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A completely quantum-mechanical calculation of the IR spectrum for the dipole-forbidden 
vibrational modes of adsorbed molecules on a metal surface is performed. It is shown for broad- 
band metals with a simple band structure that the asymmetry of the line shape is determined 
by nonlocal effects, while the nonadiabaticity makes a small contribution. In the region of the 
limiting anomalous skin effect ( o / w , 4  1, where o is the frequency of the IR radiation, 
o, = V F  / 6, V F  is the Fermi velocity, S= c /op  is the depth of the skin layer, and wp is the plasma 
frequency) the broad-band absorption spectrum caused by the adsorbed molecules has an 
asymptotic limit oO. The theory is compared with new absolute measurements of the IR spectrum 
of the CO/Cu(100) system. O 1995 American Institute of Physics. 

I. INTRODUCTION 

The remarkable discovery of the possibility of detecting 
formally dipole-forbidden vibrational modes of adsorbed 
molecules using IR spectroscopy'-4 has led to considerable 
progress in understanding this phenomenon.5-9 We have pro- 
posed a theory based on the concept of "surface 
conductivity." ''-I3 

According to that theory, the scattering of electrons on 
the potential of adsorbed molecules results in the broad-band 
absorption of IR radiation. When the frequency o of the IR 
radiation coincides with the resonant frequency wo of dipole- 
forbidden modes of adsorbed molecules, the molecules move 
in resonance with the collective motion of the conduction 
electrons. This causes the added resistance to disappear, and 
the reflection coefficient becomes equal to its value for a 
clean surface. Therefore, dipole-forbidden modes produce an 
antiabsorption peak at the resonant frequency when the re- 
flection coefficient at the resonant frequency is greater than 
the off-resonance values. At the same time, the reverse pic- 
ture is observed for dipole-active modes. 

The theory developed in Refs. 9 and 10 is valid only in 
the range of frequencies o+ WI = V F /  8, where v is the 
Fermi velocity, S= c /op  is the depth of the skin layer, and 
o, is the plasma frequency. The frequency of the frustrated 
rotations for CO/Cu(100) is o0 = 285 cm- ', and for copper 
we have w,-500 cm-'; therefore, the condition for the 
validity of local optics is not satisfied. In Refs. 12 and 13 we 
expanded the region of applicability of the original theory to 
the entire range of IR radiation. For adsorbate modes which 
are parallel to the surface this theory predicts an antiabsorp- 
tion peak with asymmetry, which is uniquely determined by 
the ratio w/wl (we assume that the bulk value of the Drude 
relaxation time is equal to infinity). 

However, the theory presented in Refs. 12 and 13 is not 
complete. First, we used an approach based on the semiclas- 

sical Boltzmann equation to obtain the change in the reflec- 
tion coefficient caused by adsorbates. As a result, all the 
quantum interference effects are lost, and, more importantly, 
the theory is valid only for modes of an atomic adsorbate 
which are parallel to the surface. It is difficult to extend the 
theory so as to also include the frustrated rotations of mol- 
ecules for which experimental data have been obtained, since 
it is not clear which boundary conditions should be used in 
this case to solve the Boltzmann equation. 

In this paper we present a general theory of the IR spec- 
trum of dipole-forbidden modes based on the Kubo formal- 
ism. We previously used such an approach only in the region 
where local optics are valid, i.e., where w+ w, (Ref. 13). 
The present theory is valid for an arbitrary type of vibra- 
tional mode and for the entire range of IR frequencies, and it 
includes all quantum interference phenomena. The theory 
can be generalized to superconductors in the same manner as 
was done in the investigation of the anomalous skin effect 
without consideration of the modes of the adsorbed mol- 
ecules in Refs. 14 and 15. 

The only restriction on the theory stems from the fact 
that the final equations are obtained in the "jellium" model; 
therefore, it is rigorously valid only for metals with a simple 
band structure. In principle, the theory can be generalized to 
metals with a complicated band structure. However, this re- 
quires considerably more elaborate calculations. 

