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The spatial correlation of an electron and a hole generated by light in a quasi-two-dimensional 
electron gas is investigated in the linear approximation with respect to the intensity of 
the exciting light. The correlation is determined by the interaction of electrons and holes with 
LO phonons. The theory makes it possible to calculate the distribution function FN(r )  
( r  is the two-dimensional vector of the relative motion of an electron and a hole, and N is the 
number of LO phonons emitted), as well as the function F N ( r , K )  ( K is the wave vector 
of the motion of the center of mass of the respective electron-hole pair), which is related to the 
fourth-rank scattering tensor in multiphonon resonant Raman scattering. A calculation of 
F N ( r )  is performed for a quantum well of rectangular shape with infinitely high potential barriers 
in the approximation of a model interaction, which presumes the absence of a dependence 
of the interaction between the electron and an LO phonon on the wave vector of the phonon. Exact 
expressions are obtained for F N ( r )  within this approximation and in the heavy-hole 
approximation over a broad range of variation of the frequency of the exciting light, which 
includes both the resonant case, in which the electron drops to the minimum of the size- 
quantization band after the emission of an LO phonon, and the nonresonant case. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

Multiphonon resonant Raman scattering is an effective 
tool for investigating quasi-two-dimensional electron struc- 
tures, i.e., superlattices, quantum wells, and inversion 
layers.' The effect is confined to the appearance of a series of 
peaks in the scattered light, which are known as phonon 
replicas, at the frequencies w, = w I -  NuLO,  where w, and 
wl are the frequencies of the scattered and exciting light, 
respectively, oLo is the frequency of the LO phonons, N is 
the number of the phonon replica, which is equal to the num- 
ber of phonons emitted in the scattering process.2 If the fre- 
quency w, is in the range of the fundamental absorption of 
the semiconductor, the intensity of the phonon replica is 
weakly dependent on N. This circumstance has made it pos- 
sible to observe phonon replicas with large N: N = 20 for 
single-crystal In1 (Ref. 3) and N = 10 for a system of quan- 
tum wells.4 

There are two approaches to the theory of multiphonon 
resonant Raman scattering. In one of them the fourth-rank 
scattering tensor SaPyS, which determines the scattering 
cross section, is calculated directly. A special diagram tech- 
nique, which makes it possible to take into account the in- 
teraction of an electron with LO phonons in any order of 
perturbation theory, has been developed to calculate the scat- 
tering tensor, and the frequency dependence of the scattering 
cross section corresponding to the phonon replica with the 
number N has been calculated both in the absence of a mag- 
netic field and in a strong magnetic field for a three- 
dimensional semiconductor  stern^-^ and for a quasi-two- 
dimensional The other approach is based on the 
calculation of the distribution function of electron-hole pairs 
with respect to the distance between the particles in each 

pair. The spatial correlation of an electron and a hole is de- 
termined by their interaction with LO phonons and plays an 
important role in multiphonon resonant Raman scattering. 
This is illustrated by the following example. Let the absorp- 
tion of a quantum of light with a frequency wl>w,  
( h  w ,  = Eg is the width of the band gap) result in the appear- 
ance of an electron-hole pair and one LO phonon, which 
corresponds to the indirect creation of an electron-hole pair. 
Then the electron loses energy by generating LO phonons 
and directly annihilates with the same hole, if the scattering 
is treated in a linear approximation with respect to the inten- 
sity of the exciting light. When the intensity of the exciting 
light is increased, the electron can annihilate with "another" 
hole. Scattering which is nonlinear with respect to the excit- 
ing light will not be considered below. The reverse sequence 
of events is possible when an electron-hole pair is created 
directly without the emission of a phonon, and annihilation 
occurs indirectly with the virtual emission of the last phonon 
of a cascade. For simplicity, it is assumed that the hole is 
heavy and does not emit phonons. Since all the intermediate 
states of the scattering process, apart from the first or last 
state, are real, the generation of phonons results in real wan- 
dering of the electron with a mean free path X, cc a- ' ,  where 
a is the Frohlich coupling constant. In a three-dimensional 
sample the most probable volume for wandering is approxi- 
mately equal to X i  a-? In a quasi-two-dimensional sys- 
tem, in which the motion of an electron is confined to a 
plane, the wandering is restricted to a part of the plane hav- 
ing an area X: cc a-2, causing a sharp increase in the scatter- 
ing efficiency in a two-dimensional system in comparison 
with a three-dimensional system. In fact, the scattering prob- 
ability is proportional to the probability of the return of the 
electron to the point of creation of the electron-hole pair 
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after the emission of phonons, if it is assumed that the heavy 
hole remains at the site of creation of the pair. This probabil- 
ity is, in turn, inversely proportional to the dimensions of the 
region in which the electron wanders. Therefore, in a three- 
dimensional sample the scattering cross section correspond- 
ing to the Nth phonon replica is u, a a 3 ,  beginning at N= 4 
(Refs. 5 and 6), while in a quasi-two-dimensional system we 
have a, a2 for N 2 3 ,  i.e., it increases by a factor of a-' 
( a 4  1)  in comparison with the three-dimensional case.8 

It is seen from the example presented that the spatial 
correlation of an electron and a hole due to the generation of 
phonons during scattering plays a decisive role. If no such 
correlation exists, multiphonon resonant Raman scattering 
cannot occur. We stress that the we are dealing not with a 
Coulomb correlation, which produces exciton states, but with 
a correlation of a free electron and a free hole, which gener- 
ate phonons. 

