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Supersonic regimes of motion of a topological soliton in a bistable molecular chain with cubic 
anharmonicity of the site-site interaction are studied for the first time. In the framework 
of the q~~ model, it is shown that in a bistable symmetric system, anharmonicity of the site-site 
interaction leads to the result that a positive topological soliton (kink) has a subsonic 
continuous spectrum and a supersonic discrete spectrum of velocity values. The topological 
soliton can have only a finite number of supersonic velocity values for which its motion is not 
accompanied by the emission of phonons. With increase of the anharmonicity, the number 
of such values increases. Each supersonic topological soliton is a bound state of several acoustic 
solitons, the sum of the amplitudes of which coincides with the width of the barrier of the 
two-well potential. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The development of modern nonlinear physics has led to 
the discovery of new elementary mechanisms that determine, 
at the molecular level, the course of many physical processes 
in crystals and in other ordered systems. Nowadays the role 
of acoustic solitons, providing the most effective mechanism 
of energy transport, is entirely clear. Acoustic solitons have 
supersonic velocities and do not change the state of the sys- 
tem, this being connected with their zero topological 

On the other hand, topological solitons, describing 
the transition of a bistable system from one equilibrium state 
to another, have nonzero topological charge and describe the 
maximally effective wave mechanism of such a process.3-5 

In the absence of anharmonicity of the site-site interac- 
tion, topological solitons of opposite sign possess the same 
properties: they have a continuous subsonic velocity spec- 
trum. Static interaction of topological solitons of opposite 
signs reduces to their attraction, but in discrete chains, pin- 
ning of solitons can lead to the existence of stable bound 

In this paper we perform a numerical investigation of the 
supersonic regimes of motion of a positive topological soli- 
ton (kink). It will be shown that the supersonic spectrum has 
a discrete structure. There exist only a finite number of su- 
personic velocity values s > s2>. . . > s, for which the mo- 
tion of the kink is not accompanied by the emission of 
phonons. The supersonic kink corresponding to the nth ve- 
locity value s ,  is a bound state of n acoustic (nontopologi- 
cal) solitons. For the other supersonic velocity values, the 
motion of the kink will always be accompanied by the emis- 
sion of phonons. 

2. THE MODEL 

The Hamiltonian of the bistable molecular chain has the 
form 

states of solitons of opposite sign.6 In a thermalized chain 
with a tp4 potential, an indirect mutually repulsive interaction where m is the mass of a link of the chain, u, is the displace- 

of solitons of opposite sign occurs via phonons, and is more ment of the nth link from its equilibrium position, %(p) is 

long-range than the static intera~tion.~ With the appearance the site-site interaction potential, and Y ( u )  is the symmetric 

of anharmonicity of the site-site interaction, the situation two-well potential describing the interaction of the sites of 

changes sharply. The properties of topological solitons of the chain with its substrate. For the q~~ model with cubic 

opposite sign now become different. Thus, in Ref. 8 it was anharmonicity, 

shown that with increase of negative anharmonicity, the ve- 
locity spectrum of a negative soliton is compressed, and 
when a threshold value is reached, it even disappears (the 
soliton has only zero velocity), whereas a positive soliton 
always has a continuous subsonic velocity spectrum. In Ref. 
9 it was shown that anharmonicity can lead to the result that 
a positive topological soliton has one supersonic value of the 
velocity, but the structure of the supersonic velocity spec- 
trum has remained unclear up to now. The aim of the present 
paper is to investigate the structure of the supersonic velocity 
spectrum of a topological positive soliton in the (p4 model 
with negative cubic anharmonicity of the site-site interac- 
tion. 

where K and y>O are the stiffness and anharmonicity of the 
site-site interaction, and E and 21 are the height and width of 
the barrier of the two-well potential. 

