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The effective conductivity a, and excess llf noise in a random lattice with an exponentially 
broad spectrum of resistances is considered. A large number of problems, including, e.g., the 
problem of the description of hopping conduction at high temperatures (i.e., in the case 
when the spread of the energy levels of the doping impurity can be neglected1), reduce to the 
problem of the determination of a, with an exponentially broad spectrum of resistances. 
To describe the percolation of current through such a system the weak-link model is applied in 
the region of smearing, and on the basis of this model a structure for the percolation 
cluster is proposed and a, and the relative spectral density of the excess llf noise2 are calculated. 
Numerical modeling is performed and a value is obtained for the percolation-scaling index 
of the relative spectral density of the excess llf noise in the three-dimensional case. It is shown 
that the structure of the percolation cluster differs from that in the two-phase case. O 1995 
American Institute of Physics. 

1. FORMULATION OF THE PROBLEM 

We shall consider a cubic network with bond length a o .  
If the resistances between the nodes of the network are writ- 
ten in the form ri  = r ,  exp(-Ax), where x E (0,l) is a random 
variable with a smooth distribution D(x), and A+l, then, 
disregarding the pre-exponential f a~ to r , ' , ~ -~  we have 
a,-uo exp(Ax,). Here, x, is defined in terms of the value of 
the percolation threshold of the standard two-phase problem 
on this lattice. 

~ecent l~?-"  progress has been made in the more precise 
determination of the dependence of a, on A: The percolation- 
scaling index y that determines the dependence on A of the 
pre-exponential factor via 

o,= exp( Ax,), (1) 

has been found analytically and numerically. (For the ana- 
lytical determination of y it is necessary to use some particu- 
lar model of the percolation structure.) 

To determine the relative spectral density C ,  of the ex- 
cess Ilf noise it is also necessary to know the local distribu- 
tion of fields and currents, and, naturally, the nonuniformity 
of the distribution of fields and currents is more important 

threshold-the thermopower," galvanomagnetic 
the relative spectral density of llf noise,I4 and also other 
properties.15 

In accordance with the technique proposed in Refs. 3-5, 
a problem with a continuous distribution of resistances can 
be reduced to a two-phase percolation problem. Here, one 
introduces a critical value x, of the random variable, related 
in a simple way to the percolation threshold p, of the stan- 
dard two-phase percolation problem on the same network: 

All resistances with x>x, are conventionally regarded as 
"metallic" (the "black" phase), while those with x<x, are 
regarded as "dielectric" (the "white" phase). In this ap- 
proach (the replacement of a problem with a continuous 
spectrum of resistances by a two-phase problem with con- 
centration p of the "metallic" phase) the basic question that 
arises is: What is the value of this concentration? We note 
immediately that (in contrast to two-phase systems) the con- 
centration p is introduced by convention and is not a free 
parameter whose value can be chosen at will. Naturally, its 
value should not appear in the final result. 

for the determination of the excess llf noise (the fourth mo- 
ment of the current distribution) than for the determination of 2. MODEL OF THE PERCOLATION STRUCTURE FOR A 

a, (the second moment). 
SYSTEM WITH AN EXPONENTIALLY BROAD SPECTRUM OF 
RESISTANCES 

