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The radiative corrections due to pair production in small-angle high-energy e+e-  Bhabha 
scattering are considered. The corrections due to the production of virtual pairs as well as real soft 
and hard pairs are calculated analytically. The collinear and semi-collinear kinematical 
regions of hard pair production are taken into account. The results in the leading and next-to- 
leading logarithmic approximations yield an accuracy -0.1%. Numerical calculations 
show that the effects of pair production must be taken into account in the precise luminosity 
determination at LEP. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The electron-positron scattering process (Bhabha pro- 
cess) at small angles was chosen for mobile precise luminos- 
ity measurement at LEP I.' The measurement technique pro- 
vides an accuracy of order 0.1%, or even better.2 Until 
recently there has been no adequate theoretical calculations 
of the Bhabha cross-section.394 The radiative corrections 
(RC) due to the emission of virtual soft and real hard photons 
and pairs have to be calculated up to the three-loop level. In 
our previous paper3 a program of analytical calculations was 
carried out. The leading contributions a ( a ~ l . r r ) , ' . ~ ~ ~  as well 
as the next-to-leading ones a d.rr, (a1 T ) ~ L  were calculated 
explicitly for processes with the emission of photons (here 
L=In e2/m$, Q'- 1 ( ~ e ~ l c ) ~  is the square of the momen- 
tum transferred, B is the scattering angle). As for pair pro- 
duction processes, the contributions due to the emission of 
virtual soft and real hard pairs were considered, but the pro- 
duction of real hard pairs was calculated only in collinear 
kinematics (CK). In this paper we present a systematic study 
of hard pair emission in semi-collinear kinematics (SCK). 
We also present the total contribution to the observable 
Bhabha cross section due to pair production, 

which takes the cuts into account in the detection of the 
scattered electron and positron. We accept the convention1-3 
by which as an event of the Bhabha process is taken to be 
one in which the angles of the simultaneously registered par- 
ticles hitting opposite detectors lie in the ranges 

7 ~ -  P O  niin < or< m- 19 niin (2) 

(tl,1,i,,-30, p? 1) with respect to the beam directions. The sec- 
oncl condition is imposed on the energy fractions of the scat- 
tered electron and positron: 

where E is the energy of the initial electron (or positron) and 
E,,(; ,  is the energy of the scattered electron (positron); here 
and in what follows the center-of-mass (CM) reference 
frames implied. 

Our method of calculating the real hard pair production 
cross-section to within logarithmic accuracy is to separate 
the contributions of the collinear and semi-collinear kine- 
matical regions.5.6 In the first one (CK) we suggest that both 
electron and positron from the created pair go in the narrow 
cone about the direction of one of the charged particles [the 
projectile (scattered) electron pl (ql) or the projectile (scat- 
tered) positron p2 (q,)]: 

P+P--P-P~-P+P~< 6041  9 

800lmB19 P ~ = P ~ ~ P ~ , Q I  ,q2. (4) 

The contribution of the CK contains terms of order ( a ~ l . r r ) ~  
and ( a l ~ ) ~ ~ .  In the semi-collinear region only one of the 
conditions (4) on the angles is fulfilled: 

The contribution of the SCK contains terms of the form 

- 
where I9 = p-q, is the scattering angle. The auxiliary param- 
eter Bo drops out in the total sum of the CK and SCK con- 
tributions. We systematically omit the terms without large 
logarithms, which are of order (dm)2 const- lop5. 

We restrict ourselves to the case in which an electron- 
positron pair is created. The effects due to the other pair 
creation processes t P + , L ,  mf 7 ~ -  etc.) are at least a factor of 
ten smaller ancl can be neglected, as will be seen from the 
numbers obtained. All possible mechanisms for pair creation 
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(singlet and non-singlet) as well as the identity of the par- 
ticles in the tinal state are taken into account. In the case of 
small-angle Bhabha scattering only a part of the total of 36 
tree-type Feynman diagrams are relevant, namely, the scat- 
tering diagrams. Besides that we verified that the interference 
between the amplitudes describing the production of pairs 
moving in the electron direction and the positron one can- 
cels. This is known as up-down cancellation. 