Corresponding to the Hamiltonian (1) is the following 
system of equations of motion: 

where 
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For convenience we introduce the dimensionless time T 

= t fi, dimensionless displacements xn = u,ll, and di- 
mensionless energy H=.%/K~~.  Then the Hamiltonian (1) of 
the system will have the form 

where the prime denotes differentiation with respect to the 
dimensionless time T, r ,  = xn+ , - x, are the relative displace- 
ments, and 

in which P= yll K >  0 is the dimensionless anharmonicity 
parameter and g = ~ 1 ~ 1 ~ 2 0  is the dimensionless height of 
the barrier of the two-well potential. The equations of motion 
(2) take the form 

where 

d d 
F(r )  = - ~ ( r ) =  r - pr2 ,  G(x) = ;i; ~ ( x )  = 4gx(x2- I) .  

d r  

3. THE CONTINUUM APPROXIMATION 

We shall assume that the system of differential equations 
(4) has a soliton solution x,(r) =x( t )  =x(n - st) that de- 
pends smoothly on the label n of the chain site, i.e., a solu- 
tion in the form of a solitary wave of constant shape with the 
asymptotic form 

for a positive (negative) soliton. Here, t= n -st is the wave 
variable and s is the soliton velocity. A positive topological 
soliton describes the transition of the chain from the equilib- 
rium state xn= + 1 to the other equilibrium state x,= - 1,  
while a negative topological soliton describes the reverse 
transition. In the region of localization of a positive soliton 
compression of the chain occurs, while in the region of lo- 
calization of a negative soliton extension of the chain occurs. 

Without allowance for dispersion of long-wavelength 
phonons, the system of equations of motion (4) in the con- 
tinuum approximation reduces to the differential equation 

This equation can be integrated, making it possible in this 
approximation to investigate completely the properties of to- 
pological solitons in an anharmonic chain.9 

In fact, letting cp=xt, Eq. (6) takes the form 

We multiply Eq. (7) by cp, and then integrate it, taking into 
account the boundary conditions (5). We obtain 

For a positive soliton (cpSO) we can obtain from Eq. (8) a 
continuous dependence p = p(x) ( - 1 S x c  1 ) only if 
IslS I ,  while for a negative soliton (cp3O) we can obtain 
from Eq. (8) a continuous dependence p=cp(x) 
( -  1 S x S  1) only if Isl<s- , where 

s -  = d l -  ( 2 4 ~ ~ ~ ) " '  for 2 4 ~ ' ~ ~  1, 

s-=O for 24p2g> l .  

Thus, the use of the continuum approximation without 
allowance for the dispersion of long-wavelength phonons 
shows that a positive topological soliton always has only a 
continuous subsonic spectrum of velocities OSss  1, while a 
negative topological soliton always has only a continuous 
spectrum 0 S s S s - . 

When the dispersion of the long-wavelength phonons is 
taken into account, the equations of motion (4) in the con- 
tinuum approximation now reduce to 

which, in the general case, cannot be integrated analytically. 
In Ref. 8 it is shown that Eq. (9) for a fixed velocity 

has a soliton solution 

with inverse width ,u=4p. It follows from Eq. (10) that for a 
small height g of the barrier of the two-well potential, the 
positive topological soliton (11) has a supersonic velocity s 
=s ; (p )> l .  

In the limit g -+O,  Eq. (9), after one integration, goes 
over into the Boussinesq equation 

which yields the supersonic acoustic soliton 

in a one-dimensional lattice with cubic anharmonicity; here, 
a =  3(s2- 1)/2P, the inverse width p = d m ,  and the 
velocity s> 1. The boundary condition (3, which is pre- 
served in the limit g-+O, makes only one velocity value 
allowed for the acoustic phonon: 

In fact, the total chain compression, which henceforth 
we shall call the amplitude of the acoustic soliton, is 
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which follows Eq. (12). We note also that Eq. (12) is ob- 
tained from (10) in the limit g+O. 

On the other hand, for g = 0 the boundary condition (5) 
will also be fulfilled when several identical acoustic solitons 
are present in the system. In this case the velocity s, of the 
N-soliton state can be found from the equation 
NR(sN) = - 2, and is equal to 

Thus, in the limit g+O, a positive topological soliton 
has an infinite discrete supersonic spectrum {s:}G= with 
the sound velocity s =  1 as the limit point. It is not possible 
to find the N-solition solution of Eq. (9) analytically for 
N>2 and g >0,  and so we shall seek it numerically. 

4. NUMERICAL DETERMINATION OF THE SUPERSONIC 
STATES OF A TOPOLOGICAL SOLITON 

Again we shall assume that the equations of motion (4) 
of the chain have a solution x,(T) = x(n - s 7)  that depends 
smoothly on n and satisfies the asymptotic form (5). Then, if 
we replace the second time derivative by its discrete analog 

-(xn+2-2xn+xn-2)1, 

the system of differential equations (4) is transformed into a 
system of purely discrete equations 

which in the continuum approximation coincides with Eq. 
(9). 