2. THEORY 

We consider a semi-infinite metal with a low concentra- 
tion n, of adsorbates randomly distributed over the surface. 
We shall treat the metal in the jellium model, i.e., the charge 
of the metal ions is assumed to be smeared uniformly in a 
semi-infinite positive background. Let x, y ,  and z denote a 
coordinate system with the x y  plane in the plane of the sur- 
face and the positive z axis directed into the metal. We shall 
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consider vibrational modes of adsorbed molecules which are 
dipole-forbidden with respect to the normal component of 
the electric field E, , so that there is no direct interaction 
between E, and modes of the adsorbed molecules. As was 
shown in Refs. 12 and 13, the parallel component of the 
electric field Ell is extremely small on a surface; therefore, 
the direct interaction between Ell and modes of adsorbates 
can also be neglected. However, there is an important inter- 
action between Ell and the "free" conduction electrons of the 
metal. The latter interaction is more significant than the 
former due to the high polarizability of the "free" electrons. 
Within the metal (in the IR frequency range) the parallel 
component of the electric field Ell is considerably greater 
than the normal component EL ; therefore, we can neglect 
the interaction between EL and the conduction electrons 
within the metal. Assuming that Ell is aligned parallel to the 
x axis, after averaging of the current density in the xy plane, 
we can write the Hamiltonian of the system with consider- 
ation of the interaction of the conduction electrons with the 
external electromagnetic radiation in the form 

Hel-ph= C (~ak~ :a~ku+  h-c*)Qa, 
k a a  

(3) 

+ where cka and c; are the creation operators for electrons in 
the Ik) and la) states with spin a of the metal and the ad- 
sorbate, respectively, b i  is the creation operator of a phonon 
for the dipole-forbidden modes of the adsorbates, 
Qa= e o ( b i  + b,) is the operator of the normal coordinate of 
a mode, Wak= dVak ldQ, for Qa= 0 ,  E,(z) is the parallel 
component of the electric field, and jx(z) is the parallel com- 
ponent of the current-density operator, which we shall write 
in a basis of wave functions in the jellium model in the 
absence of adsorbates. At distances of several angstroms 
from the surface, the one-electron wave functions have the 
form 

where we have normalized the wave functions to a parallel- 
epiped with an area of the upper face A and a thickness L,  
<Dp is the phase shift, k =  (kll,p), and kll = (k,,k,) is the com- 
ponent of the wave vector parallel to the surface. In a thin 
layer with a thickness of several angstroms near the surface 
of the metal (z=O) the wave function differs from (5)-(6). 
However, this spatial region makes a negligible contribution 

to the change in the reflection coefficient, since the electron- 
photon interaction extends several hundred angstroms into 
the metal (the depth of the skin layer is S= cl w). In the basis 
of wave functions (5)-(6) the current-density operator has 
the form 

where k, = (kll ,p ,) and k2 = (Ql ,p2). According to the Kubo 
formula,I6 the relation between an electric field and the in- 
duced electrical current density can be written in the form 

where II(z,zl,w) is specified by the retarded form of the 
"current-current" Green's function, which, in turn, can be 
defined using the temperature Green's function by means of 
analytical continuation from a discrete set of points 
wn=2n-inT on the positive imaginary axis to the real axis. 
The "current-current" temperature Green's function has the 
form 

d r  exp(iwn~)(~7~x(~,r)~x(~',~)). 

(10) 

After plugging (7) into (lo), we obtain 

k'k '  
up;(~')~p~(~1)Mk~k~(iwn)9 (11) 

where 

In the present work we shall calculate the change in the 
reflectivity due to adsorbates in a linear approximation with 
respect to the adsorbate concentration na . In this approxima- 
tion the indirect interaction of the adsorbed molecules 
through electronic states of the metal can be neglected. Dia- 
grammatic representations of the various Green's functions 
for this case are shown in Fig. 1. The analytical expressions 
corresponding to these diagrams have the form 

k ' k '  k ' k '  
Mk:k:(ion) = n I 2(iol,) 

k l k 2  
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FIG. I .  Feynman diagrams which were taken into account in the cal- 
culations of the conductivity. The wavy lines represent the phonon 
Green's functions and the lines with arrows represent the electronic 
Green's functions. 

where the Fermi and Bose frequencies are w; = (2n + 1 ) TT 
and wn=2rnT,  respectively with n = 0 , 2  1 ; -., and Gkkr, 
Gak , Gka , and D are the one-particle temperature Green's = ~ T Q ~ X  Gaa(iw;)[ lu( iw;+iwn) + ,u(io; 
functions 

