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A new type of spontaneous transition is considered, the spontaneous transition of polarization (or 
the off-diagonal element of the density matrix or the dipole moment or the optical coherence), 
similar to the spontaneous transitions of particles and magnetic coherence. The example of a close 
doublet is used to analyze the role of a spontaneous polarization cascade in forming the 
spectra of absorption, refraction, and spontaneous emission. The spontaneous polarization 
transition is found to provide an interference contribution to the spectrum similar to nonlinear 
interference effects. The spectral and amplitude properties of the doublet are established. 
Finally, the possibility of gain without population inversion at the expense of the energy of the 
medium is demonstrated. O 1995 American Institute of Physics. 

1. INTRODUCTION 2. THE MAIN RELATIONSHIPS 

Spontaneous radiative processes can be broken down 
into three types. First, we have the spontaneous transitions of 
atoms (particles) from one stationary state to another, or 
what is known as Bohr transitions (see, e.g., Ref. 1). Transi- 
tions of the second type consist in the transfer to a lower 
level of the coherence (correlation) between the magnetic 
levels of an upper In Ref. 7 the present author 
pointed out the existence of spontaneous radiative transitions 
of a third type, the transfer of polarization (or the dipole 
moment or the optical coherence) from one transition to an- 
other. 

In all three types the transitions occur downward, i.e., 
from a state with a higher energy to a state with a lower 
energy. In other words, spontaneous transitions are of the 
cascade category, in contrast to similar collisional processes, 
which may occur in both directions, upward and downward. 

Despite the cascade nature, only spontaneous transitions 
of the first type are accompanied by an increase in the energy 
of the electromagnetic field: the intensity of spontaneous 
emission related to Bohr transitions is given by the well- 
known relationship 

We start with the kinetic equation for the one-particle 
density matrix in the JM-representation (see, e.g., Refs. 4 
and 5): 

The labels m and n number the stationary states. The second 
and third terms on the right-hand side of Eq. (2.1) describe 
the contributions of collisions S,,(MMr) and the external 
field to the element pm,(MM1) of the density matrix. At this 
point we are interested in the radiative relaxation matrix 
R  = - R(' )+  R ( ~ ) ,  which consists of the outgoing term 
- R ( ' )  and the incoming term R ( ~ ) .  It is the latter that de- 
scribes spontaneous cascades of polarizations from the m - 
n to the m -n transitions: 

where w,,,,, and A,,,, are the Bohr frequency and the first 
Einstein coefficient for the nt-n transition, and N,, is the 
population of the upper level rn. By themselves transitions of 
the second and third types do not give rise to photon emis- 
sion; they affect only the shape of the emission spectrum and 
do not change the total emission intensity. In other words, 
transitions of the second and third types determine the inter- 
ference effects in the emission, absorption, and scattering 
spectra. 

The main goal of this paper is to analyze the interference 
phenomena related to a spontaneous cascade of polarization. 

Here T i  and Ji are the rate of spontaneous decay and the total 
angular momentum of the i state; i ,  M, M I ,  etc. are the 
corresponding magnetic numbers, and (. . - .) is a vector 
addition coefficient. According to (2.3), the polarization 
pfal  I (M I M ;) in the m -n I transitions can generate the po- 
larization p,,,,(MMf) on the rn-n transition if the Einstein 
coefficients A,, I,, and AIII,, are nonzero. In Fig. 1 this pro- 
cess is depicted symbolically by the two dashed arrows. 

The transfer coefficient A (rnMttM1lm I M n M I) re- 
sults from the interaction of each field oscillator with the two 
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FIG. 1 .  A system of four optically coupled levels. The dashed arrows depict 
polarization transfer. 

transitions, m -m and n -n, of the atom, i.e., it reflects the 
interference of these transitions. The geometric mean of the 
Einstein coefficients AmIm and AnIn emphasizes the interfer- 
ence nature of the polarization transfer m -n -+m -n. This 
is also shown by the fact that the transfer coefficient can be 
either positive or negative. 

