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A classical ground state of the isotropic Heisenberg spin Hamiltonian on a primitive Bravais 
lattice is known to be a single-Q plane helix. Additional uniaxial anisotropy and external magnetic 
field can greatly distort this structure by generating higher-order (at the wave vectors nQ) 
Fourier harmonics in the spatial spin configuration. These features are not captured within the usual 
formalism based on the Luttinger-Tisza theorem, when the classical ground state energy is 
minimized under the "weak" condition on the lengths of the spins. We discuss why the correct 
solution is lost in that approach and present another microscopic treatment of the problem. 
For easy-axis and easy-plane quadratic uniaxial anisotropy it allows one to find the classical 
ground state for general Q and for any orientation of the magnetic field considering the 
effect of anisotropy (but not the field) as a perturbation of the exchange structure. As a result, 
the classical ground state energy, the uniform magnetization, and the magnetic Bragg 
peak intensities that are measured in the experiments are calculated. 63 1995 American Institute 
of Physics. 

1. INTRODUCTION 

For more than three decades, helical spin structures have 
been a subject of intensive studies. Having been discovered 
theoretically in the pioneering works of ~oshimori' and 
villain? they were found experimentally in a large variety of 
materials. Most extensive work was devoted to the investi- 
gation and explanation of the different ordered phases and 
phase transitions in the rare-earth metals from Tb to Tm. 
These phases were shown to result from the intricate distor- 
tion of the incommensurate, almost ferromagnetic exchange 
spiral by temperature and strong crystal field a n i s o t r ~ ~ i e s . ~ ~ ~  
However, for the reason discussed below, a classical treat- 
ment, finally generalized by Lyons and Kaplan? predicts no 
such distortion in the ground state (g.s.) of the quasi- 
isotropic Heisenberg Hamiltonians at T=O. 

A simple nontrivial example of the commensurate spiral 
is the triangular magnetic ordering found in the hexagonal 
antiferromagnets of CsNiC13 type. Their magnetic structure 
consists of six sublattices, three in each hexagonal plane at 
an angle - 120" to each other, where the spins in the adjacent 
planes are antiparallel. Such compounds have recently at- 
tracted much attention because of their pronounced quasi- 
one-dimensional nature (an exchange between the adjacent 
spins along the hexagonal axis is much stronger than that 
between the neighbors in the plane). ~x~e r imen t s~ - '  have 
demonstrated large deviations of the staggered magnetization 
and susceptibility in such compounds from the results of 
classical calculations, and thus the importance of quantum 
fluctuations. Therefore, they are also simple examples of 
quantum helimagnets, which have also been recently studied 
in the literature."" chubukovi2 and Tanaka et al.'\alcu- 

lated the classical spin reversal process in a magnetic field 
(see also Ref. 14) and the antiferromagnetic resonance 
(AFMR) spectra in the hexagonal antiferromagnets of 
CsNiCl, type on the basis of the six-sublattice model. Even 
for six sublattices it is very difficult to handle the problem in 
this way, and essentially no explicit analytical result can be 
obtained for the spin-wave spectrum. Our motivation in the 
present work was to develop another, simpler, and more gen- 
eral procedure for finding the classical ground-state spin con- 
figuration, which would allow one to perform reasonably un- 
sophisticated spin-wave calculations. We employ the 
procedure which is similar to that used by ~ a ~ a m i ~ a ~  and 
~ a ~ l a n . ~  Actually, it is an extension of the iterative method 
first suggested by Cooper et al.15 for easy-plane, almost fer- 
romagnetic spirals, which is valid for a general helimagnet. 
However, keeping in mind its application to the commensu- 
rate antiferromagnets, we will not discuss here such effects 
as changes in the ordering wave vector Q caused by the 
anisotropy and magnetic field that occur for a general Q 
position. These problems, as well as the incommensurate- 
commensurate transitions, were treated in the framework of 
the phenomenological approach. 16,17 