The sum of the contributions due to virtual pair emission 
(due to the vacuum polarization insertions in the virtual pho- 
ton Green's function) and of those due to the real soft pair 
emission does not contain cubic ( Z L ~ )  terms, but depends 
on the auxiliary parameter A= &/E ( m , 4  L3.s < E ,  where SE is 
the energy sum of the soft pair components). The 
A-dependence disappears in the total sum after the contribu- 
tions due to real hard pair production are added. Before sum- 
ming one has to integrate the hard pair contributions over the 
energy fractions of the pair components, as well as  over 
those of the scattered electron and positron: 

where E+ are the energies of the positron and electron from 
the created pair. We consider for definiteness the case when 
the created hard pair moves close to the direction of the 
initial (or scattered) electron. 

The paper is organized as follows: in the second section 
we consider the emission of a hard pair in the collinear ki- 
nematics. The results are very close to those obtained by one 
of us (N.P.M) in Ref. 6 for the case of pair production in 
electron-nuclei scattering and applied to the case of small- 
angle Bhabha scattering in Ref. 4. For completeness we 
present very briefly the derivation and give the result, cor- 
recting some misprints in Ref. 6. In the third section we 
consider the semi-collinear kinematical regions. The differ- 
ential cross-section is obtained there and integrated over the 
angles and energy fractions of the pair components. In the 
fourth section we give the expression for the RC contribution 
to the experimental cross-section due to pair production. The 
results are illustrated numerically in tables and discussed in 
the Conclusions. 

2. THE COLLINEAR KINEMATICS 

There are four different CK regions: when the created 
pair goes in the direction of the incident (scattered) electron 
or positron. We will consider only two of them correspond- 
ing to the initial and the final electron directions. For the case 
of pair emission parallel to the initial electron it is useful to 
decompose the particle momenta into longitudinal and trans- 
verse components: 

where are the two-dimensional momenta of the tinal par- 
ticles, which are transverse with respect to the initial electron 

beam direction. It is convenient to introduce dimensionless 
quantities for the relevant kinematical invariants: 

where q5 is the azimuthal angle between the (p,pi) and 
I 

(PIP-) planes. 
Keeping only the terms which give non-zero contribu- 

tions to the cross-section in the limit Oo+O from the sum 
over spin states of the square of the absolute value of the 
matrix element, we find that only 8 from the total 36 Feyn- 
man diagrams are essential. They are drawn in Fig. 1. 

The result has the factorized form (in agreement with the 
factorization theorem8): 

I 

spins spins 
(10) 

where one of the multipliers corresponds to the matrix ele- 
ment in the Born approximation (without pair production): 

s4+ t4+ u4 
l ~ ~ 1 ~ = 2 ~ v ~ a ~  

spins 

and the quxntity I which stands for the collinear factor coin- 
cides with the expression for I,, obtained in Ref. 6. We write 
it here in terms of our kinematical variables: 
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FIG. I .  The Feynman diagrams which give 
logarithmically reinforced contributions in the 
kinematical region when the created pair goes in 
the electron direction. The signs represent the 
Femi-Dirac statistics of the interchanged fer- 
mions. 

Rewriting the phase volume of the final particles as 

and integrating over the variables of the created pair we ob- 
tain (details are presented in the preprintlO): 

x2 2(x1-x2) - 8 1 x [- + +--- 
xx, xx l ( l -x)  ( ~ - X I ~  XX,X2 x(1-x) I 

Performing similar manipulations in the case when the pair 
moves in the direction of the scattered electron, integrating 
the resulting sum over the energy fractions of the pair com- 
ponents, and finally adding the contribution of the two re- 
maining CK regions (when the pair goes in the position di- 
rections) we obtain: 

640 JETP 81 (4), October 1995 Arbuzov et a/. 640 



- 2(3x2- 1 ) 
Liz( 1 - x), 

1 -x 

2(x2 - 3) 
-x) - Liz( 1 - x), l - x  

Some misprints, which occur in the expressions for f (x) and 
f ,(x) in Refs. 4, 6, are corrected here. 