Equation (2.3) can be considered the most general. The 
rates of spontaneous cascades of the first and second types 
can be obtained from it as particular cases. If we put 
m , = n and rn = n, we arrive at the following formula for the 
magnetic coherence transfer rn M I M 4 m MM ' (see Refs. 
2-6): 

The transfer of populations of magnetic sublevels is de- 
scribed by Eq. (2.4) if in it we put M = M' and MI  = M i  : 

In contrast to (2.3) and (2.4), the transfer coefficients in (2.5) 
are positive, as they should be. 

In the linear approximation (in field intensity) it is con- 
venient to deal with what has become known as the 
~q-representation of the density matrix, which is defined by 
the following relationships: 

The incoming term R~;:(K~) in the ~q-representation has 
the form 

R';;(K~)= C ~ ( m n l m l n l  .K)P, , , ,~(K~) ,  
Ill , I1 1 

~ ( m n l m ~ n ~  ,K)= ,/- ( -  (2.8) 

Obviously, this term is diagonal in ~q and A (mn lm ,n , , K) is 
independent of q because the field oscillators responsible for 
the spontaneous transitions are isotropic. For K = 1, the most 
important case in linear spectroscopy, an additional symme- 
try property emerges: 

Thus, K proves to be symmetric with respect to interchange 
of the levels, m-nl, or else the rates of the polarization 
cascades m,-nl+m-n and m,-m+nl-n are linked by a 
simple relationship. 

The rates of transfer of magnetic coherence of rank K 

and population ( K  = 0) corresponding to Eqs. (2.4) and (2.5) 
can be found from (2.8): 

A(mmlmlml ,K)=A,~,(- 1)Jml+Jm+1+K(2~m1+ 1) 

which agrees with the results obtained in Refs. 2-6. 
Note that for the spontaneous coherence transfer 

m -n , -+m -n the transitions rn -m and n -n must be op- 
tically allowed (Aml, # 0 and A,, 0). On the other hand, 
the ml -n, and ni-n transitions may be either allowed or 
forbidden. The transfer relationships (2.3) and (2.8) are valid 
irrespective of the mechanism of formation of the transferred 
coherence in the m , -n , transition, the one important thing 
being that p,, Il l  I f 0. If the nz , -n, transition is optically al- 

lowed, pl,l,l,l can be generated by a one-photon process. For 
a forbidden transition p,,, can be generated by multiphoton 
processes. An example of transfer of coherence of an opti- 
cally forbidden transition is the transfer of magnetic coher- 
ence (the ni , M I  -ni M I transition is optically forbidden). 

Generally speaking, it is clear ci priori that polarization 
transfer (e.g., nr -a l  --t nl -n: see Fig. I )  is effective if the 
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Bohr frequencies w,,,l,,l and w ,,,,, differ little. The largest 
possible effect should be expected when the following con- 
ditions are met: 

However, even for larger values of a spontaneous polar- 
ization cascade may be noticeable. 

3. THE STRUCTURE OF SPECTRAL DOUBLETS 

Let us take a system of four levels m l  ,n I ,m, and n (Fig. 
1) in which the m -n , m -n, m -m , and n , -n transitions 
are allowed. If we assume that each state evolves indepen- 
dently, the emission or absorption spectrum of such a system 
consists of four single lines with the central frequencies 
om, , Urnlnl, omlm , and w n l n .  Suppose that these lines are 
pairwise coincident or almost coincident and the frequency 
differences 

are fairly small, i.e., the spectrum of the system consists of 
two close doublets. We want to establish how a spontaneous 
coherence cascade changes the profiles of these doublets. 

We assume that the simplest conditions are met: isotro- 
pic excitation, absence of collisions, the dipole nature of the 
interaction V with the field,'.475 and a weak monochromatic 
field of frequency o ,  which has a negligible effect on level 
population. In the linear approximation it is convenient to 
use the ~q-representation (2.6) and (2.7), in which the equa- 
tions for the desired elements p i j ( ~ q )  of the density matrix 
assume the form 

where we have introduced the notation 

Here dl,,, is the reduced matrix element of the dipole mo- 
ment for the m-n transition, and E ,  is the circular compo- 
nent of the field. The quantities N i j  are the differences in the 
populations of the magnetic sublevels of the states i and j. 
Spontaneous population cascades are included in the N i i .  

