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A microscopic theory of weak gels, i.e., systems of identical monomers capable of forming from 
0 to f > 2 reversible chemical bonds with other particles at thermodynamic equilibrium, is 
devised. A new primary approximation is proposed to describe an infinite network of bonds (a gel 
fraction), and it is used to show that the formation of a gel fraction (a sol-gel transition) in 
weak gels is a second-order phase transition. At the transition point both the geometric 
characteristics of the clusters of bonds (which are analogous to the structural characteristics 
of clusters of conducting bonds in the case of percolation) and the observable physical 
(thermodynamic) parameters are singular. In view of the fundamental importance of this 
result, it is obtained in three totally different ways: 1) in terms of formal derivatives of functions 
from the physically visualizable diagram technique, which makes it possible to analyze the 
decisive role of the cyclization effects accompanying a sol-gel transition; 2) by generalizing the 
approach developed by I. M. Lifshits in the theory of polymer globules on the basis of 
density-functional formalism; 3) by employing an approximation for the statistical sum of the 
grand canonical ensemble of the system under consideration by a certain two-field 
functional integral. The abrupt changes in the thermodynamic derivatives are calculated in that 
approximation, and the features of the density-density correlation function near the 
sol-gel transition point are found. 63 1995 American Institute of Physics. 

1. INTRODUCTION 

We begin by introducing some definitions. Systems 
which are in a state of thermodynamic equilibrium with re- 
spect to the formation and cleavage of chemical bonds be- 
tween the particles (monomers) in these systems are called 
equilibrium polymer systems. To describe the classical mac- 
roscopic properties of such systems, the chemical bonds are 
treated phenomenologically as a special type of interactions, 
which, unlike ordinary electrostatic interactions, have the 
property of saturation. Owing to the property of saturation of 
chemical bonds, the formation of macromolecules can be 
treated as the establishment of a natural sequence (topology) 
of particles which are indistinguishable before polymeriza- 
tion, in which proximity implies proximity of the particles in 
space. An important characteristic of a monomer is its func- 
tionality f ,  the maximum number of chemical bonds in 
which it can participate. 

The interest in the behavior of equilibrium polymer sys- 
tems stems from their primary importance for biophysics 
(water) and earth science (silicate melts), as well as from 
their diverse applications in technology. 

The simplest example of an equilibrium polymer system 
is a system of identical f-functional monomers Af (Refs. 1 
and 2), i.e., particles which each have f identical chemical 
groups A, which are such that the formation of an A-A 
chemical bond is possible between any two of them. The 
character of the chemical equilibrium relative to the forma- 
tion and cleavage of these bonds is determined by the values 
of the chemical equilibrium constant k for those reactions3 
and the functionality f of the monomer. 

For f = 1 such an equilibrium polymer system is a mix- 
ture of monatomic and diatomic molecules (Fig. la), and its 

treatment is a problem in the theory of low-molecular-weight 
systems. For f = 2 the system is a mixture of linear (Fig. lb) 
and similar cyclic (Fig. lc) macromolecules A2, A,, .. ., 
A, , . . . , in which a certain equilibrium distribution of those 
macromolecules among the degrees of polymerization n is 
established. This distribution depends on the density of the 
monomers p= NIV (N is the total number of monomers, V is 
the volume of the system), the chemical equilibrium constant 
k, and the character of the bulk interaction of the monomers. 
As the fraction of functional groups which have reacted (the 
so-called extent of conversion) T = 2vl fN  ( v  is the equilib- 
rium number of all the bonds) tends to unity, i.e., as the mean 
degree of polymerization of the macromolecules 
L = ( 1 - r) - ' increases, the behavior of a system of bifunc- 
tional monomers at chemical equilibrium becomes universal 
and is described by a model which is isomorphic to the 
model of an n-component magnet. This isomorphism was 
described by de ~ e n n e s ~  for n = 0 ,  which corresponds to a 
state of partial equilibrium, in which the formation of cyclic 
polymers is forbidden: as was first shown in Refs. 5 and 6, 
systems at partial equilibrium with an assigned chemical po- 
tential p, for the cycles, have n = exp (&In, which can take 
any positive value (see also Refs. 7-9). In particular, at com- 
plete chemical equilibrium between the linear and cyclic 
chains, p , = O  and n = I hold, i.e., such an equilibrium poly- 
mer system is described by an ordinary Landau Hamiltonian 
with a scalar order 

Equilibrium polymer systems with f > 2 ,  which are ca- 
pable of forming branched (Fig. 2a) and cyclized structures 
(Figs. 2b and 2c) are called weak gels.2 One feature of weak 
gels is the so-called sol-gel transition, which occurs when 
the extent of conversion has a certain critical value r 
= I': < I . For I'< 1': all the monomers appear in macromol- 
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Q- * 
FIG. 1. Typical structural models appearing in equi- 

M - librium polymer systems: a) monomers and dimers 
for f'= 1; b, c) linear (b) and cyclic (c) I-, 2-, and - 3-mers for j'= 2. 

ecules (clusters of chemical bonds) of finite size, which are 
collectively called the sol fraction, and for T>T: a finite 
fraction of the monomers is included in an infinite network 
of chemical bonds (the gel fraction). 

The sol-gel transition just described clearly parallels the 
percolation formation of an infinite cluster, and many prob- 
lems and concepts in the theory of weak gels can be trans- 
lated into the language of percolation t h e ~ r ~ . ' ~ - ' ~  However, 
there is a fundamental physical difference between these 
theories, which stems from the following fact. The basic pa- 
rameters of percolation theory are p and l - p ,  which are, 
respectively, the probabilities of percolation and nonpercola- 
tion between neighboring lattice sites, the sum of the prob- 
abilities of all the possible percolation structures being, of 
course, identically equal to unity. Accordingly, the main con- 
cerns of percolation theory are the structure of the infinite 
cluster and the size distribution of the finite clusters of bonds 
in the lattice. On the other hand, in the theory of weak gels, 
the extent of conversion I?, which is analogous to p, is de- 
termined not only by the density of the monomers p and the 
chemical equilibrium constant k ( T ) ,  but also by all aspects 
of the size and structural distribution of the macromolecules. 
The sum of the weights (not the probabilities!) of all the 
structural realizations is the statistical sum of an equilibrium 
polymer system. Therefore, although the question of the 
structure of the clusters in the theory of equilibrium polymer 
systems is important, it is only of secondary importance. The 
main problem here is the calculation of the statistical sum 
and the free energy of such a system as functions of T  and 
p and an analysis of the nature of the phase equilibria and 
transitions (including sol-gel transitions to weak gels). 