We start from the following Hamiltonian which de- 
scribes the low-temperature magnetic properties of a large 
class of crystals in which the spins of the magnetic ions are 
localized at the lattice points 

Here the first term is the Heisenberg exchange interaction, 
the second term describes the lowest-order uniaxial anisot- 
ropy, and the last term is the Zeeman term (y  is the gyro- 
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magnetic ratio). The anisotropy arises from the magnetic 
spin-spin and spin-orbit interactions. Hence, the constant D 
incorporates a small relativistic ratio (vlc)*, where u is the 
average velocity of the electron in the atom, and c is the 
velocity of light. Therefore, this ratio is usually considered to 
be small in comparison with the exchange coupling constants 
J i j  which are of the electrostatic origin. This condition, how- 
ever, can be violated in the quasi-low-dimensional materials, 
where the coupling along some directions is indirect and 
weak and the corresponding constants J i j  are very small. 
Such cases, as well as the singlet ground state systems in 
which D is intrinsically very large, are interesting in them- 
selves, but in the present paper we will always imply the 
condition I D ]  4 I J ~ ~ ~  Z 0. We also restrict our consideration to 
the case in which the summation in ( I )  is performed over a 
single Bravais lattice with total N sites. 

In the spin-wave theory the ground state and the excita- 
tion spectrum of the quantum Hamiltonian (1) are calculated 
in the quasiclassical approximation based on the 1/S expan- 
sion. The starting point of such a calculation is to find an 
equilibrium spin configuration which minimizes the ground- 
state energy E,, in the classical limit S+m. A rather com- 
plete spin-wave theory describing its low-temperature prop- 
erties has been developed for the case of the isotropic 
Heisenberg ~amiltonian.~-" However, the problem becomes 
extremely complicated if the anisotropy existing in real com- 
pounds is included together with the magnetic field. Even for 
the classical helimagnets very little general results were 
therefore actually obtained. Some particular cases were suc- 
cessfully treated in Refs. 3 and 15, but they lead to rather 
involved expressions (partially because an attempt to account 
for the sixfold anisotropy, in addition to the easy-plane an- 
isotropy, made the problem much more complicated). Here 
we shall present the calculations of the ground state spin 
configuration of the Hamiltonian (1) for different orienta- 
tions of the magnetic field, taking into account the anisotropy 
(but not the field) as a first-order perturbation of the ex- 
change interaction. 

2. FAILURE OF THE WEAK CONDITION 

It is known that the classical ground state for a system of 
equivalent spins on a simple Bravais lattice in the exchange 
approximation is a magnetic spiral described by wave vector 
Q (including ferromagnetism (Q=O) and antiferromagnetism 
(Q=K/2) as particular cases). The rigorous proof of this re- 
sult can be found by solving a mathematical problem for the 
absolute minimum of the function (1) which depends on 3N 
classical variables S: under N conditions 

imposed on the lengths of the classical spins. This problem is 
solved by introducing N Lagrange multipliers X i .  Switching 
to the Fourier representation because of the lattice transla- 
tional symmetry, we obtain the following system of equa- 
tions for spin configuration which minimizes the Hamil- 
tonian 

Here J k  , Sk , and Ak are the (lattice) Fourier transforms of 
the functions J i j  , Si , and X i ,  respectively; e, is a unit vector 
along z direction, and Sk,o is a three-dimensional Kronekker 
symbol. From (3) we easily obtain the classical ground-state 
energy 