For the sake of simplicity and clarity, the case of a very 
large hole effective mass is considered here. If the electron 
and hole effective masses me and mh are comparable in 
value, the two particles created by light at a single point 
wander through the crystal, emitting LO phonons, and they 
can annihilate, if they encounter one another at a single point 
again. This is possible, since the mean free path of both 
particles is restricted. The result of the theory of multiphonon 
resonant Raman scattering for comparable values of me and 
mh does not differ qualitatively from the case m h%- me . One 
exception is the case of very similar masses, in which the 
intensity of the multiphonon resonant Raman scattering in- 
creases sharply.10-12 

The distribution function of electron-hole pairs in a 
three-dimensional semiconductor was obtained in Ref. 6 (in 
the absence of a magnetic field) and in Ref. 13 for a strong 
magnetic field. Since quasi-two-dimensional systems differ 
significantly from three-dimensional semiconductors and 
since these systems have aroused a great deal of interest, it 
would be useful to develop a systematic theory, which would 
make it possible to calculate the distribution function of 
electron-hole pairs for any number of phonons emitted. 

A model of a quantum well, which is regarded as an 
example of a quasi-two-dimensional system, is formulated, 
the definition of the wave function of an electron-hole pair 
after the emission of N phonons is given, and the diagram- 
technique rules for calculating it are presented in Sec. 2. An 
expression for the wave function is derived in Sec. 3, and it 
is shown that it is an eigenfunction of the operator of the 
two-dimensional quasimomentum of the center of mass of 
the electron-hole pair. In Sec. 4 the distribution function of 
electron-hole pairs is introduced, and the diagram-technique 
rules for calculating it are presented. Section 5 is devoted to 
the derivation of general formulas for calculating the total 
number of pairs emitting N LO phonons. In Sec. 6 the rela- 
tionship between the Fourier transform of the distribution 
function and the scattering tensor is established. Sections 7 
and 8 are devoted to calculating the distribution function 
with N=O for arbitrary electron and hole effective masses 
from N I in the heavy-hole approximation. 

2. MODEL OF A QUASI-TWO-DIMENSIONAL SYSTEM AND 
WAVE FUNCTION OF AN ELECTRON-HOLE PAIR 

A theory is developed for a single rectangular quantum 
well with infinitely high walls in the case of satisfaction of 
the inequality d e k , ,  Xh[d is the width of the well and 

is the electron (hole) mean free path], which ensures 
quantization of the motion of the electron and the hole in the 
direction perpendicular to the plane of the well. If the well is 
demarcated by the z = 0 and z = d planes, in the effective- 
mass approximation the wave functions of the electron and 
the hole have the form 

where r is a two-dimensional vector in the plane of the well 
(the xy plane), k is a two-dimensional wave vector, So is the 
normalization area, n = 1,2, . . denotes the electron (hole) 
size-quantization quantum numbers, 

qn(z)= sin(.rrnzld) for O<z<d. (2.2) 

Outside of this range qn(z) = 0. The functions qn(z) satisfy 
the orthogonality and normalization conditions 

The energies of the electron and the hole are equal, respec- 
tively, to h we(k,n) and E,+ h wh(k,n), where 

A system consisting of an electron-hole pair appearing 
as a result of the absorption of one photon with a frequency 
ol (in an allowed direct transition) and a certain number of 
LO phonons is considered. Low temperatures, at which op- 
tical phonons are not excited and the interaction of an elec- 
tron and a hole with phonons results only in their emission, 
are assumed. The electron spin is not taken into account, 
since it is of no significance to the further discussion. 

We consider the wave function *,(re ,ze ,rh ,zh ,Y) of a 
system in a state in which an electron-hole pair emits N 
phonons. We write it in the form 

where is the wave function of a system of N phonons 
p'! 

corresponding to the state in which the occupation numbers 
of the phonons with the wave vectors q l  ; .. , q ~  are equal to 
unity and the remaining occupation numbers are equal to 
zero. Here Y is the set of coordinates for the phonon sub- 
system. The subscript npl, denotes the set of vectors 
q ~ , . - . , q ~ ,  and 

The function q: is calculated using the diagram technique. 
ph 

Its rules are as follows. 
1. The photon line (dashed line) corresponds to the pho- 

ton wave vector K , = O .  This line does not have correspond- 
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ing vectors, but it determines the ratio between the wave 
vectors of the electron and hole lines adjacent to it. 

2. The electron lines (solid lines) are shown above the 
line of the contour (dot-dashed line), and the hole lines (also 
solid) are shown below it. The electron and hole lines corre- 
spond to k and n ,  where k is a two-dimensional wave vector 
and n is the size-quantization number. 

3. The phonon lines are wavy, and the three-dimensional 
wave vectors q correspond to them. 

4. The law of the conservation of the transverse (in the 
plane of the well) components of the wave vectors holds at 
all the vertices (unfilled and filled points). 