An effective mathematical technique for such a calcula- 
tion is to represent the statistical sum of the equilibrium 
polymeric system in the form of a certain functional integral 
with respect to a scalar field, which was obtained for the first 
time in Ref. 6 and served as a basis for Panyukov's 
and his replica-field formalism2' (see also the reviews by 
Kuchanov et a ~ . ' ~ . ' ~ ) .  The calculation of this integral by the 
saddle-point method gives19.20 expressions for observable 
physical (not geometric!) parameters, which do not contain 
singularities at the sol-gel transition point (the gel point). A 
similar conclusion regarding the nonsingular nature of the 

physical parameters at the gel point in a simple model of a 
weak gel had previously been drawn in Ref. 13. 

However, a finer analysis based on explicit consideration 
of these nonsingular saddle-point expressions for asymptotic 
expansions in the small parameter u = (f pa 3, - ' shows that 
they are applicable only for T<T: and that extending them 
into the T > T",egion is incorrect. (A similar situation for 
contour integrals in the complex plane is well known in the 
theory of the WKB method and asymptotic expansions as the 
Stokes phenomenon.) The present work is devoted to per- 
forming such an analysis and to deriving expressions which 
are asymptotically correct in the postgelation region for the 
characteristics of equilibrium polymer systems. 

The material is presented in following manner. In Sec. 2 
we describe the original version of the functional integration 
technique and obtain the basic equations describing the be- 
havior of an equilibrium polymer system in the mean-field 
approximation. Section 3 gives another derivation of these 
equations, which is based on a generalization of the density- 
functional formalism proposed by I. M. Lifshits in the theory 
of polymer globules24 to equilibrium polymer systems. The 
results in Secs. 2 and 3 are valid only in the absence of a gel 
fraction, but the detailed presentation is necessary both for a 
comparison with Panyukov's work and for substantiating the 
fundamentally new "long-edge" approximation. This ap- 
proximation, whose name will become clear when it is de- 
scribed in Sec. 4, is based on an analysis of the distribution 
of monomers among large cyclized macromolecules using 
the physically visualizable diagram technique. It makes it 
possible to describe the nontrivial structure of an equilibrium 
polymeric structure in the postgelation region and to show 
that the sol-gel transition in weak gels is a second-order 
phase transition in a certain primary approximation. The 
physical meaning of the order parameter associated with this 
transition is revealed in Sec. 5, where the equations of the 
long-edge approximation are derived, once again, on the ba- 
sis of a modified density-functional formalism. In Sec. 6 we 
propose a representation of the statistical sum of an equilib- 
rium polymer system in the form of a certain functional in- 
tegral with respect to two scalar fields, one of which corre- 
sponds to monomers appearing in the composition of 

FIG. 2. Typical structures of molecules appear- 
ing in equilibrium polymer systems with f = 3 :  
a) branched; b, c) cyclized. 
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branched portions of macromolecules, while the other corre- 
sponds to monomers appearing in cyclized portions. Al- 
though this two-field representation, unlike the single-field 
analog considered in Sec. 2, is approximate, rather than ex- 
act, it makes it possible not only to give another derivation of 
the results in Secs. 4 and 5, but also to obtain an expression 
for the density-density correlation function for I'>Tz near 
the gel point. The logic and main results of this work are 
summarized in Conclusions. 

2. FUNCTIONAL-INTEGRATION TECHNIQUE IN THE 
THEORY OF EQUILIBRIUM POLYMER SYSTEMS 

Following I. M. ~ i f s h i t s ? ~  we redefine the problem of 
calculating the statistical sum of an equilibrium polymer sys- 
tem in the following manner. We assume that a theory of 
simple liquids has been devised and that we know everything 
about the thermodynamic and correlation characteristics of a 
so-called broken-link system, i.e., a model system of point 
particles interacting with a potential energy corresponding to 
the bulk interaction between the monomers.') What are the 
effects of the including of thermally reversible (labile) 
chemical bonds between the monomers? Under such a for- 
mulation, it is natural to define the distribution function 
fN( y), where y= (r l  ; ,rN) is a point in the configuration 
space of an N-particle equilibrium polymer system (ri  is the 
radius vector of the ith monomer), as the product 

f( ~ ) = f b ~ s (  ~ ) f s t r ( ~ ) .  (2.1) 

The first factor in (2.1), which describes the contribution of 
the bulk interaction, is the Gibbs distribution function of a 
broken-link system: 

f b l s ( ~ ) = e x ~ [ - ~ i j U ( ~ i ~ ) l T ] ,  (2.2) 

where rij= (ri-rjl is the distance between the ith and jth 
monomers, and U(r) is the potential energy of their paired 
interaction. The second factor in (2.1) describes the variation 
of the energy and the restriction of the configuration space of 
the system due to the appearance of chemical bonds in it: 

where the function g(r)  describes the additional correlation 
between the coordinates of the ith and jth monomers due to 
the appearance of an A-A chemical bond between them. It is 
related to the chemical equilibrium constant k(T) for the 
formation and cleavage of A-A bonds by the expression 

The product in (2.3), unlike that in (2.2) is taken only for the 
pairs of bonded particles or, stated differently, for the edges 
of a certain graph G, which characterizes the order in which 
the monomers are joined to one another, and then the sum- 
mation is performed over all the possible topological struc- 
tures (graphs) G of the system under consideration. 

Let us consider the statistical sum of the grand canonical 
ensemble: 

Here Z,(V,T) = 1 and 

where A is the thermal wavelength of the monomers, and the 
multiplier [N! (h3 f !lN]- ' takes into account the identical 
nature of the latter. 

The following exact representation in the form of a func- 
tional integral with respect to the scalar fields 4 is valid for 
the statistical sum (2.5) of an equilibrium polymer system: 

where z= Ad3exp (,dl'), Y is an auxiliary multiplier, 
which is assigned to each free (unreacted) functional 
group A and is set equal to unity at the end of the calcula- 
tions, and i- '  is the inverse of the integral operator 
i 4 = S g ( l r -  r l l ) + ( r l ) d ~ ' ,  whose kernel is the correlation 
function g( r )  defined above. Finally X({r(r))) is the gener- 
ating functional of all the connected Mayer diagrams of the 
corresponding broken-link system, which is well known in 
the theory of simple liquids. Referring to Ref. 26 and 27 for 
the definition of the properties of this functional, here we 
present only the expressions used below for its first and sec- 
ond variational derivatives with respect to the local activities 
r(r)  : 

Here ~ ( 7 )  and G(r l - r2 )=(~ (r l )~ (r2 ) ) - (~ (r l ) ) (~ ( f2 ) )  
are, respectively, the density and the density-density correla- 
tor of the particles in the broken-link system as a function of 
their activity T. 

The representation (2.7), which was first obtained in Ref. 
6 by comparing diagram expansions of the integral (2.7) and 
the statistical sum (2.5), realizes the basic idea of Lifshits's 
approach, viz., separation of the high-molecular-weight ef- 
fects caused by the presence of bonds from the effects of the 
condensed state, which are determined by the bulk interac- 
tion. An alternative proof of this representation was given in 
Refs. 17- 19. Both proofs were discussed in detail in Ref. 28. 