To determine a, and C, the so-called hierarchical weak- 
link model has been used, which makes it possible to de- In Refs. 2-9 it was shown that for a consistent descrip- 
scribe in a unified way the critical behavior of the various tion of the conduction it is necessary to assume that the sys- 
kinetic phenomena in two-phase media near the percolation tem is in the region of smearing. For the two-phase case this 
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FIG. 1. a-Model of the percolation structure of a two-phase system consisting of randomly distributed resistances r ,  (the strongly conducting, "black" 
phase), with concentration p,  and r ,  (the weakly conducting, "white" phase): r , l r , B  1. The main current flows across a bridge with resistance R ,  and a layer 
with resistance R, .  The bridge consists of a set of series-connected resistances r ,  (a single connected bond-see the second scheme), and the layer consists of 
parallel-connected resistances r ,  (a single disconnected bond-see the third scheme). The resistance r ,  takes the values r ,  and r ,  with different probabilities, 
depending on the concentration p of the strongly conducting phase. The model describes the behavior of the system above the percolation threshold, below 
it, and in the region of smearing. b- Model of the percolation structure above the percolation threshold outside the region of smearing ( p>p, , r>A). The 
resistance r = r ,  , and the scheme goes over into the weak-link model for p>p, (a bridge with a layer connected in parallel). c-Model of the percolation 
structure below the percolation threshold outside the region of smearing ( p<p, , 17 1>A). The resistance r ,  = r ,  , and the scheme goes over into the weak-link 
model for p<p, (a layer with a bridge connected in series). 

implies that -A<r <+A, where r =(p-p,)/p, is the dis- 
tance from the percolation threshold and A is the magnitude 
of the region of smearing (the analog of the region of smear- 
ing of a second-order phase tran~ition'~"~), equal1' to 
A=((+ 2 /a I )"('+q)<l, where a, and a2 are the conductivities 
of the "black" and "white" phases, and t and q are the 
critical indices of the conductivity. For systems with an ex- 
ponentially broad spectrum of resistances? 

where the a;. are the critical indices that characterize the 
number N, of so-called single connected bonds (SCB) and 
the number N2 of single disconnected bonds (SDB): 

We shall consider first the structure of a conducting clus- 
ter in the region of smearing for a two-phase medium1' (Fig. 
la). In this figure, R1 is the resistance of a set of SCB (a 
"bridge") and R2 is the resistance of a set of SDB (a 
"layer"): 

where it has been taken into account that the SCB are con- 
nected in series and the SDB in parallel. If the system is 
above the percolation threshold and outside the region of 
smearing (7 >A), then r,= r ,  and the scheme in Fig. la is 
transformed into the hierarchical weak-link n~odel (Fig. Ib) 
(see Ref. 19)-the current flows mainly through the bridge 

from the "black" phase, and the resistance of the bridge is 
determined from (4) and (5). Below the percolation threshold 
( r  < O), outside the region of smearing, r, is equal to r2  and 
is connected in parallel with R2 (we recall that R2 consists of 
N2 resistances r2  connected in parallel), i.e., with a layer of 
the "white" phase, whose resistance is determined from (4) 
and (5) (Fig. lc). Outside the region of smearing the Ni cease 
to depend on r, and take fixed values Ni(l r I < A ) =  Ni(A). 
We note that here there is no contradiction with "geometri- 
cal" percolation. If we treat the structure of a "black" per- 
colation cluster above the percolation threshold purely "geo- 
metrically" (a2=O), then we have A=O and as the 
percolation threshold is approached (740)  the length Ni a. 
of the SCB tends to infinity. But in the case when we are 
considering a two-phase medium with a finite (nonzero) ratio 
of phases and finite N,, both the length of the single con- 
nected bonds and the correlation length .f=aolrl-v remain 
finite for arbitrarily small values of r, since .f,,,m=aoA-v. 

If inside the region of smearing the Ni cease to depend 
on r, the resistance r, now depends on 7: With probability 
P(r) (Fig. 2) we have r,,, = r , , and with probability 1 - P(r) 
we have r,,= r 2 ,  where 

Calculation using this model (Fig. la) gives in the region of 
smearing the familiar expressionI8 

where constlr I .  
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FIG. 2. Distribution function of the resistance r, . The probability that 
r ,  = r , is equal to the shaded area. 