5. An unfilled point corresponds to the multiplier 
Mll f i ,  where 

Vo is the normalization volume, e is the absolute value of the 
electron charge, mo is the free-electron mass, e l ,  u,, and 
nl are, respectively, the polarization vector of the exciting 
light, the group velocity, and the refractive index at the fre- 
quency w l ,  and p,, is the interband matrix element of the 
electron momentum operator. The indices n of the electron 
and hole lines leaving an unfilled point coincide, and the 
vectors k are oppositely directed. 

6. The filled points denote the vertices of the electron- 
phonon and hole-phonon interactions. A point at which an 
electron line k,n enters and from which an electron line 
k - q ,  ,nl  and a phonon line q leaves corresponds to the 
multiplier 

where 

For the Frijhlich interaction 

and KO and K,  are, respectively, the static and high- 
frequency dielectric constants of the crystal. In the case of 
the model interaction we have 

FIG. I .  Examples of diagrams correspond- 
ing to the wave function 
*enh(r, ,z, ,r, ,zh).  k, = k +  q,,, k,= k  
+ &+q3L.  k , = k + q ~ + q ~ ~ + q , ~ .  The 
numbers 1-4 mark vertical sections. 

where A is a dimensionless coupling constant. A point at 
which a hole line k,n enters and from which a hole line 
k -  QL ,n' and a phonon line q leave corresponds to the mul- 
tiplier (2.8) or to (2.9) with the opposite sign, since the in- 
teraction of a hole with an LO phonon differs from the in- 
teraction of an electron only in sign and does not depend on 
the effective mass. 

7. Each vertical section with the number j to the right of 
an unfilled point corresponds to the multiplier 

where Ei=f iw l  is the initial energy, E j  is the sum of the 
energies, and yj is the sum of the reciprocal lifetimes corre- 
sponding to all the lines passing through a given cross sec- 
tion from left to right. The reciprocal lifetime of an electron 
in the state k,n is denoted by y , (k ,n) ,  and that of a hole is 
denoted by yh(k ,n ) .  

8. Electron and hole lines with a free end and the indices 
k,n correspond to the wave functions (2.1). 

9. The summation is carried out over all the vectors k 
and indices n. 

Examples of diagrams for three-phonon scattering 
(N= 3)  with different g are presented in Fig. 1. The index g 
indicates the type of diagram. We stress that a diagram of 
type g is characterized by fixed values of the wave vectors 
q, , -. - ,q, , so that, for example, diagrams la  and lb, which 
are distinguished by transposition of the vectors q, and q2 
are different. In Fig. l c  a phonon with a wave vector q, is 
emitted by the hole. It can be emitted before a phonon with 
q, or after a phonon with q2. These alternatives also corre- 
spond to different g ,  and they should be taken into account. 

3. GENERAL EXPRESSION FOR THE WAVE FUNCTION OF 
AN ELECTRON-HOLE PAIR 

Instead of the coordinates re , z ,  ,rh ,zh of the electron 
and the hole, we introduce the coordinates of the center of 
mass and the relative motion: 

We write the wave function corresponding to a diagram of 
type g in the following form: 
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where k, ,n and kh,m are the indices of the free electron and 
hole lines. Clearly, the wave function (3.1) is the result of 
superposition of the wave functions of free (not interacting 
with phonons) electron-hole pairs. For h wl< E ,  , which cor- 
responds to nonresonant scattering, ye(h) in expression (2.10) 
can be disregarded, since we always have 
Re(Ei - E,+ ih yj 12) f 0. In this case ordinary perturbation 
theory with respect to the electron-phonon coupling constant 
is employed. However, when a crystal is illuminated in the 
region of its fundamental absorption, where the intermediate 
states are real, rather than virtual, ordinary perturbation 
theory is not applicable, and restructuring of the perturbation 
theory series is necessary in order that the quantities 
which are proportional to the electron-phonon coupling con- 
stant, would appear in the cross sections. Just such a restruc- 
tured perturbation theory is used in the present work. 

The coefficients Cf,,kh,n,m,nph contain the Kronecker 

delta where 

which follows from conservation of the transverse compo- 
nents of the wave vectors. In fact, if the initial transverse 
quasimomentum of the system is equal to zero (since 
~ ~ = 0 ) ,  in each vertical section, i.e., in an intermediate state 
of the system, the total transverse quasimomentum is also 
equal to zero, as can easily be verified on the diagrams. This 
also applies to the extreme right-hand section, in which the 
total wave vector of the electron-hole pairs equals K and the 
total transverse wave vector of the phonons equals Q. Thus, 
the condition 

is satisfied. For the wave function 'Vke,kh,n,m appearing on 
the right-hand side of (3.1) we easily obtain the expression 

is the wave vector of the relative motion of the electron and 
hole. 

On the right-hand side of (3.1) we pass from summation 
with respect to k, and kh to summation with respect to K and 
k ,  using the relations 

Summing with respect to K, with consideration of (3.2) 
we obtain 

Function (3.5) is an eigenfunction of the momentum operator 
(h1i)dldR of the center of mass of the electron-hole pair in 
the plane of the quantum well. It corresponds to the eigen- 
value K= - Q. 