I 

o n  

P  
Gkkl( iw;)= - d r  exp(iw;r)(T, cku(r)c:,,(0)) 

0 fi= 2 ( w , ~ c ~ , c ~ , , +  h.~.),  
kau 

(23) 

- -- 8kk' VZk V a k l  +- i ~ ; -  E~ 1 0 , -  ek Gaa(iw;)- 1 0 , -  ~k 
9 (16) 

I 
p( iw; )=  C - . 

k i ~ ; - & ~  (24) 

Gak( io ; )  ' - d~ e ~ ~ ( i w ~ r ) ( ~ ~ ~ , ( r ) c k + , ( ~ ) )  
I o P  The summation over the Fermi frequencies can be per- 

formed using the spectral representations for the Green's 
- Vak -- 

1 Gaa(iw;) 9 

7) functions 
iw,- E~ 

and the well known rules for such surnmati~n.'~ After sum- 
(I9)  mation and analytical continuation from a discrete set of 

points on the imaginary axis to the upper section along the 
real axis, we obtain 

k ' k '  
l j k :k: (w)=2/ :md& C d & ' p k 2 k ; ( & ) P k ; k , ( & l )  
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where f ( e )  is the Fermi distribution function. For 
w < r  = T T T C . ~ ~  v , ~ ~ ~ S ( & ~ -  e k )  we can restrict ourselves in the 
expansion of Z p h ( o )  in powers of o to the linear term, i.e., 

where (. .)EF=TTC.k.. S(cF-  e k ) .  The zero-order term 
Zph(0)  can be included in the definition of oo and will 
henceforth be omitted. Equation ( 1 1 )  contains a product of 
four rapidly oscillating functions, which can be represented 
in the form 

x cos(q ' z '  + O p ;  - O p ; )  (33) 

+ rapidly oscillating terms, 

where q = p l - p 2  and q' - p i - p l , .  
After summation with respect to the momenta in Eq. 

( l l ) ,  the rapidly oscillating terms in Eq. (33) give an inter- 
ference term, which vanishes after averaging with respect to 
the short-wavelength oscillations. The most important contri- 
bution to the sum in ( 1  1 )  is made by the first term in Eq. (33) 
with q = 1 / 6 4 k F ,  where kF is the Fermi momentum. For 
such q we have @ , I - @ P 2 = 0 ,  v ~ ~ v ~ ~ + ~ = I v ~ ~ ~ ~ ,  
VukWzk+q=VakWzk, etc. Substituting (13),  (27),  and (28) 
into Eq. ( l l ) ,  neglecting the interference terms with short- 
wavelength oscillations, and taking into account that only 
with terms with kl l=  kli make a nonzero contribution during 
the summation with respect to the momenta, we obtain 

where 

- 
' (40) 

and Q , = ( 2 ~ o ~ ) - " ~ .  For q G k F  we have 

af 
f ( ~ k + ~ ) - f ( & k ) =  - v F ' ~ =  - S ( E F - E ~ ) V F . Q .  (41) a& k 

Substituting this expression into (36) we obtain 

In Eq. (42) the branch of the logarithm which vanishes when 
q =O is taken. The first term in Eq. (42) gives the local term, 
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which cancels out with the first term in Eq. (9) when 
n ( z )  = no holds, where no is the electron density in the metal 
without adsorbates averaged over the short-wavelength oscil- 
lations. In our calculations we use the approximation of a 
metal with an infinite band-gap width. In this approximation 
the width of the electronic level for an adsorbate 
r ( ~ )  = ~ ~ x ~ [ v , ~ ~ ~ S ( E  - e k )  does not depend on the energy 
E ,  and with consideration of Anderson's compensation 
theorem,17 even in the presence of adsorbates the averaged 
electron density is equal to n o ,  i.e., the contribution of the 
adsorbates to the averaged electron density vanishes. 