By combining (3.2) and (33) we find the absorbed field 
power P (the work done by the field per unit time): 

According to this expression, the absorption spectrum 
contains two standard Lorentzian lines with central frequen- 
cies fl=0 and n=A, which corresponds to the doublet 
om, ,flmlnl, and an additional tern caused by the polariza- 
tion cascade. This last term is proportional to N n I m ,  and is 
independent of the population difference Nn, . This fact em- 
phasizes the cascade origin of the third term in P. 

Above, the process of a spontaneous polarization cas- 
cade was closely linked with the interference of the m l  -m 
and n -n channels, which is reflected in the structure of the 
coefficient ~ ( m n l m  ,n,;l) [Eq. (2.8)]. The cascade term in 
(3.6) exhibits another type of interference, that of the m l  
- n , and m - n channels, indicated by the product of matrix 
elements G:GIq and the Lorentzian profiles. It is this inter- 
ference process that leads to a situation in which the integral 
of the cascade term with respect to o is zero (which is easy 
to prove). Thus, the cascade term in (3.6) can be said to be a 
"double-interference term." 

We employ the well-known relationship between the re- 
duced matrix elements dij  and the Einstein coefficients Aij  
(see Ref. l), 

to transform (3.6) in the following manner: 

1 1  1 

f(o)=Re ( r -  in)[l., -i(Q- A)] 

The quantity a (Q)  is the absorption coefficient 
(cm-I). Equation (3.8) contains the usucll factors N i j ~ j i ,  
typical of absorption coefficients in single lines. One is also 
struck by the presence in the cascade tern1 of a ~-em;~rkable 
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TABLE 1. Values of K .  

J,,, , J , , ,  J ,,, J ,I K 

J  J +  I J +  l J + 2  I 
J  J J  J  I - l / J ( J +  I )  
J  J  J +  I J +  I dl - l / ( J +  I ) ~  

J +  I J  J + 2  J +  1 ,/I - 4 / ( 2 ~ + 3 ) ~  
J  J  J  J +  I I l ( J +  1 )  

J t  1 J +  I J +  1 J  - l / ( J +  I )  
J  J  J +  1 J  - \ / ~ J + ( J +  1)JiKi 

J +  I J +  1 J  J +  I \ j 2 J i ( ~ +  I ) =  
J  J +  I J +  1 J  I l (J+  1 ) ( 2 J +  1 )  

J +  I J  J  J +  1 I l ( J +  1 ) ( 2 J + 3 )  

and unique combination of four Einstein coefficients A2, 
which clearly indicates the double interference that occurs in 
the formation of this spectral structure. 

The factor K is the result of a complex interplay of vari- 
ous M-channels and their interference. Bearing in mind the 
symmetry properties of K and the properties of the 6 j -  
symbols [see Eq. (2.9)], we arrive at the following conclu- 
sions. It appears that K can assume either positive or nega- 
tive values. with 

There are 10 possible combinations of J m l ,  J , , ,  J , ,  and 
J ,  that yield different algebraic expressions for K. These are 
listed in Table I, which shows, among other things, that the 
cases K = 1 and K = - 1 also exist. There is a combination 
( J ,  J  + 1, J  + 1 ,  J  + 2 )  which yields K = 1 for any value of 
J .  As J  grows, the value of K approaches either 1 or 0; the 
sequence of the particular cases in Table I is constructed 
according to this tendency. Note that K= 0 holds either in the 
limit J + a  or by selection rules (the later case is not in- 
cluded in Table I). Thus, the interference of transitions for 
finite values of J  never yields exactly zero. 

