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A form of variational method for calculating the ground-state energy of a quantum system is 
considered. The method is based on a prescription for the systematic construction of a trial 
variational function at each step in the calculation of the ground-state energy; the prescription 
improves the previous result. In each step of the calculation, it is straightforward to obtain the new 
variational function. The method is tested in two nontrivial problems. Good agreement 
between the calculated ground-state energy and its exact value is found. The transformation of 
the wave function in the transition from one step of the calculation to the next is traced. 
It is shown that as the number of steps in the calculation increases the variational wave function 
reproduces with ever greater accuracy the characteristic features inherent in the exact wave 
function of the ground state. O 1995 American Institute of Physics. 

1. Variational methods are widely used to estimate the 
ground-state energy of quantum ~ystems."~ The main prob- 
lem in the calculation is to make the optimum choice of the 
trial variational function. Quite generally, this problem 
comes to the fore if there is a need to make calculations 
using a given variational function. In this connection, we 
have the practical problem of constructing a simple proce- 
dure for successive "improvement" of a trial function with 
the aim of obtaining a more accurate approximation to the 
ground-state energy of the system. As far as possible, this 
function must reproduce all the characteristic features of the 
exact wave function, for example, its asymptotic behavior, 
the presence or absence of periodicity, and the absence of 
nodes for the ground-state function. 

We consider one approach to estimating the energy and 

and (3) go over into the well-known Brillouin-Wigner 
perturbation-theory series. Each successive term of this se- 
ries is the term of next higher order in the perturbation V 
relative to the previous term. 

We can go over from the expressions (2) and (3) to the 
expressions 

constructing the wave function of the ground state of a sys- 
tem described by the Schrodinger equation 
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H q = E q ,  

where H is the Hamiltonian of the system, and q and E are A characteristic feature of these expressions is that their 

the wave function and energy eigenvalue. It is shown in Ref. terms contain the diagonal matrix elements Hpp . Therefore, 

3 that Eq. (1) can be formally solved exactly in the form except for the first, all the remaining terms of the series (4) 
for the energy contain expressions of second order in the 

HnmHmn perturbation,-gnd this makes it difficult to work with this 
E = H n n +  2 - 

m( + n )  E -  Hmm series. However, this series possesses one characteristic fea- 
ture. Using the property of completeness of the basis func- 

+ C HnmHmpHpn +..., (2) 
tions, we can express all terms of the series (4) as expecta- 

m ( + p n )  (E-Hmm)(E-HPP) tion values of the operators H ,  H2, H ~ ,  ..., corresponding to 
p(+nm) a particular state In). As a result, we have 

+ C HrnpHprt n l ) + ) ,  (3) where 
l ? l ( # l l )  (E-HflIflI)(E-Hpll~ 

/ I (  + I Z I I ~ )  € 1  =Htlrl 3 ~ 2 = ( ~ ~ ) n n - ~ n n ~ 1  3 

where H,,,, is the matrix element of the operator H on the 
states (m) and In) of some arbitrary complete orthonormal ~ ~ ~ ~ ~ 3 ~ 1 1 1 1 - ~ ~ 2 ~ 1 1 1 1 ~ ~ ~ ~ 1 1 1 1 ~ ~ ~ ~ ~ ~  

basis, and c,, is a normalization constant. If we take e , l = ( H ~ l ) l , l l - ( H 1 l ~ l ) , , l l ~ l  - ( ~ ~ ' - ~ ) , , ~ ~ e ~ -  ... 
H = H,+ V and as basis functions choose the eigenfunctions 
of the unperturbed Hamiltonian Ho, then the expressions (2) - H1lllell- I . (7) 
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The results (6)  and (7)  indicate that formally to determine the 
energy of the system it is sufficient to know only one func- 
tion in a complete set of orthonormal basis functions, for 
which, in particular, one can take the wave functions of the 
zeroth Hamiltonian. 

Similarly, taking into account the completeness property 
of the basis functions, we can formally express the wave 
function q (5)  in terms of just the one wave function In). 
More precisely, the function can be expressed in terms of 
the functions that are the results of applying the operators 
H ,  H ~ ,  H3,  ... to the basis function In). The coefficients of 
the given functions can be expressed in terms of the param- 
eters E,, (7).  This property of the wave function q (5) can be 
taken as the basis for constructing a variational scheme that 
makes it possible to improve successively a trial variational 
function during the course of the calculation. 

2. The wave function (5) is formally the exact solution of 
the Schrodinger equation ( 1 ) .  Suppose that as variational 
function we take the function (5),  having replaced in it the 
unknown energy E by corresponding variational parameters 
G p  : 

+ G I  C ~ m p ~ p ,  - .-Hfnlm),J - 
mpl  ...f ( + n )  

Retaining two variational parameters in the expression (8)  
we can obtain 

To determine the parameters G p ,  it is necessary to take 
into account the basic variational formula 

In the case k =  1 ,  i.e., when allowance is made for only one 
variational parameter in the function (8),  we obtain from (10) 

where the variational parameter G I  is determined from the 
equation 

2 2 G l ~ 2 - G I ( ~ 3 - ~ I ~ 2 ) - € 2 = 0 .  

Hence 

where it is necessary to choose the solution that, when sub- 
stituted in ( I  I), ensures fulfillment of the inequality E < e I .  
This inequality gives the simplest estimate of the energy in 
the variational scheme. 