In calculating rr imp(q ,q l )  we can deform the contour of 
integration with respect to E and e k  SO that it consists of 
paths around the poles at E = e k  t w and sections in which 
I E - E ~ ~ B W ,  V F ~ .  The paths about the poles make the fol- 
lowing contribution 

When approximation (41) is used for w e  T, (43) takes 
on the form 

In the integration region far from the poles the depen- 
dence on q and w in the integrand can be neglected. In this 
case the contribution from this integration region is given by 
the expression 

With consideration of the fact that for a metal with an 
infinite band ( T  = const) 

we find that the contribution from the regions far from the 
poles vanishes in this approximation. 

Thus, in the infinite-band approximation r r imp(q ,q l )  is 
determined by the contribution (44). 

The calculation of l ( q )  is performed similarly. The con- 
tribution from the paths around the poles at E = E ~ +  w is 
given by the formula 

and the contribution from the parts of the contour far from 
the poles is given by the formula 

When Eq. (46) is taken into account, the last expression will 
be equal to zero in the infinite-band limit. We note that the 
contribution (48) is determined by the polarization current, 
which is related to the adiabatic oscillations of the polariza- 
tion charge of the adsorbate. As follows from Anderson's 
theorem,17 in the infinite-band limit the polarization charge is 
equal to zero; therefore, the polarization current associated 
with its motion will also be equal to zero. 

The reflection coefficient is defined by the formula12 

where E:(O) is the derivative of the parallel component of 
the electric field along a normal to the surface and 8 is the 
angle of incidence. If the length is measured in units of 
S= CIW, , the reflection coefficient is given by the formula 

where g ( 5 )  = E x ( & ! ) .  
The function g ( 5 )  is determined from the solution of 

Maxwell's equation 

where 

qcose 
qq(8)= 1 + i S  - - 

P ' 
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p= wlw, . It is convenient to solve Eq. (51) by means of the 
even continuation of g(5)  into the region - m < ( <  0 .  For 
such a continuation g(5)  = g(  - 5 )  , and the first derivative 
g 1 ( 6 )  has a discontinuity at 5 = 0 .  In the range 
- m< 5< + m the function g ( 5 )  satisfies the equation 

After the replacement g--+Ai the constant A  vanishes 
from the equation. The solution of the equation obtained as a 
result of such a replacement in the linear approximation of 
nu has the form 

where i o ( 5 )  satisfies Eq. (59) for fIhP= 0  and A  = 1. This 
solution can easily be obtained using a Fourier technique,12 
and it has the form 

As a result of the calculations with consideration of the 
fact that it(+ 0 )  = 112, for the change in the reflection co- 
efficient upon adsorption we obtain 

Let us consider the limiting cases. The case of P S  1 
corresponds to the region where local optics are valid. In this 
case cp,(0) can be set equal to unity, ~ ( q ) =  q2+ 1, and 
f ( 0 ) =  1 .  As a result we find that in this limit 

For oscillations of an adatom parallel to the surface, we 
have q =  710 = ?I,,, and 

We previously obtained this result in Refs. 10-13. 
The case of P 4  1 corresponds to the limiting anomalous 

skin effect. In this case it is convenient to introduce a new 
variable x=cos$ and to perform the integration first with 
respect to x. Here we must note that in the limit p6 1 the 
main contribution to the integral is associated with the paths 
around the poles at x=  Plq + is. Physically this means that 
in the case of the limiting anomalous skin effect, only elec- 
trons moving at grazing angles to the surface make a signifi- 
cant contribution to the reflection coefficient. This stems 
from the fact that only these electrons experience the effect 
of the external electromagnetic field over the course of a 
complete oscillation period of the electromagnetic field. At 
the same time, electrons moving along a normal to the sur- 
face experience the effect of the external field over the 
course of a time which is small compared with the oscillation 
period of the electromagnetic field. 

As a result of the calculations we obtain 

It follows from (69) that the background absorption tends to 
a constant as w+O. This result differs from the result ob- 
tained in the quasiclassical treatment, in which the back- 
ground absorption varies according to a w2I3 law.12 How- 
ever, since electrons moving at grazing angles to the surface 
interact considerably less strongly with the adsorbates than 
do electrons moving at angles close to a normal to the sur- 
face, because a ( ~ / 2 ) 4 a ( O ) ,  holds the constant to which the 
background absorption tends will be very small, and it will 
be very difficult to determine it in an experiment. 