Let us now examine the spectral properties of the cas- 
cade term, which are specified by the function f(R). At 
A=O and R=O we have f =  1, which yields 

Thus, if the Bohr frequencies of two transitions, w,,,l,,l and 
w,,,,, , accidentally coincide, all three terms in the expression 
for cu(bl) are of the same order of magnitude. This is also 
true when 1 A( 5 I', I' I . Earlier we noted that a polarization 
cascade alters the relative contribution to a(R)  of precisely 
the "upper" transition (by a quantity of order 
A ~ I A ~ , , ~ , , ~ ~ -  I ). 

When A=O holds. we have 

FIG. 2. The graphs of the function f ( f l ) :  curve 1, A=0;  curve 2, A=3R 
and curve 3, A=T. The scale of curve 3 along the vertical axis is increased 
by a factor Air-fold. 

The function f(R) has a peak near the point Q=0, vanishes 
at = f: a, and for large values of IRI becomes negative 
(curve I in Fig. 2). A simple calculation shows that at the 
minimum points 1 f ( a )  =Z 118 1 holds. 

Now suppose that A#O. In an interval of values of (A( of 
order several halfwidths I? and T, , the function f(R) exhib- 
its a broad maximum in the interval O<R<A and retains 
negative "wings" (curve 2 in Fig. 2). When lAl/T and 
(A(lI'l are fairly large, a minimum appears at the center of 
the doublet (R=A/2), and in the vicinity of the points 
R =  0 and 0 = A a structure shaped like dispersion curves is 
formed (curve 3 in Fig. 2): 

We see that for / A [  B T,  F ,  at points R = + T  and 
R - A = + T ,  we have If~=Tl/21A1, r121A1, while at the 
center of the doublet f is of second order in the small param- 
eter ( I T ,  lb2) .  

In some problems (e.g., in calculating absorption in so- 
called transparency windows) the behavior of f(R) in the 
extreme limbs, i.e., for Ill1 91 A[,  is of interest. In such con- 
ditions Eq. (3.8) yields 

Hence in the extreme limbs the splitting of the doublet plays 
no role, which is quite natural. However, the cascade effect 
does not disappear and the contributions to cu(bI) of the cas- 
cade and population terms are of the same order of niagni- 
tude, which was also the case when the splitting is small. 
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The results of analysis of the function f ( R )  and the 
well-known properties of "pure" Lorentzian contours in Eq. 
(3.8) for a ( R )  lead us to the following conclusion. When the 
splitting is large (IAlBr,  r ,), the components of the dou- 
blet are well-resolved, and polarization cascades cause a 
slight shift of their peaks and a small asymmetry. If we have 
K>O, the components of the doublets shift toward one an- 
other, i.e., the cascade effect "attracts" components. When 
we have K<O, the components "repel" each other. When 
1A1 decreases to a magnitude on the order of a few halfwidth 
r and r ,  , these manifestations of the polarization cascade 
are retained: the resolution of the doublet increases for K<O 
and decreases for K >O. In the limit 1 A 1 G r , r , the case 
K>O means that the central peak of the line becomes 
sharper. But if K<O holds, in certain conditions a minimum 
may be retained at point R=0. Indeed, it is easy to show that 
under the conditions 

we have d2a ldR2 > 0 at the point R=0. More than that, if 
the condition is more stringent, namely 

a(R) is negative near the center of the line. 
These tendencies are illustrated by Fig. 3, which gives a 

(in arbitrary units) as a function of R for A=O and r = T . 
In this case 

At this point it is proper to mention the role of the am- 
plitude parameter (= Nn lmlAm / N n m ~ m n  : the higher its 
value the greater the relative role of a polarization cascade 
[see, e.g., Eqs. (3.17)-(3.19)]. The same is true of the region 
IflI-r in the limit Ihl~r. Here 

and the large value of 5 can compensate for the smallness of 
1'1 1 A1 , so that the cascade term proves to be the leading one. 

Negative absorption may exist not only at the center but 
also in the extreme limbs of the line. Equation (3.16) implies 
that for ]It]] B] A1 we have a < O  if 

Note that in the inequalities (3.18) and (3.21) both N,,,,, 
and N,,I,,,I are assumed positive, i.e., on both transitions, 

FIG. 3. The absorption coefficient curves according to Eq. (3.19) (arbitrary 
units) at T= T I and A=O for different values of the parameter q:  curve I ,  
q=1/2; curve 2, q=O; curve 3, TJ=- 112, curve 4, TJ=-1; and curve 5, 
q= - 514. 

m-n and m ,  -nl , the populations are not inverted. Thus, a 
polarization cascade may ensure radiation gain without 
population inversion. 

