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The modulational instability of traveling waves in monatomic lattices with quartic anharmonicity 
is studied analytically and numerically. It is shown that the waves of the middle of the 
Brillouin zone are very unstable and that additional regions corresponding to waves propagating 
in the opposite direction appear for them in the space of perturbative wave vectors along 
with the usual modulational-instability region. A strong dependence of the recurrence phenomenon 
on the wave vectors of the dominant wave and the perturbative wave is discovered. O 1995 
American Institute of Physics. 

1. INTRODUCTION 

The investigation of the stability of wave processes in 
nonlinear systems has been the subject of an extensive list of 
publications owing to the major role which stable and decay- 
ing nonlinear excitations play in various areas of physics. 
One special case of the instability of a wave process is the 
modulational Its essential feature is that the 
amplitude of a wave in a nonlinear medium is unstable with 
respect to spatial andlor temporal modulation. Spatiotempo- 
ral Fourier analysis of a process with evolving modulational 
instability reveals not only the dominant harmonic, but also 
additional equally spaced satellite components, whose ampli- 
tudes increase exponentially in the initial stage of evolution. 
On long time scales a process controlled by modulational 
instability is periodic, i.e., the conversion of the energy of the 
dominant wave into the energy of satellites is followed by its 
return to the dominant wave. The intermediate stage is asso- 
ciated with a spatial distribution of the energy that is charac- 
teristic of a train of solitons. It has been suggested that this 
property of the modulational instability of plane waves can 
serve as a mechanism for generating ultrashort light pulses in 
nonlinear  fiber^.^ 

The modulational instability of waves is organically re- 
lated to the possibility of the existence of soliton-like exci- 
tations and has been investigated in great detail in reference 
to continuum nonlinear systems. At the same time, recent 
investigations of discrete systems, in which modulational in- 
stability has been studied to a small extent, have revealed the 
existence of strongly localized modes, which are specific to 
discrete  structure^.^-^ For example, the modulational insta- 
bility observed in a one-dimensional lattice containing only a 
narrow optical branch of excitations (a Klein-Gordon lat- 
tice) was analyzed in Ref. 9, where it was shown that its 
characteristic feature is a dependence of the instability region 
on the wave vector of the carrier wave. 

To ascertain the influence of the modulational instability 
on processes occurring in real physical systems, departure 
from the approximation associated with consideration of a 
narrow optical branch of excitations is clearly necessary. In 
this sense monatomic lattices with a potential due to the 
interaction of neighboring particles containing third- and 
fourth-order anharmonic terms are good model systems. 

Such lattices are often used to study the modal and transport 
properties of real crystals. Using such lattices, in the mid- 
fifties Fermi, Pasta, and Ulam discovered the phenomenon of 
a periodic time dependence of the distribution function of the 
energy among spatial modes, which is presently known as 
Fermi-Pasta-Ulam (FPU) recurrence.1° Since that time the 
problem of FPU recurrence and the study of the dynamic 
properties of these lattices, which are often called Fermi- 
Pasta-Ulam lattices, have been the subject of numerous pub- 
lications (see, for example, Refs. 11-13 and the literature 
cited therein). In particular, in contrast to Ref. 10, the tem- 
poral evolution of the higher (short-wavelength) modes of a 
lattice was studied in Refs. 11 and 12, and the instability of 
these modes, as well as a recurrence phenomenon similar to 
FPU recurrence for the lower (long-wavelength) modes, 
were discovered. We note that standing waves were investi- 
gated in lattices with fixed end particles in Refs. 10-13. At 
the same time, traveling waves are of very great interest from 
the point of view of studying the transport properties of ul- 
trashort pulses and processes which generate them. 

The present work is devoted to an analysis of the modu- 
lational instability of traveling waves in FPU lattices with 
quartic anharmonicity (the influence of the cubic anharmo- 
nicity on modulational instability can be taken into account 
by renormalizing the quartic anharmonicity constant). We 
shall demonstrate analytically and confirm in a numerical 
experiment that, in contrast to the modulational instability in 
the known continuum and discrete models, two additional 
regions of modulational instability, which exist for any sign 
of the quartic nonlinearity and correspond to the generation 
of perturbative waves that propagate mainly toward the car- 
rier wave, appear in FPU lattices. It follows from our analy- 
sis that excitations of the middle of the Brillouin zone are the 
most unstable (in the sense of global instability). 

2. THEORY 

The equations of motion of particles in a monatomic 
lattice with quartic anharmonicity have the form 

i j n + ~ ~ ( 2 ~ t 1 - ~ t 1 -  ~ ) + ~ 4 [ ( ~ t ~ - ~ , ~ -  1 ) '  

+ ( u , , - u , , + , ) " = ~ ~  ( 1 )  
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in which U ,  denotes the displacement of the nth particle 
from the equilibrium position and K2 and K4 are the linear 
and nonlinear force constants. 