The calculation of the integral (2.7) by the saddle-point 
method leads to the following equation for the saddle-point 
value of the order parameter 6: 
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where we used the definitions (2.8)-(2.10). Equation (2.12) 
makes it possible to relate the saddle-point value of the order 
parameter 4 and the monomer density p: 

On the other hand, the value of 4 is related to the value of 
the extent of conversion (the fraction of unreacted functional 
groups) r by the equation 

The law of mass action3 for the equilibrium reaction 
A + A F! A2 follows from (2.13) and (2.14): 

[The application of Eq. (2.15) and the second of equalities 
(2.13) to a monofunctional equilibrium polymer system also 
leads to the relation (2.4).] Next, the pressure P and the 
chemical potential p of the equilibrium polymer system as a 
function of p and T are defined by the expressions 

whence we have 

where po is the pressure and ,uo is the chemical potential of 
the broken-link system, whose dependences on p and T are 
assumed to be known from the theory of low-molecular- 
weight liquids or are determined on the basis of phenomeno- 
logical arguments, and we have introduced the notation 

Finally, to calculate the density-density correlation function 
of an equilibrium polymer system, we use the standard rela- 
tion 

where Z(V,T,z,{cp(r))) is the statistical sum of the system 
as a functional of the spatially nonuniform external field 
cp(r), which is obtained by plugging the expression 

into (2.7) and (2.8) instead of (2.9). A calculation of (2.19) 
using (2.10) and (2.1 1) gives 

+(~(~(4(rl)))P(~(4(r2))))-(~(~(4(rl)))) 

x(p(7(4(r2)))). (2.20) 

For simplicity we shall henceforth assume that the character- 
istic scale ro of the correlation function Gbls(rl - r2) of the 
broken-link system is always much smaller than the correla- 
tion radius R ,  which characterizes the correlation function 
(2.20) of the polymer system. (This assumption is, of course, 
subject to verification.) Under this approximation the corre- 
lation function Gbls(rl - r2) can be written in the form 

where Go satisfies the following rigorous thermodynamic 
equality (Ref. 3): 

A major role in the ensuing presentation is also played 
by the conelator 

for which an expression is easily obtained by restricting our- 
selves to only the quadratic terms in the expansion of the 
Lagrangian S(4)  appearing in integrals like (2.18) in the 
deviations S$(r) = 4(r )  - 4: 

where 

are the corresponding Fourier transforms. A direct calcula- 
tion of the second variational derivative of the functional S, 
which is explicitly defined by Eq. (2.8), gives 

=g,'[i,l-(f- 1 ) r - f  TP(p,T)I, (2.25) 

where we have used the equalities (2.8) and (2.9) and intro- 
duced the quantity 

which is identically equal to zero only for an ideal gas, as 
well as the normalized correlation function 
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The condition for stability of the resulting saddle-point 
solution +(r) = 4 is positiveness of the quantity JP1(q) ,  i.e., 

In the range of scales which are large compared with the 
root-mean-square bond a 2  = $ r 2 g ( r ) d ~ ~ $ g ( r ) d ~ ,  the Fou- 
rier transform gq of the isotropic function g(r) appearing in 
(2.25) can be expanded in powers of q2a2 to obtain the ex- 
pression for the correlator J(q)  

Calculating the averages of the form (2.18) appearing in the 
expression (2.20) for the correlation function of an equilib- 
rium polymer system, we can easily show that the latter has 
the form 

where we used the symbol { a  .} to denote the sum of all the 
terms representing integrals of the form (q52(r)), which di- 
verge on small scales. As was shown in Refs. 7, 29, and 30, 
these integrals produce only some renormalization of the 
characteristics of the broken-link system (a broken-link sys- 
tem normalized in this manner is generally called a quasimo- 
nomer system3') and can be omitted provided X(T) is under- 
stood to be a phenomenological functional which specifically 
characterizes the properties of the "quasimonomers." Then 
(2.28) can be rewritten in the following form (see Refs. 6, 
17, and 32): 

As is seen from (2.29), in the absence of a bulk interac- 
tion (P=O) the values of the correlation function G(q) at 
q = O  and the correlation radius in the approximation under 
consideration become infinite at the critical value of the ex- 
tent of conversion 

The point defined by the condition (2.30) is called the gel 
point. It is known in the theory of polymers'.2 that the so- 
called weight-average degree of polymerization of branched 
(with f >2) macromolecules diverges at just this point: 

PA ca 

[n(l) is the equilibrium number of 1-mers per unit volume of 
the system], indicating the appearance of an infinite cluster 

of bonds, i.e., a gel fraction, in the system at T>T:. The 
expressions (2.30) and (2.31), which define the gel point, 
also hold when there is a bulk At the same 
time, the critical value r, of the extent of conversion, at 
which the singularity of the correlation function (2.29) is 
achieved, has the form 

and when there is a finite contribution from the bulk interac- 
tion ( p  # 0), it does not coincide with the value of rS,, 
which is characteristic of the gel point. 

Thus, the foregoing fairly trivial calculation of the inte- 
gral (2.4) by the saddle-point method followed by calculation 
of the correlation function of an equilibrium polymer system 
in the Gaussian approximation in accordance with Ref. 13- 
15,17-19 shows that the gel point r=rZ is not associated 
with singularities of the thermodynamic behavior of weak 
gels in the general case. To understand how an error can be 
made in such a calculation at all, it is useful to present an- 
other derivation of Eqs. (2.12)-(2.17), which is based on a 
generalization of the explicit approach developed by I. M. 
Lifshits for the treatment of polymer globules. It makes it 
possible not only to better understand the physical meaning 
of these equations, but also to point out an important small 
parameter, which plays the role of the Ginzburg parameter in 
our problem. 