The possibility of amplifying an electromagnetic field 
without population inversion is a characteristic feature of 
nonlinear interference effects. According to general theo- 
rems? the integrated (over o) contribution of nonlinear in- 
terference effects to the absorption spectrum is zero. Hence 
in some segments of the frequency scale this contribution is 
positive, while in others the contribution is necessarily nega- 
tive. If in the latter frequency intervals the nonlinear inter- 
ference contribution proves to be greater than the contribu- 
tion of population effects, the net reaction of the medium is 
reduced to amplifying the field. 

Gain without inversion was predicted in Ref. 8, was ob- 
served experimentally by Bonch-Bruevich et a/.? and lately 
has attracted much attention (see, e.g., the review by 
Agap'ev et al.)1° All these numerous studies consider the 
amplification of a wave E l  when the medium is simulta- 
neously subjected to another laser or microwave field E2 .  
The increase in the energy of wave E I ,  or its gain, can occur 
only at the expense of the energy of wave E2.  In this respect, 
in relation to the source of energy for amplification, gain 
without inversion is similar to lasing with multiple, differ- 
ence, and sum frequencies. 

In our problem an atom interacts with a monochromatic 
field. The interference effect is caused by a spontaneous cas- 
cade transition of polarization p ,,,,,, +p,,,,, , which occurs, as 
it were, all by itself; more exactly, the zero-point vibrations 
of the field oscillators act as the second external wave. In this 
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sense a polarization cascade nlay be considered the simplest 
nonlinear interference effect possible. The nonlinear nature 
of this interference effect can be judged from Eqs. (3.6) and 
(2.8), according to which the amplitude of the interference 
term contains the combination G: G ,,\I- propor- 
tional to the intensity of the external field, (G:G ,,) , and the 
intensity of the zero-point vibrations of the field oscillators, 

(\I-). 
A natural question arises about the source of energy re- 

quired for amplifying the external field. Since zero-point vi- 
brations cannot supply the energy, it is obvious in general 
that the field is amplified at the expense of the energy of the 
medium. The paradox is that according to ordinary ideas a 
medium can give its energy to a field only in the presence of 
population inversion, while in our case the populations are 
not inverted. 

First we note that the interaction of the levels m M I  and 
n M  of the "upper transition" m , -n , and the external field 
does not depend on whether there are levels mM and 
nM' . Hence the transition m , -)I will absorb the field as in 
a simple two-level system with N ,  > 0 , and atoms will go 
from level n ,  to level m Hence if there is amplification of 
the field, it is related to the levels rn M  and n M' . 

Equation (3.6) gives the work done by the external field 
( G 1 , G l , )  on the current ( i p m , , i p m l , , )  induced by that 
field. If the induced current is in phase with the "driving 
force," there is absorption. But if the phase difference be- 
tween field and current is changed by m, absorption changes 
to gain. Equations (3.2) and (3.3) imply that 

The first term on the right-hand side yields the in-phase com- 
ponent of the current. The transport coefficient 
A(mnlm , n ,  , l ) l ( T  - i l l )  in the second term is complex- 
valued and may contain various phase shifts. If 
A(mnlm ,1) >O holds, then for A=O and small fl the sec- 
ond term also describes in-phase current, which corresponds 
to absorption. However, for 1511 > 1 A 1 the phase of the second 
term changes by m, which means that it provides a negative 
contribution to P, i.e., induces m 4 n  transitions of atoms 
notwithstanding the absence of population inversion. If 
A (ninlrn n , , I )  is negative, the second term is in phase in the 
limbs and in antiphase at the center of the doublet. 