4. DISTRIBUTION FUNCTION OF ELECTRON-HOLE PAIRS 
WITH RESPECT TO THE RELATIVE-MOTION 
COORDINATE 

We introduce the distribution function of pairs with re- 
spect to the relative-motion coordinate FN after the emission 
of N LO phonons. This function is defined as 

and is the diagonal part of the density matrix of electron- 
hole pairs which have emitted N phonons. Using (2.4), we 
first of all integrate with respect to Y. Taking into account 
the orthonormality of the wave functions, we represent FN in 
the form 

Substituting the wave functions (3.5) into (4.2) and integrat- 
ing with respect to R and Z, we obtain 

where 

The physical meaning of F N  is as follows: F N d r  d z  is the 
number of pairs which have emitted N LO phonons in the 
ranges from r  to r+ d r  and from z to z + d z  normalized to 
one photon of exciting light. Integrating (4.3) with respect to 
z ,  it is easy to see that 
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Therefore, the distribution function of the pairs with respect 
to the coordinate r equals 

F N ( ~ ) =  I F N ( ~ . z ) ~ z =  FNnmnm(r) = FN(r,k); 
n ,m K 

(4.7) 

Using (4.5), we determine the Fourier transform of 
FNnmntmt(rrK) .  In (4.5) we introduce the new variables 
p= k -  k' and I= ( k +  k 1 ) / 2 .  Then 

where 

This Fourier transform can be visualized using diagrams, 
examples of which are presented in Fig. 2. The rules for the 
left-hand sides of the diagrams are the same as in Sec. 2, 
except for rule 8, i.e., the wave function does not correspond 
to the free ends of the electron and hole lines. The contribu- 
tion of the right-hand sides of the diagrams is distinguished 
from the contribution of the left-hand side by complex con- 
jugation. The vectors K and p, as well as the indices 
n ,m ,nl ,m ' are fixed, and the summation is carried out with 
respect to the vector I, all the vectors qi , the internal indices, 
and the types of diagrams. The contributions of the diagrams 
which are distinguished only by transposition of the qi com- 
pensate the multiplier ( N !  ) - ' . Therefore, this multiplier 
need not be written, and the transposition of the phonon vec- 
tors need not be taken into account in the diagram [see Eq. 
(2.91. 

Calculating .FNl,mnIt ,rr  by the diagram technique and us- 
ing (4.7) and (4.9), we obtain the distribution F N ( r ) .  When 
the function FNtI, , l lr~lnr(r) defined in (4.4) and (4.9) is calcu- 

FIG. 2. Two diagrams corresponding 
to the distribution function 
.F3 ,,,,,, , , , ( p , K ) :  a-the vectors K and 
p, as well as the size-quantization num- 
bers, are fixed; &the case of K=O, 
which is important for calculating the 
scattering tensor. 

lated, it should be recalled that ?: contains the Kronecker 
ph 

delta which eliminates the summation with respect to 
K in (4.4). For example, if N=O, then K= - Q = O  and 
Fonmnm(r) is represented by a double sum with respect to the 
vectors p and I. In the case of N= I ,  the set q, , . . - ,q, re- 
duces q, , and q,, = Q= - K .  Then Flnmnm(r)  is a triple 
sum with respect to p, 1, and q,, . An increase in the number 
of phonons emitted by unity adds summation with respect to 
q. 

5. TOTAL NUMBER OF ELECTRON-HOLE PAIRS WHICH 
HAVE EMITTED N LO PHONONS 

According to the definition (4.1), the total number of 
electron-hold pairs which have emitted N LO phonons 

Using (4.3) and (4.6), we obtain 

Taking into account (4.4) and ( 4 . 9 ,  we represent 1VN in the 
following form: 

where the vector I +  p12 in the index 77 defined in (4.10) has 
been replaced by k. The function N N ( K )  gives the number 
of pairs which have emitted N LO phonons and for which the 
wave vector of the motion of the center of mass equals K. 
The number of pairs is expressed in terms of the Fourier 
transform of the distribution function (4.10): 

The total number of pairs (5.1) is expressed in terms of the 
function 

using the formula 
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where F N n m n m ( p =  0 )  =~l:i,,,,, corresponds to the number of 
such pairs emitting N phonons in which the electron is found 
in the size-quantization band with the index n and the hole is 
in band m. 

6. RELATIONSHIP OF THE DISTRIBUTION FUNCTION TO 
THE SCATTERING TENSOR 

The probability of the emission of a quantum of second- 
ary radiation per unit time normalized to one photon of ex- 
citing light is defined by the expression 

In the effective-mass approximation the interaction of light 
with the electron system is specified by the constant (2.6), in 
which the index 1 for the exciting light must be replaced by 
the index s for the scattered light. The initial state of the 
system is described by the function (2.4), and the final state 
is described by the function 

which is characterized by the presence of N phonons with 
the set of wave vectors nph.  The summation over the states 
in (6.1) signifies summation over the sets nqh. 

Using (2.4), (3.1), and (6.2) and taking Into account the 
relation 

we obtain 

Plugging (6.3) into (6.1) gives 

Comparing (6.2) and (4.9, we obtain the relation 

FIG. 3. Diagrams for the distribution func- 
tions 90 ,,,,,,,, ( P )  (a) and .FI,,~,,,,,,,(P) 
X ~ , " , , ] ( P )  (b). 

