser beam undergo substantial modification even at 
z = 0.75 cm, as evidenced by the significant spatial and fre- 
quency broadening of the spectrum of the exciting laser ra- 
diation, and also by the appearance of two scattering compo- 
nents frequency-shifted relative to w~ . Note that in this case 
the red component has a broad angular distribution, whereas 
the blue propagates along the axis of the laser beam, and 
what is important, agrees with the experimental results (see, 
e.g., Refs. 24 and 25). Next, it is clear from Fig. 5 that as the 
laser beam continues its advance into the medium the red 
component forms the conical emission, whereas the laser line 
and the blue component overlap, forming a single line broad- 
ened both in frequency and in angle (see Fig. 5 ,  z=3 cm. 
Here it should be noted that both shifted scattering compo- 
nents were previously observed experimentally24 at moderate 
density N- 1 0 ' ~  cm- ' and short resonant rrietlium. At the 

I. arb. units 
8.04 

arb. units 

6.0 

FIG. 4. Modification of the space-time structure of a laser pulse as it propa- 
gates in a resonant medium for A = t 48 GHz, (other parameters as in Fig. 
2). 

same time, the absence in the scattering spectrum of a spec- 
trally distinct blue component at higher densities of the me- 
dium corresponding to significantly longer interaction 
lengths (as has in fact been experimentally observed in a 
number of was the reason given in Ref. 28 for 
considering the Cherenkov effect (which does not require, as 
does NFWM, that the Manley-Rowe relations hold) as a 
possible reason for the appearance of conical emission for 
A <O. For a more concrete comparison of the calculated re- 
sults with the experimental data, Fig. 8 shows spectra, which 
we measured under interaction conditions close to those cal- 
culated, of the radiation scattered at different angles in a 
resonant medium of sodium vapor for w,> w,, , where 
o,, is the frequency of the resonant 0 2  sodium line. (A 
detailed description of the measurement technique can be 
found in Refs. 4 and 5.) Comparison of the data presented in 
Fig. 5 ( z = 3  cm) and 8 shows that at large depths the nu- 
merical model provides a good qualitative description of all 
the experimentally observed behavior. 

As has already been rnentionetl, the numerical analysis 
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of the laser beam propagation instability relates to the short 
pulse regime (t,+ yiL , yi'). On the other hand, in our 
experiments and in the overwhelming majority of other ex- 
perimental studies the pulse satisfied the condition 
- 

y ,  '~r,,-- y,' , for which reason comparison with the ex- 
perimental data can give cause for objection. However, ex- 
perimental data are also known which correspond to the 
short pulse regime which we and which show 
that all of the main regularities present in the propagation of 
long pulses are also manifested in this case. This confirms 
the assertion that the fundamental mechanisms leading to the 
spectral-angular instability of laser radiation are identical for 
both short and long pulses (and even continuous radia- 
ti or^'.^'). 

Calculations carried out for A >0  (Fig. 6) show that the 
scattering picture as a whole is analogous to the case A<O. 

FIG. 5. Modification of the frequency- 
angular structure of a laser pulse as it pmpa- 
gates in a resonant medium for 
A = - 48 GHz (other parameters as in Fig. 
2). 

Specifically, in the initial stage of pulse propagation a red as 
well as a blue scattering component appears, both broaden- 
ing in frequency and spatially with increasing z. Note that at 
large depths z for both A < 0 and A > 0 the spectrum of the 
laser radiation turns out to be preferentially frequency- 
broadened toward the side opposite the resonance, which is 
in agreement with e ~ ~ e r i m e n t . ~ , ~ . ~ ~  However, in contrast to 
the case A < 0, for low-frequency laser detunings the rescat- 
tered radiation has a broader and less contrasted angular dis- 
tribution and a somewhat narrower spectral composition (see 
Figs. 5 and 6 ,  z= 3 cm), which also is in agreement with the 
experimental data" Under conditions of exact resonance the 
instability is somewhat less pronounced due to the large ab- 
sorption even at lower densities (see Fig. 7), but its spectral- 
angular characteristics are moclified just as much with propa- 
gation of the pulse as in the presence of significant detuning. 
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FIG. 6. Modification of the frequency- 
angular structure of  a laser pulse as it propa- 
gates in a resonant medium for 
A = 48 GHz(other parameters as in Fig. 2). 