Thus, gain is possible if the contribution of the interfer- 
ence term to P is fairly large. In accordance with what we 
have said earlier, the energy needed to amplify the field is 
taken here from the medium at the expense of the 
m M + n M 1  transitions, which prevail over inverse transi- 
tions notwithstanding the absence of population inversion. 

The above analysis prompts the following interesting 
general conclusion: gain without population inversion be- 
cause of nonlinear interference niay occur, in the presence of 

a second external field (E , ) ,  not only at the expense of the 
energy of this field but also at the expense of the energy of 
the medium. 

The absorption (emission) spectrum of a four-level sys- 
tem, rn n , , m, and n ,  contains two doublets with central 
frequencies o n I l , , ,  ,a ,,,, and onlln, ,will, and with the same 
splitting A [see Eq. (3.1)]. Phenomena similar to those con- 
sidered above for the vicinity of the on,,nl,o,,,ll doublet slso 
occur in the vicinity of the other doublet, on,,, ,on,,, : we 
need only substitute n ,  for m and nz for n ,  in all the expres- 
sions and interpret r and rl  as, respectively, the halfwidths 
rnl ,  and rmlm of the n l - n  and m, -m transitions [see the 
definitions of r and r I in Eqs. (3.2) and (3.3)]. Note that the 
factor K does not change its value under the substitution 
m ~ n , ,  i.e., it is the same for both doublets. The total ab- 
sorption spectrum is given by the sum of (3.8) and its analog 
with these substitutions. 

4. THE REFRACTIVE INDEX 

As is known, the imaginary part of the expression in 
braces in Eq. (3.6) is proportional to the contribution of the 
m -n and m ,-n transition to the refractive index, or the real 
part of the dielectric constant, S E ' ,  namely 

The first two terms in P(S1) are ordinary dispersion func- 
tions. The third, the interference term, is essentially new. If 
we have A=O, then q(Q) is an antisymmetric function of a ,  
as the dispersion terms are, but with extrema at the points 
I R I - J m  and with more rapidly decaying wings 
(RP3) .  Hence far from the doublet the cascade effect in 8' 
does not manifest itself, in contrast to E" or a(Q). If we 
have A#O and I '=T I ,  the function cp(R) is antisymmetric 
about to the point f2=A/2 (the middle of the doublet). If 
(A( r, T I  holds, then in the vicinity of the central frequen- 
cies of the double we have the following approximate ex- 
pressions: 
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According to these relationships, rp(lZ) has different signs 
near the points 0 = 0  and 61=A and is described by symmet- 
ric Lorentzian contours. 

The difference in the symmetry properties of the cascade 
and "ordinary" terms leads to more or less obvious depar- 
tures from the standard 0-dependence of 6~ ' , departures 
that become more obvious as /A1 decreases. 

5. DOPPLER BROADENING 

The Doppler effect caused by the thermal motion of at- 
oms can be taken into account if in the above formulas we 
make the substitution 

O+f l l=O-kv  (5.1) 

and average over the appropriate distribution of the atoms in 
the projections of velocities v on the wave vector k. We take 
the Maxwellian distribution 

where m and T are the mass of an atom and the temperature. 
It can be shown that 

where the function w(z) is related to the error integral of a 
complex-valued argument in the following manner:" 

(5.4) 

For r = T and A=O we have 

, , 
(5.5) 

Note the presence of the factor TT , l ( k ~ ) ~  in Eqs. (5.3) and 
(5.5), which means that when Doppler broadening is large, 
the interference effect is essentially suppressed. The reason 
for suppression is easily understood. When in the limit 
koz> I' we average an isolated Lorentzian contour, the latter 
is assumed proportional to a 6 function, 

and because of averaging the amplitude of the profile de- 
creases by a factor of Tlku. For an interference profile such 
reasoning is meaningless since its integrated intensity is zero. 
A more accurate calculation leads to the additional factor 
I ' l ku .  

FIG. 4. The graphs of the functions (a) (f(flf)& lo2) and (b) 
(v(~')),G lo2: curve I, A=O and T = k ~ l 1 0 = r l / 2 ;  curve 2, A=kli and 
r = r , = k l i l l O ;  curve 3, A = 3 k i  and T = r , = k i l l O ;  and curve 4, 
A  = S k i  and T =  T I  = kil lO.  The curves 3 and 4 are multiplied by three and 
five, respectively. 