3. THE SEMI-COLLINEAR KINEMATICS 

We will restrict ourselves again to the case in which the 
created pair goes close to the electron momentum (initial or 
final). A similar treatment applies in the CM system in the 
case in which the pair follows the positron momentum. There 
are three different semi-collinear regions, which contribute to 
the cross-section in the frame to the required accuracy. The 
first region includes the events for which the created pair has 
very small invariant mass: 

and the pair escapes the narrow cones (defined by Bo) in both 
the incident and scattered electron momentum directions. We 
will refer to this SCK region as p+llp-. Only the diagrams I 
and 2 of Fig. 1 contribute in this region; the reason is the 
smallness (in comparison with s )  of the square of the four- 
momentum of the virtual photon converting to the pair. 

The second SCK region includes the events for which 
the invariant mass of the created positron and the scattered 
electron is small, 4m2+ (p+ + q Iq21, with the restric- 
tion that the positron should escape the narrow cone in the 
initial electron momentum direction. We refer to it as p+llql 
and note that only the diagrams 3 and 4 of Fig. I contribute 
here. 

The third SCK region includes the events in which the 
created electron goes inside the narrow cone in the initial 
electron momentum direction but the created positron does 
not. We refer to it as p-llpl. Only the diagrams 7 and 8 of 
Fig. I are relevant there. 

The differential cross-section has the following form: 

where x , (x2), x and p i  (P+))' g: are the energy fractions and 
the perpendicualr momenta of the created positron (electron) 
and the scattered electron, respectively; ~ = ( p , + p , ) ~  and 
q2 = - Q~ = (p2-q2)2 = - e 2  o2 are the center-of-mass en- 
ergy square and the momentum transferred square; and the 
leptonic tensor Lip has different forms for different SCK 
regions. 

3.1. The p+llp- region 

For the region of small ( p +  +p-12 we can use the lep- 
tonic tensor obtained in Ref. 6. Keeping only the relevant 
terms we write it in the form 

where 

After some algebraic transformations the expression for [ M I  
entering the cross-section can be put in the form 
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where p = p  - -x2p +/x1,  (qi)2= - g2. In this region we can 
use the relations 

It is useful to represent all invariants in terms of the 
Sudakov variables (energy fractions and perpendicular mo- 
menta), namely 

I 1 pL =x1p- -x2p+. 

A large logarithm appears in the cross-section after the 
integration over pl. In order to carry out this integration we 
can use the relation 

which is valid in the region p+llp-. After the integration we 
find the contribution of the first SCK region to the cross- 
section. 

ff d(s:I2 d W 2  
d ~ ~ + ~ ~ ~ -  = - Ldx dx2 - 

'IT ( d l 2  (qi+q;t) 

FIG. 2. The kinematics of an event in the angular perpendicular plane 
corresponding to the SCK region p+llp-. 

where 4 is the angle between the two-dimensional vectors 
a: and q; . 

At this stage it is necessary to use the restrictions on the 
two-dimensional momenta q: and q;. They appear when we 
exclude the contribution of the CK region (which in this case 
represents the narrow cones with opening angle Oo in the 
momentum directions of both incident and scattered elec- 
trons). 

The kinematics of the events corresponding to the region 
p+llp- in the perpendicular plane is shown in Fig. 2. The 
circles of radius Oo represent the forbidden collinear regions. 
Elimination of those regions yields the following restrictions: 

where E+ and e2 are the energies of the created positron and 
the scattered electron, respectively. In order to exclude p i  
from the above equation we use the conservation of the per- 
pendicular momentum in the region p+llp- : 

It is useful to introduce the dimensionless variables 
zl ,2 =(qi,2)2/(~0,,,in)2, where Omin is the minimum angle at 
which the scattered particles (electron and positron) are re- 
corded by the detector. Here we consider only the symmetri- 
cal circular detectors. The conditions (23) can be rewritten as 
follows 

I >  cos $ > - I +  
k2( 1 - x ) ~ -  ( a- &)2 

2 6  
, 16- &/<A( 1 -XI, 

l >  cos $>- 1, 16- &l>h(l-x).  k=~ol l ) , , , i l , ,  

[ 
h2x2(1 - x ) ~ - (  & - x G ) ~  

I >  cos + > - I +  , I &-x&l<hx( 1 -XI ,  
2x JZlZZ 

I >  cos $>- 1, 1&-x&l>kx(l -x) .  
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Restriction (26) excludes the phase space corresponding 
to the narrow cone in the direction of the initial electron, 
while Eq. (26) excludes that parallel to the scattered electron. 