There are two points to note here. First, (3) is a complicated 
inhomogeneous system of nonlinear equations, for which no 
general solution is found. Secondly, the resultant ground- 
state energy explicitly depends only on the values X o  and So 
(on the latter only if HfO), so all Xk and k#O seem to be 
irrelevant. This fact encourages one to look for the solution 
for which the Lagrange multipliers take the form X k  
=AOSk,O and the system is largely linearized. Evidently, such 
procedure is equivalent to taking into account only one of the 
N conditions given by the second relation in (3) or replacing 
(2) by the so-called "weak" condition = N S ~ .  This is a 
standard approach, which was generally formalized by Lyons 
and ~ a ~ l a n . '  Then the solution is easily found to be a single 
Q helix 

which is actually a correct result for D a O  and H along the z 
axis. One can easily choose vectors So and SQ in ( 9 ,  so that 
all N "strong" conditions (2) are satisfied for any D and for 
the direction of the field. Thus, according to the Luttinger- 
Tisza theorem, the resultant spin configuration is the solution 
of (3), i.e., it minimizes the energy (1) under the "strong" 
conditions (2). 

Unfortunately, except for the above important case, 
simple solutions obtained in this way appear to be physically 
meaningless. For example, for any negative (easy-axis) an- 
isotropy the magnetic structure at H =O is predicted (with the 
help of the "weak" condition) to be a collinear configuration 
parallel to the z axis with spins of varying length.4 This, in 
particular, does not describe the experimental data in 
CsNiC13 and related compounds in which the easy-axis an- 
isotropy is known to fix the spin plane parallel to z and to 
distort slightly the perfect exchange 120" structure which is 
initially described by a helix with Q=(1/3,1/3,1) in recip- 
rocal lattice units. [In fact, the "incorrect" collinear phase 
also appears in CsNiC1, in the narrow temperature interval 
between two split TN (Ref. 18)]. 

The reason for this contradiction and inconsistency of 
the trick with the "weak" condition is the following. It is 
easy to see that by weakening the conditions on the spin 
length we obtain some extra minima that do not satisfy (2). 
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FIG. 1. Spin configuration of the distorted exchange spiral and transforma- 
tion to the local axes. 

These artifacts are thrown away by verifying all the condi- 
tions explicitly. However, some extrema of the initial prob- 
lem (3) are lost in this way. This can be visualized by con- 
sidering the energy surface (1) in the space of spin 
components cut by the "physical" manifold (2). If the "real" 
solution lies at one of the intersection points, it will be in- 
evitably missed by employing the "weak" condition, since it 
is not an extremum of the function (1) in the extended space. 

3. TRANSFORMATION TO THE LOCAL AXES 

Having found the correct classical ground-state spin con- 
figuration, we proceed with the spin-wave theory defining 
the local coordinate axes xiyizi , so that (classically) the spin 
at each site points in the zi direction in the ground state. The 

spin operators are then transformed to these axes and decom- 
pose into a series of Bose operators using the Holstein- 
Primakoff transformations. Since the local zi axis is a clas- 
sical equilibrium direction of each spin, linear in spin 
deviations (i.e., in operators 6: ,di), terms are absent in the 
resultant decomposition of the Hamiltonian. Starting from 
this point, we can develop a slightly different procedure to 
find the classical ground state of the Hamiltonian (1) and its 
decomposition into a series of Bose operators. First, we 
transform the spins from the crystallographic xyz frame to 
the local coordinate axes xiyizi. In general, this is done by 
two rotations: first, by some angle Oi around the y axis, and 
then by some angle c$~ around the new xf axis, as shown in 
Fig. 1. In the resultant local frame the spin operators are 

Si= I ( ~ 2 , i ( ( .  ( ( ~ l , i l ( .  ~ i = ( I ~ i l l  .Si 9 (6) 
where the transformation matrices are, as usual, defined by 

Transformed Hamiltonian then takes the form 

Here the matrices ( 1  TIa)I( and 11 T ~ T ) I I  which define the bilin- 
ear, in spin components, forms coming from anisotropy and 
exchange, respectively, are given by 

where Bij=8i-Bj. The angles 8): and qbi must be chosen in 
such a way that one can exclude terms - 33 and -$',$ 2 sin+, - sin4, cask ~ 0 ~ 8 ; ~ )  