In accordance with what has been said earlier, popula- 
tion effects are specified in order of magnitude by the factors 
~ ~ ~ ~ ~ ~ i k u ,  while the cascade effect is specified by the factor 
N ~ , , , A ~ I ( ~ u ) ~ ,  where A' is a quadratic function of the Ein- 
stein coefficients. Hence the interference term is further sup- 
pressed by Aijlkv ratio. 

The Doppler width is proportional to w, whereas Aij is 
proportional to w3. Hence cascade polarization effects play a 
greater role when the doublet frequencies differ considerably 
and w,,,% om,. 

Figure 4 depicts the results of calculating ( f )  and (q) 
for several values of the parameters A/T and T,  IT. Quali- 
tatively the curves have the same shape as in the case of 
immobile atoms, but here kv rather than r serves as the 
scale along the horizontal axis. 

As is well known, the not-too-distant limbs of Doppler- 
broadened lines are actually ~orentzian." Hence for 
I SZ 1 2 2 kv and I 0 - A 1 2 2 kv we can ignore Doppler broad- 
ening and use the results of Secs. 3 and 4 (for rough calcu- 
lations). For one thing, even in the near limbs the population 
and cascade terms are of the same order of magnitude, while 
the Doppler suppression manifests itself indirectly, because 
of the necessity of dealing with large values of Alku and 
0 lku .  

6. SPONTANEOUS EMISSION 

According to general rules, we can use the expression 
for the work P done by the field to calculate the spectral 
density of spontaneous emi~sion:~" in Eq. (3.6) we discard 
the populations of the lower levels ti, and n in the quantities 
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N,lIl lII  and N ,,,,, , normalize the matrix elements G ,  and 
G I ,  in the proper manner, and change the sign. As a result 
the spectral intensity density of spontaneous emission, 
/ ( a ) ,  is given by 

+ f i f ( n ) ] }  I-I- I 

The quantities 

are the total populations of the levels rn and rn, . 
Generally, the spectral properties of Z(R) obey the laws 

discussed above in connection with the absorption coefficient 
( ~ ( 0 ) .  The quantities a(f2) and I ( a )  differ because the 
population and interference terms enter Eqs. (3.6) and (6.1) 
in different proportions, fixed either by the population differ- 
ence or by the populations of the upper levels. For one thing, 
this leads to a situation in which I ( a )  is positive (as it 
should be), while a(Q) can also be negative (at the center of 
the line for K<O and in the limbs for K>O). Let us check 
whether [ ( a )  is indeed positive. 

An important fact here is that the rn,-rn transition is 
optically allowed. Hence in addition to the polarization cas- 
cade, which is explicitly present in Eq. (6.1), there is also the 
rn , -+ rn cascade of particles or populations. We can therefore 
write N, as 

where fi, is the part of the population of the level m not 
related to the rn -tm cascade and caused by other excitation 
mechanisms. As a result, 

ArnImAmnr AmInI r1  A ~ K  
(6.4) 

+ -f(Q>. *(')= r , ( r 2 + n 2 )  + rr, 
Clearly, the factor # ( a )  of NmI is positive. Suppose, for 
instance, that we have K>O and 101 + 1 A]. Then it follows 
that 

since the discriminant K~ - 4I'l' I II'l,lA,lI ,, of the quadratic 
trinomial (in the parameter A2/~'IA, l l , ,1)  is negative in view 
of the inequalities 

1 -  I -  - L ~ ( 1 7 1 1 1 , +  ~ ' l , , ) > ~ ~ 7 1 f ,  2 ~ A ~ ~ , ~ ~ ~  (6.6) 
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FIG. 5. The diagrams of spontaneous polarization cascades in triplets. 