3. DENSITY-FUNCTIONAL FORMALISM IN THE THEORY OF 
EQUILIBRIUM POLYMER SYSTEMS 

As was first pointed out by I. M. ~ i f s h i t s ? ~  an expres- 
sion for a statistical sum like (2.6) can be greatly simplified, 
if the characteristic scale a of the function g(r)  (the root- 
mean-square bond length) is large in comparison with both 
the mean distance between particles and the characteristic 
scale ro of the bulk interaction between them: 

In this case the rapidly fluctuating quantity exp[- U( y ) / q  
manages to be averaged and to become a functional of the 
smoothed density p(r) during integration over small regions 
of configuration space in which the multiplier in front of it 
remains practically constant. Therefore, the integral in the 
configuration space (2.6) can be rewritten in the form of the 
following integral with respect to the smoothed densities: 

where the contribution of the bulk interaction 
F*({p(r)),T) is equal to the free energy Fo of the broken- 
link system minus the contribution of its configurational en- 
tropy: 
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and the contribution to the free energy determined by the 
structure of the system is 

To calculate F, , , ( {p ( r ) ) ,T)  we note that, owing to the first of 
the inequalities (3.1), the quantity z I l g ( l r i j l )  is itself a func- 
tional of the smoothed density p  .(r) of unreacted functional 
groups A, and the density p ( r )  of monomers and can thus be 
moved outside the integral. Therefore, 

where T ( r )  = p,(r)l  f p ( r )  is the local extent of conversion. 
Here the first term 

corresponds to the entropy of accommodation of the mono- 
mers Af in space, and the minimum of the second term, in 
which the first component corresponds to the entropy of se- 
lection of the reacted groups and the second component cor- 
responds to the entropy of accommodation of the bonds in 
the system of completely reacted groups selected, is sought 
in the space of all possible density distributions pA(r )  of 
the latter. The remaining calculation of the functional 
j ( { P  , ( r ) ) )  is carried out in the simplest way by applying 
Eq. (3.6) to a system of "completely linked" monofunctional 
units (i.e., monofunctional units which have reacted with one 
another): 

where S 2 ( { p A ( r ) ) )  is the exactly calculated entropy of a sys- 
tem of ideal particles bonded in pairs: 

Here q ( r )  is the external field whose application to the sys- 
tem renders pA(r )  an equilibrium distribution, and 
E ( { q ( r ) ) )  and F 2 ( { q ( r ) ) )  are, respectively, the energy and 
free energy of the system in that field and satisfy the follow- 
ing trivial expressions: 

where 

N is the number of pairs in the system, and we have intro- 
duced the normalized multiplier 

Eliminating q ( r )  from (3.10) and substituting (3.9)-(3.14) 
into (3.8), we obtain 

where the functions t,b and p ,  are related by Eq. (3.13), 
which, after evaluation of the integral (3.15), is equivalent to 
the Lifshits equation 

The application of Eq. (3.6) with consideration of (3.7), 
(3.8), and (3.15) to an equilibrium system of bifunctional 
units with T ( r ) =  1 leads to the expression 

which was first derived by I. M. ~ i f s h i t s ~ ~  for the entropy of 
the condensed state of one macroscopic polymer chain. This 
would be expected, since an equilibrium system of bifunc- 
tional units with T ( r )  = 1 is distinguished from one macro- 
scopic polymer chain only by the presence of small rings, 
which are totally disregarded in the mean-field approxima- 
tion under consideration. 

Minimization of the second term in (3.6) for 
p ( r )  = const again leads to Eq. (2.15) for the extent of con- 
version, and then the free energy of the equilibrium polymer 
system can ultimately be written in the form 

where r as a function of p"= f g p  is defined by Eq. (2.15). 
It is easy to see that Eqs. (2.16) and (2.17) again follow 

from the expression (3.18) for the free energy. Their physical 
meaning is now understood: owing to the presence of the 
small parameters (3. I), all the thermodynamic parameters are 
composed of three additive contributions, viz., the energetic 
contribution of the bulk interaction, the entropic contribution 
associated with the combinatoric accommodation of the 
monomers in space [the first term in (3.6)], and the entropic- 
energetic contribution associated with accommodation of the 
bonds. This is manifested especially clearly in the expression 
for the pressure (2.16), which states that each bond makes an 
identical negative contribution to the pressure corresponding 
to the elimination of one translational degree of freedom of 
the system. 

One weak point in the derivation presented is the ap- 
proximation of both the total free energy, which is equal to 
the logarithm of the integral in (3.2), and the structural con- 
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tribution to it F,,,({p(r)),T), which is defined in (3.6), by 
their extremum values (i-e., by the mean-field approxima- 
tion). Nevertheless, the occurrence of the strongest fluctua- 
tions of the structural free energy near the gel point is indi- 
cated by the divergence of the correlation function (1.23), 
which determines the position of the gel point in an ideal 
weak gel, at that point. Therefore, the treatment performed 
must be refined particularly in the part which relates to the 
calculation of the structural contriblltion F,,, . 

4. DIAGRAM TECHNIQUE AND THE LONG-EDGE 
APPROXIMATION 

4.1. Diagram technique and expansions in the cyclization 
parameter 

Let us consider the diagram expansion of the functional 
integral (2.7) in the absence of a bulk interaction, i.e., when 
xo( r) = 7 holds: 

Z(V,T,z) 

Although such an expansion is only asymptotic for f>2, 
since the integral in (4.1) diverges in that case, when certain 
conditions" are satisfied, it can be treated as a convergent 
expansion. An important advantage of such an expansion is 
that it is exceptionally visualizable. In fact, the integral in 
(4.1), which is regarded as the formal generating function of 
all (connected and disconnected) the corresponding diagrams 
(Fig. 2), can be represented on the basis of Mayer's first 
t h e ~ r e m ~ ~ ' ~ ~  in the form 

where x(z,Y) is the formal generating function of all the 
connected diagrams: 

Here r(Gs,,) is the symmetry index of the diagram G,,, , 
which has s vertices, 1 entering lines, and fs-1 internal 
lines, and its contribution W(GsVl) is given by the integral 

where the product is taken over all the edges of the graph G. 
On the other hand, since there is no bulk interaction in the 
system under consideration, its pressure should be propor- 
tional to the density of all the molecules in the system (their 
number per unit volume): 

FIG. 3. Definition of the generating function u ( z , t ) .  A dashed line depicts 
the function GtXe defined by (4.17), and the solid line depicts the correlation 
function g ( r ) ,  a vertex depicts the multiplier z  (the activity of the mono- 
mers), and the free "tails" depict the multiplier r (the generating function of 
all "appendages"). a) Sum of the contributions of the simple cyclic blocks 
of all sizes (the contribution of the structure depicted in Fig. 2b appears in 
this sum). b) Sum of the contributions of the simplest nontrivial cyclic 
blocks which are topologically equivalent to the structure depicted in Fig. 
2c. 

The physical meaning of the quantities on the left-hand sides 
of Eqs. (4.3) and (4.5) is identical, and so their right-hand 
sides are equal term-by-term, i.e., the contribution of each 
diagram is equal to the partial density of the macromolecules 
whose structural formula is described by that diagram. A 
more general statement is also valid: the density of any mac- 
romolecular fragment at chemical equilibrium is equal to the 
generating function of all the connected diagrams on which a 
part corresponding to the fragment under consideration can 
be identified. (This can easily be seen by considering the set 
of these fragments as a certain subsystem characterized by 
their chemical potential, which is assumed to be equal to 
zero after the concentration sought is calculated.) 