I . '  i 
which give rise to the linear, in 6' , Gi, contribution to the 
Hamiltonian (8). This leads to the following system of 2N = Dsin 2 4 j  cos20j- Y H ,  sine,+ THY c0sq5~ 
equations): 

- +Hz sin@i cosOj, (11) 

, IITI$)II = 

where y= ylS. Evidently, for arbitrary D and H  this system x 2Jii c0s4~ sineij= DcoscPi sin 2 Oj for the angles Oi and (bi cannot be resolved. As was men- 
i 

tioned above, only the cases D=O and D>O, Hllz can be 
+ T H ,  costl- yHT  sinei, treated explicitly.'," However, we can begin with the 

sin2 di sin 4; sin 6; cosei -cos+; sinei case, 
sin 4; sin 0; cosOi sin2 +i cos2 8; - sin4; cos +i cos2 8; 

- cos 4; sin ei cose; -sin 4; cos cPi cos2ei cos2 +i cos2 ei 

, (10) I I T ~ T ) I I  = 
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Heisenberg exchange Hamiltonian in a magnetic field as a 
zero approximation and then look for the corrections to it, 
expanding them to a given power of D. A very similar ap- 
proach has been developed by Andreev and ~ a r c h e n k o ' ~  in 
the framework of the phenomenological Lagrangian theory. 
They showed rather simple and general solution of the prob- 
lem in the leading order of perturbation. 

First, we consider a more complicated case of the easy- 
axis anisotropy which causes the most general distortion of 
the exchange structure. 

4. EASY-AXIS ANISOTROPY (D<O) 

Without loss of generality, we can choose the magnetic 
field to lie in the y z  plane. Furthermore, in this case the 
"correct" unperturbed helix at H=O should contain the z 
axis. We therefore look for the solution of (11) in the form 

In most cases we shall consider only the leading (i.e., the 
lowest order in D) corrections 8 4 ,  64. Thus, substituting 
(12) into (ll) ,  it is sufficient to expand the trigonometric 
functions to the first order in 8 4 ,  &bi. The following equa- 
tions for the deviations 

2Jij(cos+, cos(Qrij) 80,- sin+, sin (Qrij) 6 4 )  
I 

- 7Hz[cos(Qrj) SOj+ sin Qr,)] 

are rather easy to solve. Being convoluted with Jij cos(Qrij) , 
the variations 84 and should give the trigonometric 
functions cos(Qrj) , sin(Qrj) , cos(2Qrj), sin(2Qrj), etc., 
which would cancel the right-hand side of equation (11). 
Thus, they should be sought in the form of a decomposition 
into a sum 

where the order of the coefficients an and pn is Hn and 
IDlni2. 

Here we should make one very important remark. In- 
stead of (12), one can look for the solution of (11) in the 
form Oi = $+Qri + 6@ . It differs from the first one in a rota- 
tion of the arbitrarily chosen "first" spin, and thus of the 
whole spin structure by an angle $ within the helix plane. 
Evidently, in our approximation -D all such structures will 
have the same energy, as it was the case for the pure ex- 

change. This fact reflects the remaining continuous degen- 
eracy of the ground state with respect to the described rota- 
tions. Moreover, by performing corresponding expansions it 
can be shown in a straightforward algebraic way that such 
degeneracy exists in all orders in H ,  unless the condi- 
tion nQ=O is satisfied for some integer n. Such a condition 
means that the spin structure is a commensurate spiral and 
can be described in terms of n sublattices. In this case the 
continuous degeneracy of the spin rotation within the helix 
plane is lifted in the order Hn and (D("I2. The ground state 
preserves only n-fold degeneracy corresponding to the arbi- 
trary choice of the "first" spin, i.e., to the rotations of all 
spins in the initial exchange structure by an angle (2mn)ln, 
within the helix plane. In the case of the incommensurate 
spiral, where this additional discrete degeneracy is absent, 
the continuous degeneracy of the ground state is not de- 
stroyed. 