To obtain a more accurate value of E, it is necessary to 
include in the calculation the second variational parameter 
G 2  in the function (8). In this case, 

and the parameters G I  and G 2  are determined by solving the 
system of equations 

The expressions (14), (15), and (16) solve the problem when 
two variational parameters are retained. Following this 
scheme, we can include in the calculation the following 
terms of the series (8) that determines the trial wave func- 
tion. Thus, we calculate both the energy of the ground state 
and its wave function in each stage of the calculation. 

3. As an example, we first of all consider the simple 
problem described by the Hamiltonian 

As basis functions, we take plane waves e ~ ~ ( i k x ) l ( 2 1 ) ~ ' ~  
normalized using the "volume" 21. We calculate the param- 
eters E, (7)  using the plane wave with wave vector k=O. 
This function is optimal from the point of view of the varia- 
tional procedure; it ensures the minimum value of e l .  As a 
result, we have e1=e2=2, e3= 12, e4=74, e5=492. Substitu- 
tion of these values in (13) gives GI=-0.224745. Thus, on 
the basis of the expression ( I  1 )  we have E = 1.5505 1 1 .  Tak- 
ing into account the second variational parameter in the wave 
function, we can obtain from Eqs. (15) and (16) the values 
GI=-0.3104911 and G2=1.382213.10-2, and in conjunc- 
tion with the expression (14) we then obtain E = 1.5448707. 
This last value agrees excellently with the exact value 
1.54486 ... (Ref. 4) of the ground-state energy eigenvalue cor- 
responding to the Hamiltonian (17). 

Using the calculated values of e l ,  e2, G I ,  and G 2  and 
taking into account the explicit form of the Hamiltonian (17), 
we can readily recover, on the basis of the expression (9), the 
explicit form of the trial wave functions corresponding to the 
calculations retaining one and two variational parameters: 

1 
* ( I ) =  1.650679 1 - (1 - 1.632995 cos2 x ) ,  (18) 

JjS7 
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FIG. 1. Variational wave functions: 1-the hnction of the zeroth approxi- 
mation; 2-the function (18) of the first approximation; 3-the function (19) 
of the second approximation. 

Plots of these "volume"-normalized functions together with 
the variational function *(O)= 1421) ' I 2  of zeroth order are 
shown in Fig. 1 .  

It can be seen from the figure that when the variational 
parameters are retained the variational function of zeroth or- 
der is changed qualitatively. The variational functions *\Ir(') 

and q(2) are periodic, and their period is equal to the period 
of the perturbation in the Hamiltonian (17). Thus, these func- 
tions are in agreement with Bloch's However, 
there is one important difference between the functions *\Ir(') 

and *(2) .  In contrast to the function *('I, the variational 
function *(2) does not possess nodes. Therefore, retention of 
the second variational parameter significantly improves the 
behavior of the wave function. The point is that the ground- 
state wave function must not have nodes.2 From this it may 
be concluded that the proposed procedure for constructing 
the variational wave function of the ground state ensures a 
qualitatively correct behavior of the true wave function. 

4. We now consider the more complicated problem de- 
scribed by the Hamiltonian 

where a is some constant. This problem is interesting in that 
standard perturbation theory here gives nothing. 

We calculate the matrix elements (HP),,, in the quanti- 
ties E, (7) using the oscillator wave function 

This means that as the basis we have taken the wave func- 
tions of the harmonic oscillator. It is sensible to determine 
the parameter p by means of the standard variational proce- 
dure. In this case, ~ = ( 6 a r ) " ~ .  As a result, we have 

FIG. 2. Variational wave functions: 1-the function of the zeroth approxi- 
mation (21); 2-the function (24) of the first approximation; 3-the function 
(25) of the second approximation. 

and this enables us to calculate el, e2, e3,  e4, and 6,: 

Taking into account now the expressions ( 1 1 )  and (13), 
we obtain G I =  -0 .142736~~'  and E =0.6781 15a'I3. Note 
that the dependence of E on a is exact. For a =  112, the 
energy is E =0.538220, and this value differs only slightly 
from the exact value 0.530181 (Ref. 7) .  At the same time we 
find (H)=0.540843. For a further improvement of the esti- 
mate, we must retain the second variational parameter in the 
calculation. In accordance with (15) and (16) we have 
G I  = -0.224443p1', ~ ~ = 0 . 0 0 8 2 6 8  1 ~ - ~ ,  and in conjunction 
with the expression (14) we then obtain ~=0 .669043a"~ .  
For a=1/2, we have E=0.531020. This value exceeds by 
0.16% the exact value of the ground-state energy of the sys- 
tem described by the Hamiltonian (20). 

Taking into account the calculated variational parameters 
and the expressions (8),  (20), and (21), we obtain 

where 

Plots of these functions as well as lP(x) (21) are given in 
Fig. 2. However, on this scale the variational functions W(" 
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TABLE I. Values of variational wave functions. 

and 9(2) can hardly be distinguished. The main difference 
between them is observed at large x > 2 . 8 ~ " ~ .  The corre- 
sponding values of the functions are given in Table I. For 
x > 2 . 8 5 ~ " ~  we have < 0. In contrast, the wave func- 
tion 9(2) has negative values only in a very narrow range of 
variation of x ,  and these values are very small. It is to be 

expected that retention of the next variational parameter will 
make it possible to eliminate altogether the presence of 
nodes in the wave function that describes the ground state of 
the system. 
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