Thus, the relationship between the probability of secondary 
emission and the functions FNnnnrn,(r ,K)  appearing in (4.3) 
has been obtained. Now we can relate W S N  to the scattering 
tensor SapyS, which was derived for the three-dimensional 
case in Refs. 14-16 and for a quasi-two-dimensional system 
in Ref. 8. According to Ref. 16, 

where e, and el are the polarization vectors of the scattered 
and exciting light, ul and us are the group velocities of light, 
and nl and n, are the refractive indices at the frequencies 
ol and o, , respectively. 

Equations (6.5) and (6.6) can be used to establish the 
correspondence between the convolution of the scattering 
tensor with the polarization vectors, on the one hand, and the 
functions FN,,,t,t(r= O,K= 0), on the other hand, which 
are related to F N ( r , z )  by Eqs. (4.3)-(4.5). If we pass from 
F N ( r , z )  to F,(r) by means of Eq. (4.7), we find that the 
scattering tensor is related to FN,,,rnr ( r , K ) ,  while F N ( r )  is 
determined by FN,, I ,, , ( r , K ) .  This finding differs from the 
result obtained in Ref. 6 for the three-dimensional case, in 
which the scattering tensor is related directly to the function 
FN(r=O,K= 0 ) ,  where r and K are three-dimensional vec- 
tors. In the quasi-two-dimensional system such a relationship 
is realized only for contributions to the distribution function 
and the scattering tensor which are diagonal with respect to 
the indices n ,  i.e., when the four indices coincide. 

7. DISTRIBUTION FUNCTION OF ELECTRON-HOLE PAIRS 
BEFORE THE EMISSION OF PHONONS 

As an example we calculate the distribution of electron- 
hole pairs for the N =  0 case. Then Eqs. (4.7), (4.8), and (4.9) 
lead to the relations 

X ~ ~ P ( ~ P . ~ ) ~ O , ( P ) ,  Fon=Fo,1 I , , ,  , (7.1) 

where F o n ( p )  is understood to be .Fonnnl l (p ,K=O) .  The 
corresponding diagram is presented in Fig. 3a. The real func- 
tion F o n ( p )  is represented in the form 
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If K ~ > O  holds, Ko(n) has the meaning of the magnitude of 
the wave vector of the relative motion of an electron and a 
hole which are found in the n,=nh=n size-quantization 
bands after creation of an electron-hole pair. The wave vec- 
tors of the electron and the hole are equal to ko and - ko, 
respectively, whence it follows, according to Eq. (3.3) that 
ko = k. The quantity 

characterizes the nonstationary nature of the state of an 
electron-hole pair due to the generation of LO phonons. If 
KO # 0, Q; can be represented in the form of a ratio: 

where A. is the mean free path in terms of the relative mo- 
tion, 7-0 is the lifetime of the pair in the particular state until 
the emission of an LO phonon, and v is the rate of the 

relative motion. Strictly speaking, y,, yh , and Q: depend 
on the wave vector k. Since the value of Q: is small, it is 
reasonable to take it into account only in the region of k 
where k2=  K:. Therefore, with good accuracy, Q: is a con- 
stant which depends on KO. After such an approximation the 
sum in (7.2) is calculated exactly. Passing from summation 
to integration and performing the replacement of variables 
k+ p12 = r ) ,  we represent Yon(p) in the form 

where @,(p) is represented by a double integral, which is 
calculated exactly: 

On(p)= Iwr)  o dr)  [ r ) 2 - K ~ - i ~ ~ l - 1 ~ 0 2 ~ c p [ $ + p 2  

Integrating first with respect to the angle cp and then with 
respect to the variable r), we obtain the expression for 
@,(PI: 

. arctan [ ~ ( p 2 + y l " ) ) ( y ~ ) - p 2 ) l ( p 2 - 2 ~ ~ ) ] ,  P 2, - Y + ,  (n)  

In (7.8) we have O<arctanx<.rr, i.e., arctan(+O)=O, 
arctan(-0)= T, arctan(?m) = d 2 .  Using the definition of 
Fon (7.1), we obtain 

Integration with respect to cp in (7.9) gives 2 r Jo (p r ) ,  where 
Jo is a Bessel function. Plugging in @,(p) from (7.8), we 
represent Fon in the form of a single integral: 

Integrating over the entire plane of the quantum well, we 
obtain the total number of electron-hole pairs which have 
not emitted even one phonon: 

It follows from (7.6) that 

where w1= f i - 3 ~ o ( ~ , 1 2 p  is the probability of the direct cre- 
ation of a pair per unit time under the condition K ~ P  Q: . If 
K;4 Q; holds, 16, decreases by a factor of 2. 