Further progress requires the introduction of a topologi- 
cal classification. A graph is called a composite (1-reducible) 
graph, if it contains at least one edge (bridge), whose re- 
moval divides it into two unconnected parts. A graph in 
which all the edges are bridges is called a tree, and a graph 
which does not have bridges is called 1-irreducible (strongly 
connected). When all the bridges are broken, a graph is di- 
vided into blocks, which may be vertices with f tails ("seed 
f-tails"), simple cycles, and irreducible graphs with tails at- 
tached to their edges. The tails (or islands, according to Pop- 
ov's terminology33) correspond to functional groups. The 
ones which were used to form edges appearing in blocks are 
called internal, and all the others (which did not react and 
were not used to form bridges) are called external. The struc- 
ture of a block will be described here by the topology of the 
corresponding irreducible graph S, i.e., by the graph ob- 
tained from S when all of its external functional groups 
(tails) are removed, as shown in Fig. 3, and by assigning the 
number 1; of tails on the ith edge for all the edges of the 
graph S. The structure of a composite graph is described by 
the equivalent tree obtained after the replacement of each 
block by an I-functional vertex ("1-tail," where 1 =  E l i  is the 
total size of the block) and by indicating the structure of all 
the 

A fundamental role is played by the generating function 
of all the blocks 

'a .a 

~ ( ~ n r , / ) z " ~ t l  
~ ( z , r ) = C  ~ ( S , , , I ) =  C C C 

s r =  1 I =  I S,,, ,I r(~l l l , / )  
, (4.6) 
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where the summation is carried out first over all the topo- 
logically different graphs S,,,, with assigned values of m and 
1 and then over all the possible values of the latter. The 
function u(z,t) is used to express such fundamental charac- 
teristics of the system as the total concentration of monomers 

the total concentration of all external functional groups 

and the concentration of umeacted groups 

where t (the generating function of all the "appendages" on 
an external functional group of a block) is related to the 
activities z and Y by the equation 

Equations (4.8)-(4.10) give expressions for the concentra- 
tion of external bonds 

and the pressure, i.e., the generating function x(z,l), 

as well as the external extent of conversion 

In writing Eqs. (4.11)-(4.13) and below we utilize the fact 
that the auxiliary multiplier Y is equal to unity in a state of 
complete thermodynamic equilibrium with respect to the for- 
mation and cleavage of A-A chemical bonds. Equations 
(4.10) and (4.12) are simply somewhat unusual forms of the 
Legendre transformation corresponding to the transition 
from the thermodynamic potential characterizing the system 
in an assigned external field, whose role is played by the 
multiplier Y for the free ends of the diagrams, to the thermo- 
dynamic potential characterizing the system at an assigned 
value of the order parameter. The replacement of variables 
cp + Y 4 cp in the functional integral (4.1) would make it pos- 
sible to bring these equations into a standard form, but it 
would worsen the interpretation of the transformed quantities 
in physically visualizable models and is therefore not advis- 
able. 

It is also useful to present the expressions for the total 
extent of conversion r and the internal extent of conversion 
ri, which characterizes the degree of cyclization: 

n t - l  1 -[ '= -= - 
P . f h P  ' 

We now move on to the calculation of u(z,t), restricting 
ourselves to the case of f  = 3  for simplicity. To this end we 
regroup the infinite sum in (4.6), first summing the contribu- 
tions of the infinite subset of blocks with the assigned topol- 
ogy G over the lengths of all their edges and then summing 
the contributions thus obtained over all the topologies: 

Here the first term corresponds to the seed tritails and de- 
scribes the contribution of the monomers appearing in the 
composition of the tree-like macromolecular fragments. The 
second term describes the contribution of the simple cycles 
(Fig. 3a). In the third term the summation is performed over 
all the irreducible graphs, whose contribution is calculated 
from Eq. (4.4) with the one difference that each edge is rep- 
resented not by a seed correlation function g(r) ,  but by a 
function G ,,,(r), whose Fourier transform is defined by the 
expression 

This term, the first of whose components is represented in 
Fig. 3b, describes the contribution of all the cyclized frag- 
ments of complex topology. 

In the zeroth approximation, in which we leave only the 
first term in (4.16) when we substitute it into Eqs. (4.7)- 
(4.15), we have 

whence it is easy to obtain 

The second equality in (4.19) defines the dependence of the 
extent of conversion r on the activity z, and the last equality 
is equivalent to the law of mass action (2.15). The latter is 
thus a direct consequence of the zeroth approximation (the 
tree approximation), which completely ignores the effect of 
cyclization in the macromolecules. 

We now evaluate the parameter K in the expansion 
(4.16), which is naturally called the cyclization parameter, 
since an increase in it signifies an increase in the contribution 
of cycles. It is easy to see that K has the form 

Using the equations of the zeroth approximation (4.18) to go 
over to the physical variables p and T, we can easily see that 
the expression for the cyclization parameter has the form6," 
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where r:,= 112 is the classical value of the critical extent of 
conversion following from the condition that the Green's 
function (4.17) calculated in the tree approximation goes to 
infinity. Thus, the role of the Ginzburg parameter, which en- 
sures the possibility of employing the classical description 
almost up to the gel point, is played by u = (pa3)-'. 

4.2. Long-edge approximation: what is the length of an edge 
and why is it large near the gel point? 

To understand what happens in the immediate vicinity of 
the gel point and in the postgelation region, we elucidate the 
meaning of the quantity 1- ' = 1 - zgot. For this purpose we 
consider a block with a fairly large number of edges. Using 
the standard rules of the diagram technique, we obtain the 
total concentration of such blocks of all possible sizes35 

as well as the size of these blocks 

where 3s is the number of edges in the cyclized block under 
consideration. 

Thus, 1 is simply the doubled length of an edge in an 
infinitely large block and can, therefore, be only positive. 
Just this circumstance permits application of the equations 
obtained above by expansion in the cyclization parameter to 
the analysis of the behavior of the system in the postgelation 
region. In fact, in the classical region the inverse length sat- 
isfies 1-' = 1 - 2 r  and decreases as the extent of conversion 
increases until the cyclization parameter is of order unity. 
Then we have 

As the extent of conversion increases further, this quan- 
tity can obviously only decrease, while remaining positive (it 
cannot increase, since the cyclization parameter would then 
become small again, and the system would return to the clas- 
sical region). Therefore, to lowest order in u, we can set 

in the postgelation region. 
The expansion in the cyclization parameter then be- 

comes meaningless. This can be interpreted in the following 
manner: in calculating the characteristics of a cyclized mate- 
rial, we cannot restrict ourselves to consideration of only the 
few simplest cycles, and the entire set must be taken into 
account at once. For the constructive realization of this re- 
quirement we introduce the function 6, which is defined as 
the ratio of the concentration of all the external functional 
groups belonging to cycles (which is equal to the concentra- 
tion p2 of all monomers belonging to "long edges"), to the 
concentration 3p3 of all functional groups belonging to the 
simple tritails, which made the main contribution in the clas- 
sical pregelation region: 