But if K<O and A=O hold, then at the center of the line 
(n=O) we have 

in view of the same inequalities (6.6). 
Thus, because of a spontaneous polarization cascade in 

the spontaneous emission spectrum the doublet's compo- 
nents may change their shape, become asymmetric, and 
move together (K>O) or apart (K<O); "false splitting" as 
shown in Fig. 3 (curve 3) may also occur. 

7. DISCUSSION 

Our study has revealed several effects in the spectra of 
absorption (gain), refraction, and spontaneous emission 
caused by a spontaneous polarization cascade. When two 
lines with different excitation potentials accidentally coin- 
cide (exactly or approximately), the spontaneous polarization 
cascade introduces an interference component whose spectral 
properties differ considerably from those of ordinary, popu- 
lation, profiles. In certain conditions favorable for interfer- 
ence manifesting itself the shape of close doublets may 
change considerably: the doublet components become asym- 
metric, the distance between the components changes, false 
splitting, and even amplification instead of absorption with 
noninverted populations may occur. 

The system of four levels considered here (Fig. 1)  
is only one possible manifestation of a spontaneous polariza- 
tion cascade: we selected it for its relative simplicity. 
With this example the physics of the process can be 
studied more easily. Examples of complex systems are also 
obvious: a double sequential polarization cascade nz2 - n , 
+ni - n , + rn - n (Fig. 5 4 ,  a V-type double parallel cas- 
cade m2-n2+nz-n, nzl-n,-.nz-n (Fig. 5b), and a 
A-type double parallel cascade m , - n l + m - n ,  nz , -nl  
+m2-n2 (Fig. 5c). Here we are speaking of triplets of ac- 
cidentally coinciding lines and the exchange of polarization 
between them. Also there can be complications of another 
type, related, say, to the ideas and typical notions of nonlin- 
ear spectroscopy. 
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At present it is difficult to judge what applications the 
effects of polarization cascades will lead to. However, i t  can 
certainly be said that these effects must be taken into account 
in identifying spectral lines, in measuring the energies of 
stationary states, and in establishing oscillator strengths. 

An important result, we believe, is the broadening of the 
physical picture of spontaneous transitions and the role these 
transitions play in spectroscopy. In this connection it is 
proper to recall the role of other mechanisms by which po- 
larization is exchanged between various transitions. One 
mechanism is provided by collisions. Collisional polarization 
exchange or, as it is called, spectral exchange leads, for in- 
stance, to the collapse of inhomogeneously broadened spec- 
tral structures (for one thing, of the Q-branch of a 
rotational-vibrational ~ ~ e c t r u m ) " ~ ~ ' ~ , ~ ~  and to Dicke narrow- 
ing of Doppler-broadened ~ i n e s . ' ~ ~ ~ ~ . ' ~ . ' ~  In contrast to the 
spontaneous cascade mechanism, collisional exchange is re- 
ciprocal, i.e., the right-hand side of Eq. (3.2) is expected to 
contain a term proportional to the polarization p , , ( l q )  of 
the m -n transition. It is this reciprocal exchange that ensures 
the collapse of spectral structures. In addition to collisional 
stochastic exchange, there are many examples of dynamic 
exchange of polarizations due either to interaction with ex- 
ternal electromagnetic  field^^-^,'^ or to internal interactions 
(e.g., the Fermi resonance in the spectra of multiatomic mol- 
ecules). On the phenomenological level our case is special in 
two respects: the simplicity and universality of the mecha- 
nism of polarization transfer, and the cascade nature of the 
process. 

The above classification of spontaneous transitions into 
three types, the transitions of particles, magnetic coherence, 
and optical coherence (see Sec. l), allows for an obvious 
expansion: an arbitrary coherent superposition of stationary 
states may spontaneously transform into another coherent su- 
perposition. Actual realization of a spontaneous cascade co- 
herence transition of an arbitrary type with disintegration of 
coherence is, of course, associated with certain resonant con- 
ditions, specific for each case. These resonant conditions 

may be met only for a limited number of objects. Neverthe- 
less, the widespread belief that optical coherence is irrevers- 
ibly destroyed in spontaneous transitions cannot be consid- 
ered universal and has its limits of application. 
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