Note that both for A < 0 and for A > 0 the spectral widths of 
the individual components narrow down with increasing 
scattering angle, as was indicated in the linear analysis and 
was observed experimentally.495 

Time-integration of the spatial profiles of the scattered 
laser beam at large depth z = 3 cm show (Fig. 8) that for both 
A < 0 and A > 0 several rings are formed in the cross section 
of the laser beam, which was also observed in our experi- 
ments (see Fig. 9 for the case w,,>w,,). The multiring 
structure was observed in Refs. 4, 5,  and 25 for wL< w,, . 
Note that spatial self-modulation of the laser beam due to its 
transverse inhomogeneity affects the formation of the large- 
scale ring structure, as has been indicated for spectrally de- 
generate radiation in many papers (see, e.g., Refs. 32 and 
33). In our calculations the regular transverse structure is 
clearly visible at small z (see Figs. 2 and 3). However, the 
complicated frequency-angular structure arising at large 

depths (which is especially well pronounced in experiments 
with blue detuning and which has acquired the name "coni- 
cal emission" in the literature) is a consequence of the su- 
perposition of two primary effects: spatial self-modulation 
and the nondegenerate four-wave instability, whereby the lat- 
ter gives rise to breakup into small-scale filaments even for a 
smooth pulse. 

The calculations presented in Figs. 1-7 do not take ac- 
count of any trigger noise fields in the system of equations, 
i.e., the coefficients A ,  are set equal to zero in boundary 
condition (14). In this regard it should be noted that, as was 
shown in Ref. I, for spectrally nontlegenerate modes w 
f w,, to appear in the interaction of the laser pulse with the 
medium noise tields need not be present, since trigger rdia- 
tion in the modes whose frequencies are shifted relative to 
the laser frequency arises intlependently. thanks to self- 
nlodulation of the initial pulse upon entrance to the niedii~ni. 
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However, for a more detailed check of the influence of spon- 
taneous sources [the last term in expression (l)], we carried 
out calculations with trigger noise fields with frequencies 
lying near the presumed maxima of the resonant fluorescence 
spectrum, and with intensities I,--A,A,T reaching 0.0 1 lo. 
As the results of these calculations show, such noise fields 
have no substantial effect on the overall scattering pattern in 
the developed instability regime. 

B. Pulse propagation in an amplifying medium 

As was already mentioned, in addition to propagation of 
a laser pulse in an absorbing resonant medium, we have also 
investigated the stability of the passage of a pulse in an in- 
verted amplifying medium, i.e., in a medium in which the 
initial conditions correspontl to Eq. ( 13b). We carried out 
n~odel calculations under exact resonance conditions for the 

FIG. 7. Modification of the frequency- 
angular structure of a laser pulse as it propa- 
gates in a resonant medium (interaction pa- 
rameters as in Fig. 2). 

FIG. 8 .  Tmnsvcrsc distribt~tion or the laser pulse as it enters the nicdiuni 
( C L I ~ V C  I) i~nd :IS it IC;IVCS it for A = 48 GHz (curve 2) and li>r A = -4% GHz 
(curve 3 ) .  The remaining interaction p;u.;lnictcrs are ;IS in Fig. 2. 
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FIG. 9. Experimentally measured angular distribution of the exit radiation 
for the parameters as in Fig. 6. 

following dimensionless parameter values of the pulse and 
the medium: G =  15, @=0.01, M =  200, and r1,2=0.012, 
the results of which are presented in Figs. 11 -13. 

As the results of our calculations show, in the initial 
stage one observes the usual saturated amplification and dif- 
fraction broadening of the pulse. At the entrance to the me- 
dium the pulse has low energy and n 4  1,  where the quantity 
n is defined by relation (15). In the saturated amplification 
regime, n grows as the pulse propagates (n-z1I2) and after 
sufficient amplification, when n becomes greater than unity, 
the pulse breaks up, as in an absorbing medium, into solitons 
(see Fig. 11, l= 0.1). As the pulse continues to propagate, a 
small-scale nondegenerate pulse instability appears (see Figs. 