This fact can be proved by very general arguments. Evi- 
dently, perturbation of the n-sublattice exchange spiral by 
adding D z i~os2($+ 4) or HZ i ~ ~ ~ ( $ +  Oi) to the exchange 
Hamiltonian is invariant with respect to the transformation 
$-+$+(2mn)ln. Thus, the ground-state energy should not 
contain harmonics below cos n cjl and sin n $. Hence, its Tay- 
lor expansion with respect to the perturbation parameters D 
and H depends explicitly on the angle $ in the terms of n/2 
and n order, respectively. Another way to explain this fact is 
based on the exchange symmetry arguments.19 Exchange 
structure with n sublattices has an n-fold rotation axis per- 
pendicular to the spin plane. Thus, the lowest order pertur- 
bation to the exchange energy, which has appropriate sym- 
metry and which lifts such rotations should be proportional 
to cos n$. In the case of the uniaxial anisotropy, which al- 
ready contains the twofold symmetry, it is achieved in the 
n/2 order of perturbation, while for the magnetic field the nth 
order is needed. With the continuous degeneracy destroyed, 
the corresponding Goldstone mode gains frequency induced 
by an "effective field," 1 ~ 1 " ' ~  or Hn; it is of the order 1 ~ 1 " ' ~  
and H"'~, respectively. 

This situation was closely studied in the hexagonal 
CsNiC13-type antiferromagnets, which are our reference in 
the present paper. It was ~ h o w n ~ ~ . ~ '  that in the easy-axis case 
the structure with $=0, given by (12), is stabilized by the 
anisotropy in the third order, and the magnon gap 
appears. For the easy-plane antiferromagnetic helix in the 
transverse field the situation is different (as we will discuss 
later) and the structure with $= d 2  is Hereafter, 
we shall consider the solution (12), which is stabilized by the 
easy-axis anisotropy D<O, with two principal orientations 
of the magnetic field. 

4.1. Magnetic field perpendicular to the z axis 

This orientation gives rise to the most general distortion 
of the exchange helix. Deviations of the angles satisfying 
(13) are found in the form 
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D 
- (e, + i e , )Sco~+~ 

4(J3Q-JQ) 

Note that according to these expressions, an anisotropy 
causes a small modulation of the helix turn angle Qri that 
propagates as 2Qr,. This naturally results in the appearance 
of the components at the wave vectors -+2Q and 234 in the 
Fourier transform of the ground-state spin arrangement, in 
agreement with the earlier results of N ~gamiya et al.3 and 
Cooper and ~1l io t t . I~  Another point to be mentioned here is 
that small variations (14) that were treated in the linear ap- 
proximation contain terms which increase with the magnetic 
field (the most drastic is the second term in 6 proportional to 
H ~ ) .  So despite being valid up to very high fields these ex- 
pressions fail near the spin-flip transition at 

In fact, this failure indicates that there is a phase transition to 
a new spin arrangement which is somewhat similar to the 
"fan" structure that was considered in detail by Nagarniya 
et ~ 1 . ~  A simple way to study this transition and the behavior 
of the system in the vicinity of the spin flip in the framework 
of the present approach is to expand the angles +i in small 
deviations from ~ 1 2 .  This method was applied in Ref. 14, 
where such transitions were studied in the triangular antifer- 
romagnet CsMnBr3. 

The classical ground-state energy corresponding to the 
found spin arrangement can be easily calculated from (7)- 
(10): 

where we introduce the transverse spin susceptibility per site 
as follows: 

Spin structures are usually verified in neutron scattering ex- 
periments by measuring the intensities of the magnetic Bragg 
peaks. At each k, they are proportional to the square of the 
absolute value of the corresponding Fourier transform of the 
spin density Sk,  which therefore can be called a Bragg am- 
plitude. Thus, for comparison with experiment it is important 
to calculate nonzero Bragg amplitudes Sk that result from 
solution (14). Introducing the unit vectors e., and e, along the 
x and y directions, we obtain 

Calculating the Bragg intensities z ~ - - I s ~ ~ ~ ,  we should keep in 
mind that the vectors SQ and S3Q have a nonzero imaginary 
part. 