Then Eq. (4.11) can be rewritten using the condition 
Y = I and the definitions (4.26) in the form 

where we used the condition (4.25) to pass to the latter 
equality. This condition allows us to assume that the number 
of all the monomers belonging to the set of all cycles (the 
"cyclizate") is simply equal to the number of their edge 
monomers (when the length of the edges is infinite or even 
simply very large, the number of monomers fastening them, 
without which, of course, there would be no cyclizate, can be 
neglected), i.e., the number of external functional groups in 
the cyclizate. Therefore, the total density of the monomers is 
given by the equation 

which, together with Eq. (4.27), uniquely specifies t and S as 
functions of p=3gop, which has the meaning of a reduced 
density: 

Equation (4.29d) is especially important for determining the 
properties of the set of all the finite (tree-like in our approxi- 
mation) macromolecules (the sol fraction). In fact, since the 
sol fraction is a subsystem in thermodynamic equilibrium 
with the gel fraction, the activity of the monomers belonging 
to it is also specified by this equation. Therefore, in the 
postgelation region the extent of conversion and the total 
density of the monomers belonging to the sol fraction are 
determined by substituting this equation into (4.19): 

From (4.29) and (4.14) we obtain an equation for the total 
extent of conversion 

and equations for the density and the extent of conversion of 
the monomers belonging to the gel fraction 

It is also useful to present the expression for the fraction of 
intramolecular chemical bonds in the gel: 

The numerator in (4.32a) is the number of independent 
cycles (the cyclic rank) in a macromolecule formed from 
N:+ 1 m ~ n o r n e r s . ' ~ , ' ~ " ~  It represents the excess of the num- 
ber N ,  of chemical bonds actually forming the macromol- 
ecule under consideration over the minimal number N: of 
chemical boncls needed to combine the same monomers in a 
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single macromolecule. In the thermodynamic limit 
N , = ~ N ; T , / ~ ,  the 1 can be neglected, and we obtain 

Equations (4.29)-(4.32) parametrically specify the structural 
functions T ( j ) ,  T,(r) ,  T,(r), p,(T), p,(T), and r ( r )  in 
the postgelation region, which differ from the classical de- 
scription dating back to  lor^' (see also Refs. 18 and 19), 
which is defined by Eqs. (4.18) and (4.19) of the tree ap- 
proximation. For comparison, in parallel we present asymp- 
totes of the main characteristics of the system in the postge- 
lation vicinity of the gel point, writing the results of the 
classical "zero cyclization" approximation (4.18) in the up- 
per row and the result of our long-edge (infinite-edge) ap- 
proximation in the lower row (in the pregelation region the 
approximations are equivalent): 

where T= p- 2. As is seen from (4.33)-(4.36), the classical 
approximation leads to incorrect values not only of the am- 
plitudes, but also of the exponents in the power-function as- 
ymptotes indicated. 

Finally, for the structural contribution to the pressure we 
obtain 

where r and 6 are defined as functions of j by equations 
(2.15) and (4.29), respectively. 

The most striking difference between the two approxi- 
mations under consideration is that upon passage through the 
gel point, such thermodynamic derivatives as the compress- 
ibility and the specific heat, as well as the derivative of the 
extent of conversion ( d r l d ~ ) ~ ,  are continuous in the zero- 
cyclization approximation, as was already noted in the intro- 
duction, while in the long-edge approximation they have a 
discontinuity corresponding to a second-order phase transi- 
tion. For example, 

Therefore, our proposed approximation, which was obtained 
in a very permissive treatment with formal generating func- 
tions, requires additional substantiation. 

5. PHYSICAL MEANING OF THE LONG-EDGE 
APPROXIMATION AND MODIFIED DENSITY-FUNCTIONAL 
FORMALISM 

In order to clearly grasp the physical meaning of the 
"long-edge approximation," we consider the structure of an 
infinite cluster appearing after the sol-gel transition using 
the following procedure. We select a certain finite volume in 
this system (a "window") and color all the functional groups 
A located within this window in the following manner. If 
they form a bond belonging to at least one closed loop of 
bonds located completely within the window selected, we 
color them green; otherwise, we color them red (the unre- 
acted groups will also be red). Increasing the size of the 
window selected step-by-step, we see that some of the origi- 
nally red groups and bonds should be recolored green in the 
second or subsequent steps. Thus, as the size of the window 
L increases, the fraction of all the green bonds increases and 
tends to a certain limiting value when L--+w. As was shown 
above, in the pregelation region ( r < r ; )  this value is of the 
order of u = (pa 3)- I ,  where p and a are the density of the 
functional groups A and the length of an A-A bond, respec- 
tively, and tends to zero when u-+O. 

However, as follows from the definition (4.21) of the 
cyclization parameter K and the entire treatment performed 
in the preceding section, a finite fraction of long edges, 
which must consist of green bonds, appears in the infinite 
cluster. Also, the mean number of joints between green and 
red bonds per long edge is of the order of the mean degree of 
polymerization in such an edge, and the number of joints 
between green bonds is of the order of the number of edge 
ends, i.e. - 1. Therefore, for 1 the contribution of the 
latter for describing the effect of the difference between the 
green and red bonds is naturally neglected in the principal 
approximation, and our system is treated as a set of only 
AB2 monomers with two green groups and one red group 
and Ag monomers with three red groups, which have the 
densities p2 and p3 ,  respectively. Then the free energy of the 
system under consideration can be written in the following 
form: 

The first two terms of the virtual free energy (5.2) corre- 
spond to the entropy of distribution in the space of AB2 
monomers belonging to long edges with a density p2(r) and 
A, monomers belonging to ordinary tails with a density 
p3(r) (with consideration of the different symmetry indices 
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of these monomers), while the third and fourth terms, in 
which the functional 5; is defined by (3.15), correspond to the 
free energies of formation of the bonds at chemical equilib- 
rium between the "internal" B functional groups, which 
form long edges, and formations of "bridges" at chemical 
equilibrium between cycles and tritails of reacted "external" 
A functional groups having a density pe(r)re(r).  Finally, 
the first term is the free energy of selection of the latter from 
all the external functional groups, which have a density 
pe(r). The densities appearing in (5.2) satisfy the relations 

and the equilibrium values r e ( r )  and pz(r) are given by the 
equations 

Below the gel point (when p= 3gop>2) the solution of Eqs. 
(5.3)-(5.5) leads to the same dependences of re and p2 on 
6 as those obtained above in the long-edge approximation 
and presented in (4.26) and (4.29), whereas above the gel 
point (p< 2) the derivative SF/ 6p2(r) is always positive 
and the free-energy minimum is achieved, as would be ex- 
pected, when p2 = 0. 