In the long-wavelength limit this equation for waves 
moving in one direction reduces to a modified Korteweg-de 
Vries equation, which belongs to a class of fully integrable 
equations and has, in particular, soliton solutions. In the 
short-wavelength limit, where the wave vector of the carrier 
wave lies near the boundary of the Brillouin zone, the so- 
called semidiscrete approximation, which makes it possible 
to describe the amplitude of the envelope in the continuum 
approximation, is usually used.14 We shall not employ pas- 
sage to any continuum approximation, and we shall take into 
account the discrete nature of the lattice exactly in the con- 
text of Eq. (1). 

In the single-particle (rotating-wave) Eq. (1) has a solu- 
tion of the form 

U,(t) = gvoexp[i(wt - kn)] + c.c.), (2) 

where 

and k is the wave vector in units of the reciprocal lattice 
constant. With no loss of generality we can henceforth as- 
sume that Vo is a real quantity. 

To analyze the stability of the solution (2), we substitute 
the perturbed value of the amplitude Vo+W,(t), where 
I ~ , I < v ~ ,  into (1). The linearized equation for q n ( t )  has 
the form 

where k2= K ~ +  4 i 4  and k4= ( 3 1 2 ) ~ ~ ~ :  sin2(k/2). 
Then setting q,=Aexp[i(Qn - a t ) ]  

+ Bexp[ - i(Qn - a t ) ]  and following the standard proce- 
dure for the linear analysis of stability, we obtain the follow- 
ing equation, which specifies the function R(k,Q): 

It follows from (5) that for a given k there are ranges of 
values of Q in which the roots of Eq. (5) become complex. 
This signifies modulation instability of the solution of Eq. (1) 
in the form of a traveling wave, which is manifested by the 
exponential growth of satellite components, i.e., waves with 
the wave vectors k + Q . 

An analysis reveals that of the four roots of Eq. (5 ) ,  
0, and R 4  are always real and that If131-IR41=2w for 
k+ Q # 2rrn. These two roots correspond to solutions in the 
region of the third harmonic, in which we are not interested, 
especially since a proper analysis of the solution in that fre- 
quency range requires departure from the single-particle ap- 

proximation used. The other two roots, 10, .-1R21 < w can 
have either real or complex values. The condition 
Id131-Ia41~lbl,l-1021 allows us to write down an ap- 
proximate formula for the roots of Eq. (5) of interest to us 
and consequently to derive an expression for the imaginary 
part of the frequency a=  R '  + iR1': 

+ ;[ [ 16K4(cos k - cos Q)]' 

(2w+3S--6+)(2w+3S+-S-)  

where 

Modulation instability occurs for the values of the wave 
vectors k and Q, such that the radical expression in (6) is 
positive. We note that the condition 

under which, according to (6), al'(k,Q) has nearly its maxi- 
mal value, corresponds approximately to the condition of 
wave synchronization for a four-wave process. The latter de- 
scribes the conversion of two quanta of the dominant wave 
into two satellite quanta. 

Next, assuming that OGkG IT, when the relative anhar- 
monic frequency shift satisfies the condition y= K ~ / K ~ <  1, 
from (7) and (8) we obtain the following equations for Q 

cos(Q/2)=(1-y) for k>Q, (9) 

sin(Q/2)=(1-y)tan(k/2) for k<Q, k+Q<21r. 
(10) 

The other two combinations of signs from expanding the 
absolute value in (8) do not give new solutions. 

The solution of Eq. (9) exists only under the condition 
y>O and has the approximate form Q,=J8y, while Eq. 
(10) has solutions for any sign of y in the range 
k o s  k< ~ / 2 +  y. Here ko= 0 holds for y<O, and ko- & 
for y>O, i.e., ko increases with increasing y, narrowing the 
region of instability. Thus, just from an analysis of the con- 
dition (8) holds we arrive at several important conclusions: 
1) when K4>0, modulation instability is realized for all val- 
ues of k, there being two independent regions of modulation 
instability in the space of Q for ko<k.rr/2+ y; 2) at values of 
the wave vector of the carrier wave k s  7r/2+ y modulation 
instability is realized for nonlinearity of either sign; 3) when 
K4<0 holds the traveling wave breaks up mainly by gener- 
ating waves propagating in the opposite direction. 