The system of discrete equations (14) determines an ex- 
tremum of the Lagrangian 

Therefore, the soliton solutions of Eq. (9) can be sought 
numerically as extrema of the Lagrangian L, . A supersonic 
topological soliton corresponds to a saddle point of the La- 
grangian, and, therefore, it can be found by solving the prob- 
lem numerically for a conditional minimum: 

X M -  = X M =  - 1 .  (15) 

The boundary conditions should have no effect on the shape 
of the soliton; for this it is sufficient to take the number M of 
sites to be ten times the width of the soliton. 

FIG. 1. Dependence of the upper boundary so of the continuous spectrum of 
velocity values (thick curve I ) ,  the supersonic values s , , s, , .. . ,s7 (thin 
curves 2, 3 ,..., 8), s; (dashed curve 9), and sy, s: ,..., s! (dotted curves 1 0 ,  
11 ,  ..., 14) on the anharmonicity parameter P of the chain. 

In solving the minimum problem (15) numerically we 
used the method of conjugate gradients, and took M = 400. 
The solution of this problem makes it possible to find all the 
soliton solutions of Eq. (9). The minimum point {x3!= of 
the functional F, corresponds to a soliton solution only if x: 
depends smoothly on n,  and the actual minimum value 
F,(X:, . . . ,x&) -0. If the functional F, has no such minima, 
this indicates unambiguously that Eq. (14), and hence Eq. 
(9), does not have soliton solutions for the velocity value s 
used. 

5. SUPERSONIC STATES OF A TOPOLOGICAL SOLITON 

For definiteness we shall take for the substrate parameter 
one specific value (g = 0.00 1 ) . Numerical solution of the 
minimum problem (15) showed that a positive topological 
soliton always has a continuous subsonic velocity spectrum 
0 S s S s o S  1. The dependence of the upper boundary so of 
the continuous spectrum on the anharmonicity parameter P is 
given in Fig. 1. For P=O we have so=0.966, and as the 
anharmonicity increases, the upper boundary of the continu- 
ous spectrum tends to the velocity of sound: so-+ 1 as P+m. 

In addition to the continuous subsonic spectrum, the 
soliton has a finite discrete supersonic velocity spectrum 
{s=~~};?r_~,  where s , >  ... >sN> 1 (for other values of s >  1, 
the problem (15) does not have soliton solutions). The num- 
ber N of accessible supersonic values of the velocity in- 
creases monotonically as the anharmonicity parameter @ in- 
creases. There exists a sequence (tending to infinity) of 
values of @ 

at which the number N increases by unity. Thus, for 
Oc@<P, we have N=O (the topological soliton does not 
have supersonic states), and for @n<@<@,,+, we have 
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FIG. 2. Form of the one-soliton supersonic kink state found by numerical 
solution of the problem (15). at the initial time r-0 (dashed curves I and 2) 
and at the time T= re= 92542.1 after N= 100000 links have been passed 
(solid curves 3 and 4). The anharmonicity parameter /3=0.4, the barrier 
height g=0.001,  the initial velocity s , =  1.095, and the final velocity 
3 , =  1.079. 

N=n (the topological soliton has n= 1, 2, ... supersonic 
states). For the parameter value g=0.001 used here the 
critical values of the anharmonicity parameter are P1=0.12, 
p2~0.25, p3=o.42, p4=o.59, /3,=0.78, p6=0.97, &=1.17. 

The supersonic velocities s ,  increase monotonically with 
increasing anharmonicity parameter. In Fig. 1 we show the 
dependence on P of the supersonic values s  , s 2 , .  . . ,s7 . As 
can be seen from the figure, the dependence s , ( P )  obtained 
by numerical solution of the problem (15) is essentially iden- 
tical with the dependence s  ; ( P )  obtained analytically. The 
corresponding curves 2 and 9 in Fig. 1 differ only at veloci- 
ties s> 1.07, when the soliton becomes narrow and the con- 
tinuum approximation that we have used ceases to be cor- 
rect. 