The distribution function fon(r) normalized to unity 
equals 

The function Von diverges in the limiting case r-+O as 
[In(rKo)] 2, if the inequality (Ko/QO)% 1 holds (the nonreso- 
nant case). In the resonant case [(KO lQo) 4 1 ] the function 
Von diverges as [ln(rQo)] 2. In this case, as is seen from (2.3), 
wl= ~ , + h ~ r ~ n ~ / 2 ~ d ~ ,  i.e., after the absorption of a quan- 
tum of light, the electron and the hole are at the extrema of 
the size-quantization bands. Let us consider these cases in 
greater detail 

If Ko%Qo holds, then we have JJ( ,")=~K;,  
y(_")= h i 2 =  Q~/K; ,  and the function g,, decreases slowly 
from g,,(O) = rr/2K0 to g , , ( 4 ~ i )  = K; . In the limit ~ 7 . ~ 6  we 
obtain g , , - t p ~ ' ~ n ( ~ l ~ ~ ) .  The replacement of gl,(p2) by 
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FIG. 4. Coordinate dependence of the distribution function fon(r) before 
phonon emission (p=rlfo,  fan= fo,li, f l n n , =  f lnn,li .  f l , = ~ ~ l '  I 0 '  

r l =  ~ : l i .  j=O, 1). Curves 1-3 were obtained for To=O. 1 and no= 1 (I), 
0.1 (2), and 0 (3). Curves 1' and 2' were calculated from the approximate 
equation (7.13). The arrows point out correspondence to exact curves. Curve 
4 was obtained for To= 0.1 and n o =  1 ,  and its vertical scale was increased 
five fold. Inset: coordinate dependence of the distribution function 
f,,,,(r) after the emission of one phonon for To=Tl=O.l when 
n o = n , = o  (curve a), R,=O, R l=0 .5  (curve b), n o = i ,  n , = o  (curve 
c), and no= 1 ,  f l ,=0.5  (curve d); p-+m,.  

g,(O), which corresponds to the polar approximation em- 
ployed in Ref. 6,  gives the following expression for fo,(r): 

We note that the replacement of g,(p2) by a constant alters 
the behavior of the integrand at large p. This accounts for the 
stronger divergence of fon(r+O) than that observed in the 
exact expression (7.12) with the function (7.10). The func- 
tion (7.13) is valid when KorS  1 .  At resonance we have 
K,=O and y(,")= 2 ~ : .  The behavior of fo,(r) is deter- 
mined by a single characteristic length Ao=( f iQ0) - '  
= JG. If &Ao holds, we have f on ( r )~[ ln ( r lAo ) ]  2. 

The decrease in the function (7.13) for the nonresonant case 
is specified by X o = h K o ~ o l p .  The ratio AolA,=KolQ, is 
much greater than unity, i.e., the resonant distribution func- 
tion decreases more rapidly than the nonresonant analog. The 
length X o  is a classical parameter, while A ,  is a quantum 
parameter, since Q i 2  m h. Figure 4 presents the coordinate 
dependence fo,,(r) for several values of the dimensionless 
parameters f lo= K ~ I ;  and Q;l:= yo/2wLo , where 
1 ; = n 1 2 ~ ~ , , .  

The condition K;  3 0 corresponds to a frequency in the 
fundamental absorption region. However, Eq. (7.12) also has 
meaning for K:<o, where the creation of an electron-hole 
pair is virtual. In the near-resonant region ( 1 ~ ~ 1 ~ 5 ~ : )  the 
results differ only slightly from those corresponding to the 
case of K;>o, since a pair can actually be created by means 
of transitions between the "tails" of the density of states in 
the two-dimensional bands. But IKol 2~ Q: holds and the 
contribution of the real processes can be neglected, then, 
setting Qo= 0 in (7.12), we obtain 

It is seen from (7.14) that fon(r) diverges at small r as 
[ln(lK0lr)] 2, and its decrease with increasing r is determined 
by 2 1 ~ ~ 1 -  '. An equation similar to (7.13) is obtained under 
the approximation 2x- 'ln(x+ d w )  4 1 : 

fon(r>=( IKol l~r)ex~(-21Kolr ) .  (7.15) 

The ratio between the exponents in (7.15) and (7.13) is equal 
to 2XolKol% 1 ,  i.e., the distribution function decreases very 
rapidly with increasing r. In other words, the size of the pair 
in a virtual transition is of the same order as the wavelength 
of the relative motion of the electron and the hole and is 
small compared with that in a real transition. The quantity 
1 KO[ is related to the energy deficiency in a virtual transition: 

Hence the lifetime of a pair in a virtual state can be esti- 
mated: 

which is unrelated to the time-dependent nature of the state. 
For the ratio between the lifetimes we have 
At/ TO = Q:/ lKol * 1 . According to (7.1 1 )  the total number 
of pairs which have not emitted any phonons has the form 
~lr , ,=hW, /2mAE,  ( l ~ ~ 1 ~ % ~ : ) ,  which is 2.rrAEl?iyo 
smaller than the number of pairs created in a real transition. 