Substituting the extremum values of p2,  p3,  p e r  and 
re into (5.2), we ultimately obtain the following expression 
for the free energy of the homogeneous equilibrium polymer 
systems below the gel point 

P2 6 g ~ ~ 3 + l n ~ + ~ + [ ~ + l n ( 1 - r e )  f l= - -  In- 
P e P P 

where Eqs. (4.26) and (4.29) were used during the transition 
to the second line in (5.7). Taking the derivatives of (3.18) 
and (5.6), which define the free energies of the pre- and 
postgelation regions in our approximation, we can easily see 
that the entropy of the system at the gel point is continuous 
and that when the gel fraction forms the specific heat in- 
creases abruptly by a quantity which equals 

where k(T)=go is the chemical equilibrium constant, when 
f = 3 .  

Thus, the long-edge approximation corresponds to tak- 
ing into account the contribution of the green bonds to the 
thermodynamics of the system under consideration, and in 
this approximation we take into account the actual appear- 
ance of long edges (green bonds), due to the effective 
changes in the symmetry of the monomers forming them 
(A3 2 AB,), and we correctly describe the correlation of 
most of the green bonds, which are separated from one an- 

other (along the long edges) by a distance much smaller than 
the mean edge length i. The picture of the gel fraction cor- 
responding to this approximation can be represented as a 
solution of branched fragments, some of whose terminal 
monomers are "linked to" the condensate. The bonds by 
which they are "linked" are the same intramolecular bonds 
whose fraction is specified by Eqs. (4.32). All the bonds 
belonging to such branched fragments are red, and when 
r = 1 holds, all the red bonds are intramolecular. The con- 
densate can be represented as an infinite linear chain consist- 
ing of green bonds and filling the entire volume of the sys- 
tem with a finite density. 

It should be stressed that such a picture of a condensate 
is exaggerated, since, as was shown above, it is possible to 
distinguish between red and green bonds because the free 
bonds, unlike the red bonds, "know" that they belong to a 
finite cycle (with a size 2 7 monomers). However, our ap- 
proximation assumes t= m, so that on a finite scale as large 
as one desires, the only difference between the red and green 
bonds is the symmetry of the monomers forming these bonds 
(A3 and AB,), and just this difference is described with an 
accuracy 0 (1 / i )  by the exaggerated picture of the conden- 
sate presented. The weak spot in this approximation is the 
extrapolation of the correlation thus obtained to distances 
much larger than i. Therefore, the long-edge approximation 
can be regarded as a specific (postgelation!) mean-field ap- 
proximation, which, however, clearly surpasses the older 
mean-field approximation (the tree approximation), which 
totally neglects the presence and correlation of the green 
bonds. 

6. APPROXIMATION OF THE STATISTICAL SUM OF AN 
EQUILIBRIUM POLYMER SYSTEM BY A TWO- 
FIELD FUNCTIONAL INTEGRAL AND CORRELATION 
PROPERTIES OF THE GEL PHASE 

The picture developed above of a sol-gel transition as a 
second-order phase transition associated with a change in the 
symmetry of a finite fraction of the monomers in the system 
also makes it possible to properly modify the field- 
theoretical description of an equilibrium polymer system de- 
veloped in Sec. 2. To this end we note that the proposed 
picture of a weak gel as a set of branched "red" fragments 
and a linear "green" condensate in an approximation which 
does not take into account the contribution of large cycles of 
finite dimensions and the bulk interaction corresponds to the 
following generalization of the representation (4.1): 
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1 
~ ~ ( { d ( r ) , $ ( r ) ) ) =  d v ( 4 i P l 4 +  $ i - ' $ 1  (6.lb) 

where the field 4 corresponds to red functional groups, and 
i+b corresponds to green functional groups. It is important to 
stress that, unlike the representation (4.1), whose diagram 
expansion coincides exactly with the expansion of the statis- 
tical sum (2.5), the representation (6.1) is only an approxi- 
mation corresponding to the picture of red trees linked by a 
linear green condensate, which is valid in our approximation. 
This approximation, however, makes it possible to find the 
correct asymptotic expression for the functional integral 
(2.7) and the correlation functions of weak gels in the 
postgelation region. 

Direct generalization of the arguments which led from 
(4.1) to (2.7) (see Refs. 6, 17-19, and 28) makes it possible 
to pass from (6.1) to the following functional-integral repre- 
sentation of the statistical sum of an equilibrium polymer 
system: 

Z(z ,V ,T)  = s w w  ex~[-Lo({4(r),*(r>J)l ' 

The multiplier y ( r) , which corresponds to the unreacted 
functional groups, and the external fields cpR(r) and cpc(r) 
were introduced for convenience in certain intermediate cal- 
culations and are set equal to unity and zero, respectively, 
after those calculations. 

Let us now consider the results produced by the new 
representation (6.2) for the statistical sum, restricting our- 
selves to the case of f  = 3 for simplicity. We start out from 
the mean-field equations specifying the values of the fields 
+(r) and @(r) which give the extremum value of the func- 
tion (6.3a): 

where we have introduced the quantity 

Differentiation with respect to the auxiliary function y(r) 
gives the mean value of the local density of unreacted func- 
tional groups, and differentiation with respect to cpR(r) and 
cp,(r) gives the mean values of the local densities of the red 
and red-green monomers, respectively: 

whence for the total density of the monomers p and the 
extent of conversion r we obtain 

It is easy to see that Eqs. (6.4)-(6.7) have two sets of solu- 
tions, one of which coincides with the solution obtained in 
Sec. 2: 

+(r)=O, 4 ( 4 +  l )=p=3gop.  (6.9) 

The other set satisfies a system of equations following from 
(6.4) 

f$(C$+ l ) = ~ ( l + S ) / ( 1 + 3 S ) ,  (6.1 Oa) 

( 4 +  1)~=2f i / (1+36) ,  (6.1 Ob) 

which leads to the same parametric dependence of T(fi) that 
was obtained in the preceding section in the long-edge ap- 
proximation: 

Since, according to the definition (6.5), S can only be posi- 
tive, this new set of solutions exists only when 
r> r;= 112. To test the stability of these solutions, we find 
a matrix of second variational derivatives from the Lagrang- 
ian S defined by (6.2) and (6.3) with respect to its functional 
arguments 4, (r) = $(r) and 4,(r) = i+b(r): 

where g - ' (rl  - r2) is the kernel of the operator g- , and /3 
is defined by (2.26). Performing the differentiations pre- 
scribed in (6.12) and finding the Fourier transforms of the 
functions appearing here, for the matrix 

we obtain 

Kij(q)=g,'((~-')ij-go~~uiuk), (6.1 3) 

where we have introduced the new notations 
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It is easy to see that the classical solution (6.9), for 
which the off-diagonal elements of K i j  are identically equal 
to zero, is stable when the condition (1.20a) and the inequal- 
ity r < r Z ,  which ensure the positive signs of K,, and 
Kz2, respectively, are satisfied. Therefore, when the inequal- 
ity I'<r: is violated, i.e., in the gel fraction, this solution 
must become unstable. With respect to the solution (6.10), 
the matrix L - ' for it at r > r: is written using (6.11) in the 
form 

We see that in the range of values of the total monomer 
density p for which /? is positive (which corresponds to ef- 
fective attraction of particles of the broken-link system), the 
solution (6.10) also exhibits instability, which corresponds to 
the impossibility of the existence of spatially uniform weak 
gels in this region. For P<O the solution (6.10) is stable if 
the following inequality holds: 

This means that the effective repulsion of the particles of the 
broken-link system needed to compensate the gel fraction 
against collapse due to the presence of intramolecular bonds 
must exceed a certain finite critical value. 