From Fig. 1 it can be seen that as P-w,  the functions 
s,(P) and s ; ( p )  behave equivalently [ s , ( / ? ) l s : ( ~ )  -t 11. In 
the limit, the supersonic topological-soliton (kink) state that 
has velocity s ,  decays into n identical acoustic solitons, and 
therefore we shall call such a state an n-soliton state. From 
this we can also conclude that the discreteness of the super- 
sonic velocity spectrum is due entirely to the presence of the 
boundary condition (5), i.e., to the two-well nature of the 
potential V ( x ) ,  and not to its specific form. 

In Fig. 2 we give a characteristic graph of a one-soliton 
supersonic kink state. From the relative displacements 
r, = x, + , - x,, of the links of the chain, which are propor- 
tional to the velocities x; (x:, = - sr, ,) ,  the kink has a one- 
hump profile. The one-soliton state can be considered to be 
an acoustic soliton satisfying the boundary condition (5) .  In 
Figs. 3, 4, and 5 we give characteristic graphs for two-, 
three-, and four-soliton supersonic kink states. The corre- 
sponding kinks have two-, three-, and four-hump profiles in 
the relative displacements. This shows that the given super- 
sonic states are bound states of two, three, and four acoustic 

FIG. 3. Form of the two-soliton supersonic kink state. All the notation 
coincides with that of Fig. 2; /3=0.9, g = 0.00 1 ,  s 2 =  1.1 15, 1,= 1.095, 
N=50000, ~ ,=45530 .0 .  

solitons. In the next section, it will be shown that if we take 
away the substrate, i.e., take g=O, the n-soliton state decays 
into n acoustic solitons. 

6. NUMERICAL MODELING OF THE DYNAMICS OF 
SUPERSONIC STATES OF A TOPOLOGICAL SOLITON 

We consider the dynamics of the supersonic states ob- 
tained for a topological soliton (kink) in a finite chain of L 
kinks with free ends. The dynamics of such a chain is speci- 
fied by the equations of motion 

FIG. 4. Form of the three-soliton supersonic kink state. All the notation 
coincides with that of Fig. 2; P= 1 . 1 ,  ,y=0.001, s 3 =  1.083, id= 1.065, 
N=50000, ~ , . = 4 6 8 2 3 . 0 .  
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FIG. 5. Form of the four-soliton supersonic kink state. All the notation 
coincides with that of Fig. 2; P=1.2, g=0.001, s4= 1.058, S4= 1.041, 
N= 50,000, re= 47944.8. 

x i =  - F(rL- ,) -G(xL) 

with the energy integral 

The number L of sites in the chain will be taken to be 
equal to M + 100, where M is the number of sites used in the 
solution of the minimum problem (15). To the soliton solu- 
tion {x~)f=, (with velocity s) of the problem (15) corre- 
sponds the initial condition 

xn(0)=x;, for n= 1,2 ,..., M ,  

X,(O)=X;, for n = M +  1 ,..., L, 

for n=2,  ..., L- 1, 

The center of the soliton {X,(T)}~=, is conveniently de- 
fined as the point at which the broken line sequentially link- 
ing the points (n,x,) intersects the n axis. At the initial time 
the soliton has center m = Ml2. In order to model the dynam- 
ics of the solition in an infinite chain, each time it passes 
through 100 links of the chain, i.e., each time its center 
reaches the site M/2+ 100, we shift the soliton to the left 
through 100 links, i.e., make the replacement 

I I 
X, l=Xl~~+n ,  , for n= 1 ,..., M, 

x,,=xL, xL=O, for n = M +  1 ,..., L. 

This method of numerical modeling of the dynamics of a 
topological soliton makes it possible to avoid integration of a 
system of high dimensionality. It is especially convenient for 
analysis of the dynamics of supersonic solitions. With each 
shift the nonsoliton subsonic component of the initial condi- 
tion is cut off. 

Numerical modeling of the dynamics of a topological 
soliton confirmed the discreteness of the supersonic spectrum 
of velocity values. As can be seen from Figs. 2-5, starting 
with the initial condition (18) corresponding to an n-soliton 
supersonic ( s  = s,> 1 ) kink state, a supersonic kink of con- 
stant shape, moving along the discrete chain with a constant 
supersonic velocity s = in< s, , is formed. 