8. DISTRIBUTION FUNCTION FOR N 3 I IN THE HEAVY- 
HOLE APPROXIMATION 

Further calculations of F,(r) in the case N 1 become 
cumbersome due to the large number of symmetric diagrams. 
Wishing to obtain results for an arbitrarily large value of N, 
we consider a model in which it is assumed that m h S m , .  If 
the hole effective mass mh is very large, by increasing wl we 
can pass through the region in which the electron can actu- 
ally emit several LO phonons and the hole can no longer 
emit any phonons. Then significant contributions to .FN(p) 
are made by the diagrams in which the phonon lines connect 
only electron lines to one another. In the limit mh+m we 
have yh(k,n)+O, since the reciprocal lifetime of the hole is 
determined not by the probability of the real emission of an 
LO phonon, but by other processes (for example, scattering 
on an impurity), which are not taken into account. 
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We calculate the distribution function of electron-hole 
pairs F l,7,1(r) after the emission of one phonon. The Fourier 

transform F l n n l ( p )  is specified by one diagram (Fig. 3b) 
and has the form 

KO is given by Eq. (7.3), in which ,u=m,, and 

To obtain simpler visualizable results, we use a model in 
which the interaction C, does not depend on q and is de- 
scribed by Eq. (2.9). Then the sums with respect to k and q 
in (8.1) separate into a product of two sums, which reduce to 
integrals like (7.7). The summation with respect to q ,  gives 

where L, is the normalization length. Taking into account 
(8.3) and (7.8), we represent F lnn l (p )  in the form 

The function g, and yg' are defined in (7.8); gn l  and yY1' - 

differ from them by the replacement KO ,Qo+ K1 , Q . Ac- 
cording to (4.4), the distribution function F ,,,, (r) equals 

The distribution function normalized to unity 
f I ,111, (r) =. 'I ,In ,F  I ,,,I ( r )  has the form 

After the emission of one LO phonon, the probability for the 
electron to be at the point of creation of the electron-donor 
pair r=O decreases. This is reflected in the fact that the 
integral in Eq. (8.6) is nonsingular in the limit r-+O. 

In the nonresonant case Kj%Qj, we have 
arctan(-Q?/K?)=T (j=O, 1 ,  y ~ = ~ f l ~ : = ~ ~ 2 ,  
("1)- y + - 4K1 , and, according to (8.5), 

The integral in (8.7) diverges logarithmically at small A (i.e., 
hj+w for ej-0,;  therefore,fIn,,(O) cc ~ ~ i 1 ~ 4 - l .  In the po- 
lar approximation, the replacement of g, and gnl  by their 
values for p = 0 gives the expression 

which is applicable when r%K,rl. We also consider the 
resonant case of K, = 0 and KO% Qo , i.e., the case in which 
the electron drops to the minimum of the band with the index 
n, after it emits a phonon (the variant with Ko=O and 
K1% Q ,  is obviously possible). In this case the integral in 
(8.6) depends on three parameters having the dimensions of 
length and satisfying the inequalities 

If r%Al holds, then f lnnl(r)  is specified by (7.13) for the 
case of N =  0,  which, however, is valid over a broader range 
of values of r. In the limit r-+O we obtain f ln,l(0) cc A3", 
i.e., flnn1(0) is higher than in the nonresonant case, and 
f lnnl(r)  decreases with r more rapidly than does the non- 
resonant function. The condition ~ ~ ~ = ( f i ~ ~ / r n , d ~ )  
~ ( n ; -  n2) can be satisfied by adjusting the parameters of 
the quantum well. Double resonance is then realized: 
KO= K1 =O. It can be shown from the general formula (8.6) 
that f ,,,,(0) A,  i.e., a further increase in f ,,,1(0) occurs. 
Plots of f Innl ( r )  calculated from Eqs. (8.5) and (8.6) are 
presented in the inset in Fig. 4. An increase in f lnnl(0)  is 
seen upon passage from the nonresonant case (curve d) to the 
resonant case (curves c and b) and to double resonance 
(curve a). Figure 5 shows the electron transitions correspond- 
ing to curves a-d. 

In the case of N 3 2 the functions FNnm(p)  correspond 
to diagrams of two types, examples of which are presented in 
Fig. 6. In one of them the phonon lines do not intersect one 
another, and in the other they do intersect. It can be shown 
that diagram 6b contains an extra coupling constant in the 
numerator in comparison with diagram 6a. Thus, it is suffi- 
cient to take into account only the noninterference contribu- 
tions, i.e., for a given N the functions .FN,,, correspond to a 
single diagram. As is seen from Fig. 6a, .F2,1,11 is a double 
sum with respect to the quantum numbers v and v'. How- 
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ever, the off-diagonal terms in the sum have smaller coupling 
constants than do the diagonal terms. Their small values are 
attributed to the fact that in the case of v #  v '  the expression 
for F2,,, contains the multipliers 

where K j (  v )  # K j ( v l ) ,  which leads to a smaller contribution 
in comparison with the case of v =  v ' .  For this reason the 
diagram in Fig. 6b makes a smaller contribution than that in 
Fig. 6a. Thus, in any diagram the indices of the electron lines 
on the right- and left-hand sides are in pairwise agreement. 
After the simplifications described above, the distribution 
function normalized to unity is given by the expression 

The index /I= no ;.a ,nN corresponds to the size- 
quantization bands into which the electron passes as it emits 
N phonons, and the index i denotes the number of phonons 
emitted after the transition to band n i  . 

In the nonresonant case, beginning at N = 2, the use of 
the polar approximation leads to the expression 

whence it follows that f N p ( 0 )  rn A 2 .  At resonance, where one 
of the K i  (for example, K N )  vanishes, we replace all the 
gni  in the general equation (8.9) except g n N ( p 2 )  by g n i ( 0 ) .  
After this replacement and the transition to the integration 
variable x= p l Q n N ,  we obtain 

FIG. 5. Transitions between size- 
quantization bands n and n ,  corresponding 
to curves a-d in the inset in Fig. 4. The fre- 
quency is plotted along the vertical axis on 
an arbitrary scale. 