Equation (2.29) is reproduced in analogy to the deriva- 
tion of (1.13) and (1.23) for the density-density correlation 
function of all the monomers in an equilibrium polymer sys- 
tem for T<r:,  and forT>rS, we obtain 

One remarkable property of (6.19), which can be measured 
directly in experiments on the scattering of light by weak 
gels, is the fact that it can be separated into a sum of two 
contributions with different characteristic scales: 

The limiting value of the first of these contributions at the gel 
point (i.e., when 6-+0) coincides with the limiting value of 
the correlation function in the limit 1'4 IT:.- 0,  while the 

second contribution behaves in a very unusual manner: its 
limit as &O is equal to zero at any finite value of the scat- 
tering vector q ,  but remains finite at q=O. The presence of 
this contribution can produce the observed effects and is an- 
other specific feature of our long-edge approximation. 

7. CONCLUSIONS 

Thus, in the present work we have shown that the clas- 
sical description of chemical equilibrium in a system of 
branched and cyclized macromolecules using the law of 
mass action (2.15) is fundamentally incorrect when an infi- 
nite cluster of (even labile) chemical bonds appears in the 
system. The formation of such a cluster, i.e., the sol-gel 
transition, exhibits all the features of a second-order phase 
transition, i.e., it is manifested in singularities not only of the 
geometric probabilities of the distribution of the structures of 
the clusters of bonds, as is generally assumed, but also of the 
physical (thermodynamic) characteristics of the system. Here 
the specific singularity (6.19) of the density-density correla- 
tion function of the monomers is especially unusual. In view 
of the unconventional nature of the system under consider- 
ation (weak gels) and the combination of methods used to 
treat it, it would be useful to enumerate the main steps in the 
derivation of the results obtained once again. 

1. The asymptotic expansion of the statistical sum (4.1) 
of a grand canonical ensemble of an ideal weak gel has the 
accuracy O ( K ) ,  where K is the cyclization parameter defined 
by (4.21). Therefore, as the gel point, at which ~ - - t m ,  is 
approached, the fraction of monomers belonging to cyclized 
macromolecules and blocks of such macromolecules ceases 
to be small. 

2. When the small parameter u = 1 l ( fpa3)  is present, the 
main [with an accuracy o(u)]  part of the monomers belong- 
ing to the cyclized blocks appear in the composition of the 
long edges of these blocks. Such monomers, which initially 
consist of identical functional groups, exhibit a natural sym- 
metry difference between the functional groups which par- 
ticipate and which do not participate in the formation of the 
edge of a cycle. In particular, when f = 3 holds, such mono- 
mers may be regarded as new monomers of the AB2 type, 
which have a symmetry index equal to 2, while the original 
A3 monomers had a symmetry index equal to 3!. 

3. The cyclization effect can be described with an accu- 
racy O ( u )  by including the fraction S of AB2 monomers in 
the treatment as the parameter for minimization of the free 
energy, which can be calculated using the smoothed-density- 
functional formalism. Such a calculation (which is somewhat 
similar to the calculation of the asymptotic forms of high- 
order diagrams in Ref. 36) shows that 6=0 holds for 
r < r" and 6>0  holds for T > I?: . Thus, the classical treat- 
ment, which starts out from the assumption that all the bonds 
are identical or the equivalent assumption that the reactivities 
of all the functional groups are equal, regardless of the type 
of bond formed by them (in terms of our work this is equiva- 
lent to an assumption that 6 is equal to zero both above and 
below the gel point), leads to an avoidably overestimated 
value of the free energy of weak gels in the postgelation 
region. We note that just such an assumption also implicitly 
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underlies the derivation of the assertion that the sol-gel tran- 
sition is nonsingular in Ref. 13. 

4. The single-field representation (2.7) of the statistical 
sum is a complicated analytical function of the activity z, 
which allows an expansion with terms of both signs in the 
parameters K>O and p<O with a zero radius of conver- 
gence. Therefore, the fact that its calculation by the saddle- 
point method reproduces the results of the classical descrip- 
tion signifies only that such a calculation is equivalent to a 
method for summing that series which ignores the 
A3 --+ AB2 lowering of the symmetry of the monomers de- 
scribed above. 

5. The correct procedure for summing this series (which 
takes into account the symmetry effect just cited) is realized 
by the two-field representation (6.2) of the statistical sum. 
The calculation of the corresponding functional integral by 
the saddle-point method shows that the classical solution 
@=O in the postgelation region is not only less advantageous, 
but is also totally unstable. The density-density correlation 
function calculated for the stable solution $#O in the vicinity 
of the gel point has a very specific singular contribution with 
an infinitely small amplitude, an infinitely large correlation 
radius, and a finite integral over the volume. 

In conclusion we offer two more remarks. The results 
obtained for the postgelation region in this work in the long- 
edge approximation and the results obtained by Panyukov 
using his replica generalization17-20 of our first one-field 
technique for describing weak gels, which was presented in 
Ref. 6 and in Sec. 2 of this paper [representation (2.7)] differ 
significantly. In our opinion, this is because the implicit rep- 
resentation of the structure of the cyclized material in the 
original version of the field formalism and its replica gener- 
alization do not permit correct summation of the contribu- 
tions of all the diagrams corresponding to the description of 
an infinite cluster. However, the replica methods developed 
in Refs. 17-20 can be effectively employed to generalize our 
two-field representation (6.2) instead of the one-field repre- 
sentation (2.7). Such a generalization would be very useful, 
in particular, for describing "frozen" polymer networks." 

Our second remark is associated with the possibility of 
observing real systems characterized by the small parameter 
u = l l ( fpa3) .  From a rigorous point of view, for real sys- 
tems of point monomers Af we have u 3 1,  so that their 
choice for consideration in this work was dictated mainly by 
methodical interests. The parameter u ,  however, is small for 
another completely realistic system, in which the role of the 
monomers is played by long chains of N monomers contain- 
ing f 4 N side-chain functional groups A (which are capable, 
for example, of forming hydrogen bonds37). Physically, such 
a system of "extended" monomers is totally analogous to the 
system of point monomers considered above, but its quanti- 
tative analysis requires some modification of the methods 
developed here. However, consideration of both of the gen- 
eralizations cited is beyond the scope of the present work. 
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