The conditions of the LEP I experiment are 

m 
80 .>- -1~-5  E and 0,1i,l-10-2. (27) 

This is the reason for considerig A 4 I .  The procedure for 
integrating the differential cross-section over regions (25) 
and (26) is described in detail in Ref. 10. Here we give the 
contribution of the SCK region p+llp- to the cross-section, 
assuming that only the scattered electrons with energy frac- 
tion x greater than x, can be recorded: 

where 

( 1 ' ) = 2 ( ~ 1 ~ + ) ( 1  -x2)/x,. 
The integration of the matrix element over and 

(pf_)2 can be carried out analogously to the previous case, 
and the contribution of the p+llq, region can be represented 
in the form 

a4 d(q;)2 d(q:)2 
dUp+llq, = ; Ldx dx2 7 T 

(q2) (q1) 

%= In 
E2@ min 

m2 
The restriction on the phase space coming from the ex- 

clusion of the collinear region when the created pair moves 
inside the narrow cone in the direction of the scattered elec- 
tron leads to the relation 

where Q:= e2 O i i n ,  p= Omax/Omin (Omax is the maximum angle 
of the final particle registration), @ = @ ( x ~ ~ ~ -  z), zGz2.  
The auxiliary parameter A entering Eq. (28) defines the mini- 
mum energy of the created hard pair, 2 m l ~ 4 A 4 1 .  Note 
that we replaced L by -%' because they do not differ at the 
one-logarithm level. 

In Eq. (31) we have to exclude p* by using conservation of 
the perpendicular momentum in the case under consider- 
ation: 

pJ--+q;+q+(~ -x2)/x=0. 

3.2. The p+Jlq, region 

As was already mentioned, in the SCK region p+llq, 
only diagrams 3 and 4 of Fig. I contribute. The leptonic 
tensor in this case can be derived from Eq. (17) by the sub- 
stitution p - -q  , and the square of the matrix element can 
be written as 

In terms of the dimensionless variables z ,  , z2 and the angle 
4, Eq. (31) can be rewritten as 

A ~ X ~ X ~ - ( & - X & ) ~  
I >  cos + > - I +  

2x 6 , l&-x&I<~xx29 

The integration of the differential cross-section (30) over 
the region defined in Eq. (32) leads to the following result 
for the contribution of the p+l(ql SCK region: 

a4 dz I-A - 
+ I -  1 ;  , d x l , 1 1 d x 2  3.3. The p-(lp, region 

In the p-lip, SCK region only the diagrams 7 and 8 of 
Fig. I contribute to the cross-section to within the required 
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accuracy. The leptonic tensor in this case can be derived 
from Eq. (1 7 )  by the substitution p ,  ++ - p + , and the matrix 
element square has the form 

The integration of the matrix element over (p!+12 and 
leads to the differential cross-section 

The restriction due to the exclusion of the collinear re- 
gion when the created pair moves inside a narrow cone in the 
direction of the initial electron has the form 

( I >  cos + > - I ,  l & - a > h x , .  

The integration of the differential cross-section (35)  over 
the region defined in Eq. (37)  leads to 

The total contribution of the semi-collinear kinematics to 
the cross-section is the sum of Eqs. (28) ,  (33) ,  and (38): 

4. THE TOTAL CONTRIBUTION DUE TO THE REAL AND 
VIRTUAL PAIR PRODUCTION 

In order to obtain the finite expression for the cross- 
section we have to add to Eq. (39)  the contribution of the 
collinear kinematics region [Eq. (15) ]  and those due to the 
production of virtual and soft pairs. Taking into account the 
leading and next-to-leading terms we can write the full hard 
pair contribution as 

where 

Integrating over x2 in the right side of Eq. (40) ,  we obtain the 
final expression for the cross-section for hard pair production 
associated with small-angle electron-positron scattering: 

I - A  
~ x { L ~ (  1 + O ) R ( x )  

644 JETP 81 (4), October 1995 Arbuzov et a/. 644 



Formula (41) describes the small-angle high-energy 
cross-section of the process (I), provided that the created 
hard pair moves in the direction of the initial electron 
3-momentum, and we have now to double a, to take into 
account the production of a hard pair moving in the direction 
of the initial positron beam. 