The initial condition (18), obtained using the continuum 
approximation, is not exact for a soliton on a discrete chain. 
The discreteness of the chain causes the actual velocity value 
in to differ from the calculated value s,. The motion of a 
supersonic kink is always accompanied by the emission of 
phonons, as long as the kink velocity s > in . The emission of 
phonons leads to slowing down of the kink. At the velocity 
s = i ,  the emission disappears, and the motion of the kink is 
completely stabilized. The kink now begins to move with 
this constant velocity, and its shape does not change. We note 
that the final velocity s = i n  does not change with small 
variations in the initial velocity and shape of the kink. Such 
stability is an unambiguous indication that the supersonic 
velocity spectrum of a kink in an anhmonic chain is dis- 
crete. 

In order to understand the structure of a supersonic state 
of a kink, we consider the dynamics of a kink in a chain 
without a substrate (g= 0). For this we integrate the equa- 
tions of motion (16) for g = 0 and L = l 100. We shall take 
the initial condition corresponding to a supersonic n-soliton 
(n = 1,. . . , 5 )  state of a kink in a discrete chain with a sub- 
strate (g = 0.00 1 ). The integration showed that, in this case, 
exactly n uncoupled acoustic solitons and a subsonic phonon 
tail are formed from the kink (see Fig. 6). This makes it 
possible to conclude that the supersonic n-soliton state of the 
kink is indeed a bound state of n acoustic solitons that is 
stable at only one velocity value s = i , .  

The dependence of the velocity S, of the n-soliton su- 
personic state of a kink in a discrete chain on the anharmo- 
nicity parameter p is shown in Fig. 7. The value of the ve- 
locity S, agrees well with the calculated value of s, only near 
the sound velocity. In this case the large kink width makes 
the continuum approximation used in the preceding section 
appropriate. Despite this, the numerical modeling performed 
for the supersonic dynamics of the kink suggests that the 
result that the supersonic spectrum of velocity values is dis- 
crete remains true for higher velocity values as well, when 
the kink width becomes commensurate with the chain step. 
Here, however, the derivation of an accurate value for the 
velocity requires the use of more involved methods that take 
the discreteness of the chain into account." 

At a subsonic velocity s <  I ,  a positive topological soli- 
ton has a large width, and therefore solving the minimum 
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FIG. 6. Decay of the four-soliton supersonic kink state (P= 1.2, g=0.001, 
S,= 1.041) on a free chain (g=O) into four acoustic solitons and a sub- 
sonic phonon tail. Curve I shows the relative displacements r,=x,+ , - x ,  
of the links of the chain at the initial time FO, and curve 2 shows the same 
at time ~ 9 0 0 .  m e  chain length L =  1 100. 

problem (15) makes it possible to find the shape of the soli- 
ton with high accuracy; see Fig. 8. 

The numerical integration of the equations of motion 
(16) was performed by the standard Runge-Kutta method 
with fourth-order accuracy and a constant integration step. 
The accuracy of the numerical integration was checked using 
constancy of the energy integral (17). With the step value 
used (A7=0.05), the energy remained constant to five signifi- 
cant figures. 

FIG. 7. Dependence of the velocity values so ,  s ,  ,... ,s, on the anharmonic- 
ity parameter p (curves I, 2, ... 8). The markers 9, 10, ..., 14 give the velocity 
values so ,  i, ,...,is obtained by numerical modeling of the soliton dynam- 

FIG. 8. Form of a subsonic topological soliton at the initial time FO 
(dashed curves 1 and 2) and at the time 7= 10103.0 after N= 10000 links of 
the chain have been passed (solid curves 3 and 4). m e  initial velocity 
s=0.99, @=LO, g=0.001, and the velocity 6=0.9898. 

7. CONCLUSION 

In this paper it has been shown for the first time that in a 
bistable molecular chain with cubic anharmonicity of the 
site-site interaction, a topological soliton (kink) has a finite 
discrete supersonic spectrum of velocity values. There exist 
only a finite number of velocity values s , > s2>. . . > s,> 1 
for which the motion of the soliton is not accompanied by 
the emission of phonons. A supersonic kink corresponding to 
the nth velocity value s, is a bound state of n acoustic soli- 
tons, the sum of the amplitudes of which should coincide 
with the width of the barrier of the two-well potential. The 
number N of supersonic velocity values increases with in- 
creasing anharmonicity parameter of the chain. In the frame- 
work of the continuum approximation we have proposed a 
numerical method of determination of the shape and velocity 
of the supersonic states of a topological soliton. 
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