3. RESULTS OF THE NUMERICAL EXPERIMENT AND 
DISCUSSION 

Let us now move on to a discussion of the results of 
the numerical experiment simulating the dynamics of the 
anharmonic lattice (1). A standard conservative difference 
scheme was used in the simulation to numerically solve 
the system of equations of motion. A carrier traveling 
wave Aocos[kn- o(k)t] and a perturbative wave 
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FIG. 1. Behavior of the squares of the amplitudes of a carrier wave with 
k = 3 ~ / 4  (I), a third harmonic (2). and satellites of the carrier wave having 
the wave vectors k + Q  with Q =  14~1128 (3 and 4, respectively). The seg- 
ment a b  corresponds to an exponential increase in the amplitude of the 
satellites. 

0.005Aocos[(k- Q)n- w(k- Q)t] were excited to investigate 
modulational instability in a lattice consisting of 256 par- 
ticles. After a time on the order of several oscillation periods 
of the carrier wave 27r/w, a satellite with a wave vector 
k+ Q formed, and the period of exponential increase in the 
amplitudes of both satellites began (curves 3 and 4 in Fig. 1). 
The growth rate CtV(k,Q) was determined in just this period 

FIG. 2. The growth rate n"(k ,Q) lo  as a function of the wave vector of the 
perturbative wave k ? Q  for various values of the wave vector k of the 
carrier wave (the values of k are indicated by the arrows). Solid lines - 
calculation based on Eq. (5) for y=0.03; dashed lines - calculation for 
y=0.1; unfilled squares - results of the numerical experinlent for 
y= 0.03; lillcd squares - results for y=O. I. 

FIG. 3. The growth rate fll'(k,Q)lw for wave vectors of the carrier wave 
(their values are indicated by the arrows) in the vicinity of ~ 1 2 .  Curves - 
calculation based on Eq. (5) for y=0.1; points - results of the numerical 
experiment. 

(segment ab in Fig. 1). We note that the influence of the 
third harmonic (curve 2 in the figure) can, in fact, be disre- 
garded in the case under consideration, since its amplitude is 
negligibly small. 

Figure 2 shows the dependence of the growth rate 
Ctv(k,Q) for two values of y and various values of k. For 
k= 7r and 3 ~ 1 4  reversal of the instability region of the sat- 
ellite with the wave vector k+ Q can be seen. For k= 7r/4 
and d 8  modulation instability is realized mainly for pertur- 
bative waves propagating in the same direction as the carrier 
wave. In the vicinity of k-7r/2 the two instability regions 
mentioned above are observed, and they become identical at 
k= ~ / 2 .  The transformation of the instability regions as the 
wave vector of the carrier wave varies near 7r/2 is shown in 
Fig. 3. As is seen from Figs. 2 and 3, the theoretical curves 
accurately describe the results of the numerical experiment 
over almost the entire range of values of k. The deviations 
observed for y = 0.1 and k S 7r18 are caused by the influence 
of the generation of the third harmonic, which was not taken 
into account in our analysis. This influence cannot be ne- 
glected in the region of small carrier wave vectors, where the 
dispersion of the frequency is nearly linear. In particular, the 
generation of harmonics makes a definite contribution to the 
exchange of energy between the lowest modes of the FPU 
lattice. 

The transformation of the modulational-instability re- 
gions for K,<O is depicted in Fig. 4. As is seen from the 
figure, in this case only the "additional" instability region 
remains, and qualitative agreement between the numerical 
experiment and the theoretical analysis is also observed as a 
whole. 

The results of the numerical investigation of the dynam- 
ics of the system at times greatly exceeding the period of 
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FIG. 4. The growth rate O"(k,Q)lo for wave vectors of the canier wave 
(their values are. indicated by the arrows) in the vicinity of ~12. Curves - 
calculation based on Eq. (5) for y= -0.1; points - results of  the numerical 
experiment. 

exponential decay of the carrier wave is shown in Fig. 5 for 
k  = 3 ~ 1 4  and Q = 7118. In analogy to the modulational insta- 
bility of traveling waves in a continuum nonlinear system, an 
FPU lattice also displays recurrence phenomena controlled 
by the modulational instability, which are destroyed due to 
the generation of additional perturbative waves in the 
modulational-instability region as a result of the unavoidable 

inaccuracies in the numerical integration of Eqs. (1). Before 
proceeding to a discussion of the numerical results obtained, 
we note that there have been significant achievements in the 
analytical description of the long-term evolution of various 
periodic initial conditions in the case of continuum systems 
described by the nonlinear Schrodinger We 
note that methods using finite-band potentials, which give 
solutions in a form that is fairly difficult to analyze and is 
applicable only to fully integrable systems, was not used in 
those studies. For example, in Ref. 15 a periodic solution 
was obtained on the basis of a three-mode model, and the 
corresponding recurrence period, which agreed well with the 
results of the numerical experiment, was calculated. In Ref. 
16 an exact periodic solution of the nonlinear Schrodinger 
equation which takes into account the influence of higher 
perturbative harmonics was constructed for the case in which 
the perturbative harmonics fall in the modulational- 
instability region of the carrier wave. Similar solutions have 
not yet been obtained for discrete systems, particularly for 
FPU lattices. 