3. NUMERICAL RESULTS AND DISCUSSION 

It follows from the results obtained that the reflectivity 
depends in the general case on the angular dependence of the 
matrix element VUkF( 0, c p )  . However, inasmuch as this de- 
pendence appears under an integral sign, it should be ex- 
pected that the final results will depend weakly on the details 
of the behavior of V,,kF(B,cp). Therefore, in analogy to the 
representations of diffuse reflection from a s u r f a ~ e , ' ~ ~ ' ~  we 
approximate the functions a ( $ )  and b ( 8 )  by their mean val- 
ues a($ )  and b ( 0 ) .  Since the functions a ( 0 )  and b ( 0 )  sat- 
isfy the normalization conditions 
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FIG. 2. Results of measurements of the 
change in the broad-band reflectivity caused 
by the ~ ( 2 x 2 )  CO shucture on Cu(100) 
(the thin solid line and the circles in the in- 
set) and the calculations described in the 
text. The inset shows the magnified region 
of dipole-forbidden frustrated rotations. 

the mean values will be equal to a= 314 and b= 217~. We 
introduce the quantity 

If we introduce the notations ik,Vok=@(k) and 
Wok= cp(k), we have 

Since (@q*) is a real quantity, it follows from 
Schwarz's inequality that O S r S  1. For parallel modes of ana- 
tomic adsorbate 

therefore, 

and from (72) we have r =  1. The multiplier r has a simple 
physical meaning. The multiplier r takes into account the 
fact that in the general case, in which r<  1 ,  it is impossible 
to eliminate the relative motion between different points of a 
vibrating adsorbed molecule and the drift of the conduction 
electrons. l2  

Figure 2 presents a comparison of the calculated reflec- 

tion coefficient with the experimental data obtained in Ref. 
19 for the c(2 X 2) COICu(100) system. 

The reflection coefficient is calculated from Eq. (63) 
with the parameters w, =400 cm-', 77 = 0.07 cm-', r=0.5, 
and vO= 1.7 cm-'. We note that the frequency dependence of 
the background absorption and the asymmetry of the reso- 
nance curve in the inset are determined by the single param- 
eter w,, and it is remarkable that both curves agree well with 
the experimental data at the same value of wl, which, more- 
over, is close to the value obtained in the jellium model for 
Cu with one conduction electron per Cu atom: 
w,(theory)=(vFlc)wp-440 cm-'. The friction coefficient 
corresponds to a lifetime of -70 ps for parallel modes of CO 
on Cu(100). This value is close both to the theoretical esti- 
mate -40-100 ps obtained for CO on Cu(100) at zero 
temperaturez0 and to the value -40 ps obtained from resis- 
tance measurements for a copper thin film covered with CO 
(Ref. 9). Finally, to obtain the theoretical curves in the inset 
in Fig. 2, we used the friction coefficient q,=1.7 cm-', 
which corresponds to a lifetime following the excitation of 
electron-hole pairs equal to -3 ps and is in good agreement 
with the theoretical estimate -1 ps (Ref. 20). We also note 
that in the present calculations there is no contribution to the 
asymmetry of the line shape from the effect of the nonadia- 
baticity of the modes. This contribution arises because in the 
general case the current density induced in a metal as a result 
of the adsorbate modes has imaginary and real parts: 
I(q)  = 1, + i12 . The imaginary part arises because the induced 
current density is not in phase with the modes of the adsor- 
bates. The real part I ,  is associated with the paths around the 
poles in Eq. (40) and is governed by the frictional force 
between the modes of the adsorbate molecules and the drift 
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of the conduction electrons, while the real part l 2  is associ- 
ated with the adiabatic oscillations of the polarization charge. 
It follows from the analysis conducted in the present work 
that 1 2 1 1 , -  w l W ,  where W is the width of the conduction 
band. Hence it follows that in the case of broad-band metals 
l 2  and, accordingly, the contribution of the nonadiabaticity 
effects to the asymmetry of the line shape can be neglected. 
We note that the nonadiabaticity parameter for dipole-active 
modes is determined by the ration w / r  (Ref. 5). The contri- 
bution of the nonadiabaticity effects to the asymmetry of the 
line shape can be significant only for narrow-band metals. 
This situation apparently occurs for the asymmetric modes of 
H on W(100), for which there is a narrow band of surface 
states near the Fermi level.lq6 
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