In order to pick out the dependence on the parameter A 
in u-, we use 

Hence 

The contribution to the cross-section of the small-angle 
Bhabha scattering connected with the real soft (with energy 
less than A.6) and virtual pair production is defined2 by the 
formula: 

TABLE I.  The ratio S=u,,Ju,, in percent, as a function of x,. , for N N  
(p= 1.74, 0 ,,,, = 1.61 rad) and W W  (p=2.10, 0,,,,,= 15.0 rad) counters, 6 
=2&=ML=91.187GeV. 

X ,  0.2 0.3 0.4 0.5 0.6 0.7 0.8 

SNN , % -0.018 -0.022 -0.026 -0.029 -0.033 -0.038 -0.046 
Sww , % -0.013 -0.019 -0.024 -0.029 -0.035 -0.042 -0.052 

(45) 

Using Eqs. (43) and (44) it is easy to check that the auxiliary 
parameter A is cancelled in the sum u ~ ~ ~ ' ~ u ~ ~ ~ + ~ ~ ~ ~ ~ + ~ ~ * ,  

and we can write the total contribution at,, as 

2 ff4 4 
= $ 2  1 - x , )  

TQ 1 

17 8 40 -: lxl&b)+4-T-T12-T 

8 1 dx - 
Xln(1-x,)+-  ln2(1-x,)+ 

3 
0 

The right side of Eq. (46) is the master expression for the 
small-angle Bhabha scattering cross-section connected with 
the pair production. It is finite and can be used for numerical 
estimates. Note that the leading term is described by the 
electron structure function D:(X), which represents the prob- 
ability of finding a positron inside an electron with the four- 
momentum square up to e2, provided that the electron loses 
an energy fraction ( 1 - x)? 

In Table I we present the ratio of the RC contribution 
due to the pair production utot (46) to the normalization 
cross-section uo , 

In Table I1 we illustrate the comparison between the non- 

TABLE 11. Values of R,, and R w w  as functions of I,, where R represents 
the ratio of the nonleading contribution in (46) to the total, for NN and W W  
counters. 

. 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

A',, 0.036 -0.122 -0.194 -0.238 -0.268 -0.335 -0.465 
K,", 0.179 -0.02 1 -0.088 -0.120 -0.179 - 0.27 1 -0.415 
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leading contribution (containing %'=ln e:lnr2) and the to- 
tal (containing x2 and %'). 

5. CONCLUSIONS 

Thus, the result derived in this paper combined with the 
results derived earlier in Refs. 1, 2 give a full and systematic 
analytical description of the small-angle electron-positron 
scattering cross-section at LEP I energies accompanied by 
one- and two-photon radiation and by pair production. The 
description takes into account the leading and next-to- 
leading logarithmic approximations and allows the cross- 
section to be found with the accuracy of better than 0.1%, 
provided that the scattered electron and positron are recorded 
by symmetrical circular detectors. With the above derivation 
it is possible to carry out calculations also for asymmetrical 
detectors. 

Numerical calculations of the virtual and real pair- 
production RC contributions show that they cancel out at the 
level of lop3 percent for the given angular apertures and 
range x ,  . Table I1 shows that the next-to-leading contribution 
can be comparable with the leading one. Their ratio is sen- 
sitive to x ,  and the range of angles. A similar situation arises 
for the leading and next-to-leading contributions to the 
small-angle Bhabha cross-section in the case of the double 
bremsstrahlung process e-  + e+ -+ e- + e+ + y + y.4 

Note that in a realistic case one has to be aware that 
detectors cannot distinguish a single-particle event from one 
in which two or more particles hit the same point of the 
detector simultaneously. In that case the results can easily 
change: starting from the present differential cross-sections 
one has to integrate, imposing the needed experimental re- 
strictions. 

We want to emphasize also that the method of calcula- 
tions and many of the results can be used for calculations of 

radiative corrections to small-x deep inelastic scattering at 
HERA. These questions require additional investigations. 
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