4.2. Magnetic field along the z axls; low fields 

On the one hand, this case seems to be less complicated, 
since the distortion of the exchange helix ( 9 ,  which occurs 
only at low fields H < H , -  m, leaves the spins coplanar. 
This means that q$=0, and that the second equation in (1 1) 
and (13) is automatically satisfied. The first one is reduced to 
a rather simple relation, from which the small variations S4 
to the leading order in D and H  are 

It is evident from these expressions that leading order is in- 
sufficient in our approximation. To be consistent in the first 
order in the anisotropy constant D, it is necessary to perform 
the expansions to the second power of 7.1 - H  =S m. Such 
improved procedure leads to the following corrected expres- 
sion for & 

The corresponding ground-state energy and parallel suscep- 
tibility per spin are 

We can rewrite v=-2yl(TH). The Bragg amplitudes can 
also be easily calculated: 
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Actually, we can calculate the homogeneous component of 
the spin density So (i.e., the magnetization) with better accu- 
racy than in (21), i.e., to - 1 ~ 1 ~ ' ~ .  TO be completely consistent 
in this order, we should add to Sq terms like P sin(3Qri) 
with p-ID I3l2. However, kept in the first order, these terms 
will not contribute to So. For our purpose, it is therefore 
sufficient to take 64 in the form (18) and retain more terms 
in the subsequent expansions. In this way we obtain the fol- 
lowing correction to So: 

This expression describes the leading nonlinearity of the 
magnetization and can be important for comparison with the 
experiment. 

4.3. Magnetic field along z axis; high fields 

This case is the simplest and the most well-known case. 
At some critical field H e - m ,  the usual spin-flip transi- 
tion takes place and the structure becomes the same as that of 
the magnetized exchange helix (5): 

+(ex- iey)ScosC$~Sk,-Q. 

Here 

This is correct up to the complete saturation, where the cor- 
responding spin-flip field is defined by the condition 
sinq$,=l. Comparing expressions (20) and (24) for the 
ground-state energy, we obtain the following universal for- 
mula for the spin-flip field He: 

5. EASY-PLANE ANISOTROPY (D>O) 

Actually the spin reversal in the magnetic field for the 
easy-plane Heisenberg helimagnet demonstrates no new fea- 
tures, aside from those described in the previous section. All 
spin configurations occurring in this case have their exact 
analogs in the easy-axis helimagnet. It is sufficient to estab- 
lish a correspondence between the cases. 

The simplest case is one in which the magnetic field is 
directed along the z axis. It is exactly the same as that in Sec. 
4.3 and is described by the same expressions [(23) and (24)]. 
Here we must keep in mind that the constant D is now posi- 
tive. 

If the field is applied in the easy plane, e.g., along the x 
axis, in low fields the spin arrangement is analogous to that 
described in Sec. 4.2. This correspondence, however, is not 
as direct as the one above. Since all spins lie in the plane, the 
solution of system (11) is obtained with Oi=r/2 and 
~$~=Qr~+Sq5~.  The first equation is then automatically satis- 
fied, while the second one for becomes exactly the same 
as the equation for Oi in the case D<O, Hllz, H<H,, but 
with D = 0. Since now the symmetry breaking in the (easy) 
spin plane is different, we will consider two possible solu- 
tions. 

A. First, we can assume 64 = 7 sin(Qri)+ 6 sin(2Qri) , 
which is exactly the same as that considered in Sec. 4.2. As 
a result, we find 7 and 6 given by (18) and (19) (of course, 
for D =O). It is evident from transformation (7) that the re- 
sultant spin Fourier components are given by the same ex- 
pressions, (21), where ex and e, are replaced by ey and ex, 
respectively. Such solution can be stabilized by the magnetic 
field in the case of a nearly ferromagnetic helix, where the 
spins tend to align along the field direction. 