For lirn f i 4 0  the integral in (8.10) diverges at the lower 
limit as A l P N i 2 ,  if we have N >  3 ,  i.e., f N P ( 0 ) " A 2 ,  as in the 
nonresonant case. For N=2 we have f N p ( ~ ) m ~ 2 1 n ~ - ' .  

9. DISCUSSION OF RESULTS 

The general theory presented above makes it possible to 
calculate both the wave function of an electron-hole pair 
which has emitted N LO phonons and distribution functions 
of other types. Apart from the distribution functions of the 
relative distance between an electron and a hole in the plane 
of a quantum well and the total number of electron-hole 
pairs which have emitted N LO phonons, which were con- 
sidered in the present work, FNnmnlm , ( r , K ) ,  which is related 
to the scattering tensor, can be calculated. 

The distribution function for N = O  was calculated ex- 
actly and describes the distribution of electron-hole pairs for 
arbitrary electron and hole effective masses in the range of 
frequencies of the exciting light corresponding to both the 
real and virtual creation of a pair. The distribution functions 
for N 2 1 were calculated with a model interaction and in the 
heavy-hole approximation. These simplifications made it 
possible to calculate the distribution functions over a broad 
range of values of Ki down to K i = O ,  which corresponds to 
the resonant case, in which the electron drops to the mini- 
mum of the size-quantization band in one of the transitions. 
The resonant distribution function decreases with the dis- 
tance more rapidly than the nonresonant analog, but this dif- 
ference is compensated by the fact that at small r  it is larger 
than the nonresonant function. The distribution functions de- 
pend on the wandering trajectory of the electron among the 
size-quantization bands during phonon emission. 

According to (8.3), in the model interaction each transi- 
tion with phonon emission has a multiplier equal to 312, if 
the transition occurs within a single band, and a multiplier 

FIG. 6. Examples of diagrams for 
.j72 , , , , , , , , ,2 (p) without interaction (a) and with 
intersection (b) of the phonon lines. 
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equal to unity, if the bands are different. If the bands change 
in each electron transition, the smallness of ( 2 1 3 ) ~  becomes 
a factor. In the case of a Frohlich interaction, the constant 
(8.3) after the integration with respect to the variables qi ,  is 
replaced by functions of qiL , which are smaller than the 
constant (8.3) over the entire range of values of q ,  . This 
should make the off-diagonal contributions small. They are 
smaller, the larger is the difference between the quantum 
numbers in the electron transition. Thus, the main contribu- 
tion to 

is made by the parts of the sum which are diagonal with 
respect to all the band indices. These assessments also apply 
to FN(r,K), which is related to the scattering tensor. The 
numerical smallness of the off-diagonal contributions is at- 
tributed to the interference of the wave functions (2.2). 

The heavy-hole approximation drastically reduces the 
number of diagrams which must be taken into account in 
calculating the distribution functions. The distribution func- 
tions for N a  1 obtained above take into account only the real 
processes of LO-phonon emission and pair creation. Consid- 
eration of the virtual processes would expand the range of 
values of wl in which the distribution function is defined. 
This would require consideration of the virtual emission of 
LO phonons by a heavy hole. 

The model of a quantum well underlying the theory de- 
veloped above is idealized, since it does not take into ac- 
count the imperfect nature of the boundaries of the well and 
the finite nature of its depth. Also, exciton states are not 
taken into account as intermediate states, in which the elec- 
tron and hole might be found during the emission of 
phonons. The deviation of the form of the well boundaries 
from planarity complicates the problem of determining the 
spectrum of the electron and the hole. However, modem 
methods for growing heterostructures are sufficiently per- 
fected and practically rule out the appearance of roughness; 
therefore, the boundaries may be considered planar with 
good accuracy. The characteristic depth of a well U equals 
0.4-0.6 eV. In order for the model of a well with infinitely 
high potential walls to correspond to reality, the following 
inequalities must be satisfied: 

If it is assumed that d = 2 ~ 1 0 - ~  cm, m,=O.lmo, 
- 

a = 3 x 1 o P 2 ,  and w L o = 2 ~ 1 0 ' 3  s ', we have fiy, 

= 2 a l w ~ o m , d l , r r = 4 . 6 ~ 1 0 - 4  eV, and h2,rr2/2m,d2 
= 9.7 X 1 0-3 eV. Thus, in a quantum well with a depth of 
0.5 eV there are six to seven size-quantization levels, and 
they are not smeared by the interaction with LO phonons. 

The intermediate exciton states must be taken into ac- 
count near the points of exciton resonance hw = E,, , where 
E,, is the exciton energy measured from the ground-state 
energy of the crystal. The inclusion of exciton states in the 
theory of multiphonon resonant Raman scattering is a prob- 
lem in its own right and requires a separate analysis. Here we 
only note that diagrams in which the last and next-to-last 
intermediate states are exciton states make an appreciable 
contribution to the distribution function and the scattering 
tensor. 
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