One significant difference between an FPU lattice and a 
continuum system is that the recurrence pattern shown in 
Fig. 5 changes drastically when k  andlor Q are varied even 
by as little as ~ 1 1 2 8 .  This is clearly seen in Fig. 6, which 
depicts the evolution of a system having a carrier wave with 
k =  (3/4+ 1 1 1 2 8 ) ~  and a perturbative wave with Q = ~ / 8  ex- 
cited at the onset. As follows from Figs. 5 and 6, up to a time 
120T (T= 2 T I  o), which amounts to about three recurrence 
periods, the pictures of the evolution of the system in the two 
cases coincide. However, in the latter case (Fig. 6) the recur- 
rence process is subsequently disrupted and an irreversible 
outflow of energy from the dominant mode begins, while in 
the former case (Fig. 5) the recurrence pattern is maintained 
up to times equal to 200T. Finally, at times greater than 
200T the energy in both cases is irreversibly redistributed 
among lattice modes which belong mainly to the instability 

FIG. 5. Evolution of waves in an FPU lat- 
tice. A carrier wave with k=3~14 (mode 
number 96) and y= 0.03 and a weak pertur- 
bative wave with Q = T / ~  (mode number 
80) were excited at the onset. 
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FIG. 6. Evolution of waves in an FPU lat- 
tice. A canier wave with k=(3/4+ 11128)~  
(mode number 97) and y= 0.03 and a weak 
perturbative wave with Q= w/8 (mode num- 
ber 81) were excited at the onset. 

zone of the dominant wave. The observed strong dependence 
of the temporal evolution of the system on the initial condi- 
tions clearly reflects the discrete nature of the lattice and is 
specified by differences in the processes of induced (i.e., not 
associated with the inaccuracy of the numerical calculation) 
excitation of the additional perturbative waves in the 
modulational-instability region of the dominant wave. One 
possible mechanism for generating these perturbative waves 
is the reversal of any weak combination tone, for example, 
the third harmonic of the k+  Q  mode, the ninth harmonic of 
the dominant wave, etc., in the first Brillouin zone. Thus, in 
the former case the third spatial harmonic of the k+ Q  mode 
coincides with the k -  Q  mode, while in the latter case it 
excites the additional unstable k  - Q  + d 6 4  perturbative 
wave, thereby accelerating the process of the disruption of 
recurrence phenomena. A more detailed discussion of this 
question requires additional research. 

The numerical analysis also shows that even in a fairly 
early stage of the evolution of the system, the main process 
of energy transfer between the carrier wave and the pertur- 
bative waves is accompanied by the excitation of higher per- 
turbative harmonics, i.e., k 2 n Q  modes. The excitation of 
the nth mode is a consequence of the instability of the 
( n  - 1)th mode toward the four-wave process of its breakup 
into two neighboring harmonics. For example, at times equal 
to 40T, when the k -  Q  mode has accumulated sufficient 
energy, it begins to break up into two satellites with the wave 
numbers k and k - 2 Q ,  the role of the seed wave being 
played by the k  mode. 

4. CONCLUSIONS 

The investigations performed in the present work re- 
vealed several features of the modulational instability of 
traveling waves in Fermi-Pasta-Ulam lattices. The most im- 
portant feature is the fact that these lattices have additional 
modulational-instability regions, which are not observed in 
the continuum models and correspond to the generation of 

perturbative waves propagating in the opposite direction, re- 
gardless of the sign of the quartic nonlinearity. These fea- 
tures of the modulational instability in an FPU lattice also 
differ significantly from those discovered in Ref. 9 for a 
Klein-Gordon lattice, which has only the single 
modulational-instability region characteristic of continuum 
systems and only for part of the Brillouin zone of the wave 
vectors of the carrier wave. We note, however, that the re- 
sults in Ref. 9 were obtained in the approximation of weak 
dispersion of the oscillation frequencies. It can be shown that 
if the width of the band of optical modes is not small com- 
pared with the frequency o ( k = O ) ,  the structure of the 
modulational-instability regions and their restructuring as a 
function of the wave vector of the carrier wave are qualita- 
tively similar to those discovered above. Thus, it is hoped 
that the appearance of additional modulational-instability re- 
gions corresponding to the generation of perturbative waves 
propagating in the reverse direction is a universal feature of 
the modulational instability of traveling waves in discrete 
systems with quartic nonlinearity of either sign. 
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