-800 4 0 0  -400 -200 0 200 400 
v.  GHz 

FIG. 10. Experimentally measured characteristics of the spectral distribution 
of the exit radiation, observing along the axis of the exiting beam (curve I) 
and at an angle of O= 50 mrad to it (curve 2). The laser pulse as it entered 
the medium was detuned by A v =  80 GHz toward the blue from the 0 2  line 
of sodium and had an intensity of I =  4 M W I C ~ ~ .  The sodium vapor density 
was N=4. loi4 ~ m - ~ .  

11 and 12). In the presence of a spectral-angular instability 
in the propagation of a monochromatic wave in a resonant 
amplifying medium, our calculated results back up our esti- 
mates using NFWM In the stationary case the 

I .  arb. units 

I. arb. units 
60, 

I .  arb. units 
1.5 J 1 

FIG. 11. Results of a calculation of the 
propagation of a laser pulse in an ampli- 
fying medium under conditions of exact 
resonance for C = 15, @ = 0.01, 
M = 2 0 0 ,  and r,,,=0.012. For ( = 0  the 
scale of the intensity was increased by a 
factor of 40 relative to its value for 
C=0.1 and 0.7. 
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FIG. 12. Modification of the frequency- 
angular structure of a pulse propagating in 
an amplifying medium. The parameters are 
as in Fig. 11. 

growth rate of the instability is proportional to while it I .  arb. units 
is well known that the gain coefficient of the medium is 
proportional to I-' at saturation. One can expect this effect 
to occur also under nonstationary conditions. This means that yOO 
small-scale perturbations will be amplified faster than the 
pulse as a whole, which can lead to substantial deterioration 
of the main characteristics of the laser pulse: its divergence, 
linewidth, etc. A substantial difference between the instabil- 
ity of a laser pulse in an amplifying medium from its insta- 400 
bility in an absorbing medium is the constant growth of the 
radiation intensity. This leads to the result that despite large 
linear growth rates, the instability develops more slowly in 
an amplifying medium, since a significant change in the pa- 0 
rameters of the laser pulse as it propagates signiticantly -2.5 - 1  .5 -0.5 0.5 1.5 2.5 
changes the spectral characteristics of the parametric pro- < 
cesses and renders the conditions of wave synchronism non- FIG. 13. ~r;lllsverse distribution laser pl,lsc propagating i n  an anlplib. 
optimal. ing nicdium i ~ t  a dcpth of c- 0.7 Sor rhc satiic p:uamctcr valucs 21s in Fig. I I .  
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Integrating the spatial profiles of the amplified laser 
beam over time shows (see Fig. 13) that a multiring structure 
is also formed in the transverse distribution of the laser 
pulse. However, in contrast to the case of an absorbing me- 
dium, its contrast is substantially less. Note that formation of 
a ring structure was predicted in Ref. 34 for the degenerate 
stationary case of amplification of a Gaussian beam. 

The calculated instability can manifest itself in laser am- 
plifiers with large gain coefficients. Note that the small- 
scale instability frequently observed in experiments in neo- 
dymium-glass amplifiers may be substantial due to the reso- 
nance contribution n2 to the nonlinear addition to the refrac- 
tive index, whose magnitude can reach 85% (see, e.g., Ref. 
35). 

5. CONCLUSION 

Our numerical calculations have established that intense 
short pulses propagating in a resonant medium undergo a 
spectral-angular instability for either sign of the resonance 
detuning. We have shown here for the first time that a model 
based on the Maxwell-Bloch system of equations without 
any additional or alternative mechanisms is sufficient to de- 
scribe the developed stage of this instability. Note that ex- 
perimental data are available which correspond to the fully 
developed instability regime and can be described by this 
model. Qualitatively, the results observed in experiment for 
A S  0 find completely satisfactory confirmation within the 
framework of the proposed model. 

Model calculations have been performed which describe 
the propagation of a short pulse in an amplifying medium. 
We have found that a substantially amplified pulse breaks 
down into soliton formations and experiences a spectral- 
angular instability. The proposed model can be used to ana- 
lyze laser systems working in the amplification regime. 

Finally, a numerical software package has been devel- 
oped to solve the Maxwell-Bloch system of equations that 
allows one to efficiently solve problems of the given type, 
including three-dimensional problems if a sufficiently pow- 
erful computer is available. 
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