B. Consider the solution in the form 
&bi = d 2 +  q cos(Qri) - 6 sin(2Qri) . The parameters 7 and 
6 are again given by (18) and (19). As was discussed above, 
in our approximation this solution is degenerate with the 
previous one and differs from it only in the phase multipliers 
in the Bragg amplitudes: 

As was shown by chubukov12 for the case of a six-sublattice 
commensurate helimagnet CsMnBr3, it is a type-B structure 
which is stabilized by the magnetic field in the sixth order. 
The corresponding frequency - H ~  appears in the magnetic 
resonance spectrum. The magnetic field makes favorable this 
solution for an antiferromagnetic spiral, since in this case it 
tends to establish the spins perpendicular to its direction. In 
the general case of the n-sublattice antiferromagnetic spiral, 
this structure (26) is stabilized by the magnetic field in the 
nth order, as discussed in Sec. 4. 

Above the spin-flip transition, which occurs at HLz and 
D>O at the same field H,. given by (25), the spin structure 
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becomes exactly the same as that discussed in Sec. 4.1 (as- 
suming Hlly) and is described by the same expressions (for 
D>O). 

6. CONCLUSION 

Here we presented the first complete treatment of the 
classical spin reversal process for a weakly uniaxial micro- 
scopic Heisenberg Hamiltonian (I), consistent up to the first 
order in the anisotropy constant D. Previously, each particu- 
lar case of this Hamiltonian was considered in the framework 
of the sublattice model. Many examples of such approach are 
found in the calculations of spin reversals in the hexagonal 
"triangular" antiferromagnets by ~hubukov, '~  ~ a n a k a , ' ~  and 
Abarzhi et al.I4 In addition to the loss of generality, in non- 
trivial cases such calculations are rather difficult and result in 
very complicated formulas, depending on the particular form 
of the exchange interactions. Thus, in most cases the spec- 
trum of the spin waves and magnetic resonance cannot be 
calculated in explicit analytical expressions on the basis of 
the sublattice model. In contrast, the results obtained in the 
present paper are quite general and rather simple. They pro- 
vide a solid basis for the subsequent spin-wave calculations 
and estimates of the fluctuational contributions to the 
ground-state energy that can be very important (even for the 
choice of the correct ground state). Although the spin struc- 
tures were calculated only for two principal orientations of 
the magnetic field, we can easily generalize for any orienta- 
tion. For this purpose, we must retain the relevant terms in 
(ll) ,  (13) and mix the sin(Qri) and cos(Qri) rotations in the 
angle variations 6 4 ,  64. Thus, for example, some results 
reported in Ref. 14 can be obtained in a more general way. 

As was already mentioned, starting with the exchange 
approximation, one can treat the magnetic structures and the 
long-wavelength spin dynamics in the framework of the phe- 
nomenological Lagrangian theory proposed by Andreev and 
~archenko. '~  For the systems described by Hamiltonian (I) 
its leading relativistic corrections are equivalent to our treat- 
ment of the anisotropy. This theory has the advantage of 
being less subjected to the corrections due to fluctuation ef- 
fects (the mean-field ground state is chosen better). However, 
it also has two substantial disadvantages in comparison with 
the microscopic theory developed here. First, it is not aimed 
at calculation of the spin density distribution and the excita- 
tions spectrum in the whole Brillouin zone. Thus, it cannot 
describe neutron scattering experiments, which are the most 
sensitive tool for studying spin systems. Secondly, to repro- 
duce the higher-order effects like the nonlinearity of the 
magnetization given by (22) such theory requires introduc- 
tion of the additional phenomenological constants. Of 
course, the microscopic theory worked out in the classical 

approximation presented here is far from being perfect and 
requires a serious treatment of quantum corrections. This 
point, as well as the calculations of the magnon spectra, will 
be the subject of our further studies. 
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