3. CRITICAL INDICES a, AND THE STANLEY "COLORED" 
MODEL 

On the one hand, in order that the model of the percola- 
tion structure above the percolation threshold (Fig. lb), be- 
low it (Fig. lc), and at the percolation threshold itself (inside 
the region of smearing) (Fig. la) give values for the critical 
indices of the conductivity of two-phase systems that agree 
with those given by numerical methods, it is necessary to set 

In this case, from (4), (5) and the definition of the correlation 
length [, for a, there immediately follow the well known 
expressions 

in which we have retained only the first terms. On the other 
hand, it has been shown by rigorous probability-theoretical 
methods that the critical indices determining the numbers of 
single connected and single disconnected 
bonds23,24 are 

The contradiction between (7) and (9) ( a ;  3 a;,  
a; > a;) is explained by the fact that the calculation (e.g., of 
a;) that leads to (9) rested on the assumption that an infinite 
cluster consists only of SCB with nonmultiple bonds. In fact, 
it incorporates both single (SCB) bonds and double, triple, 
etc., bonds. The statistics of such a cluster was considered by 
~ t a n l e ~ ~ ~  and Pike and ~ t a n l e ~ ~ ~ - t h e  so-called colored 
model (Fig. 3). The singly connected bonds in this model are 

FIG. 3. The colored model of Stanley and Pike. In the terminology of this 
model, the red bonds are singly connected (backbone) bonds (SCB). The 
blue bonds are bonds with doubling, and the yellow bonds are dangling ends 
that do not take part in the conduction. 

called red bonds, the multiply connected bonds are called 
blue bonds, and the dangling ends (along which current does 
not flow) are called yellow bonds. The numbers of each are 
determined by the critical indices yr , yb , and yy : 

The critical index is yr = a; ,  and, according to Refs. 20-22, 
yr= 1. Numerical calculations have shown that, e.g., for the 
two-dimensional case, yb = 1.7. Thus, in the model of a clus- 
ter with a,! , in the calculation of the resistance one takes 
into account only the single (red) bonds of the black phase, 
but the number of them is chosen by taking the blue bonds 
into account-a,! takes a certain effective value. Insteady of 
the "actual" cluster with red and blue bonds, in the model 
one considers only red bonds, but with a different number of 
them(yr< a [ <  yb). 

This approach has turned out to be successful, and has 
been used to obtain for the critical indices of llf noiseI4 and 
for higher current momentst9 analytical expressions that 
agree well with the data from numerical modeling (see, e.g., 
Refs. 27-29). 

4. EFFECTIVE CONDUCTIVITY AND EXCESS l l f  NOISE IN 
SYSTEMS WITH AN EXPONENTIALLY BROAD 
SPECTRUM OF RESISTANCES 

On the basis of the model considered above (see also 
Ref. 2), a, and the relative spectral density of the excess llf 
noise in a random lattice with an exponentially broad spec- 
trum of resistances have been found to an accuracy that in- 
cludes the pre-exponential factors. In systems with an expo- 
nentially broad spectrum of resistances a "white" phase and 
a "black" phase are introduced conventionally. It is assumed, 
however, that the geometrical structure of a percolation clus- 
ter remains the same: For a given p, the number of SCB is, 
as before, N i  - F a i .  Of course, an SCB (a bridge) now con- 
sists not of resistances r l ,  but of a set of resistances 
r(x) = ro exp( - Ax), where x runs over values from 1 to 
x t  = xc+ (1 - x,)A, while in an SDB (a layer) x runs over 
values from 0 to x2 =xc- (1 -xc)A. As shown in Ref. 2, for 
a consistent description it is necessary to assume that the 
system is in the region of smearing, which for such systems 
has the form A - I ~ ( X ~ - ( " ~ + ~ ~ ) ) I A .  Thus, to determine the ef- 
fective conductivity and effective noise it is necessary to use 
the model of a percolation structure inside the region of 
smearing (the scheme of Fig. la). Calculations on the basis 
of this model make it possible to obtain the percolation- 
scaling index of the effective conductivity: 

In the case when the local spectral density of the excess 
Ilf noise s,= {Gg, Sg) from a given volume V is propor- 
tional to the conductance of this volume g ,  s , -g ,  on the 
basis of this model (see also Ref. 2) we obtain for the relative 
spectral density C ,  of the excess Ilf noise (the local relative 
spectral density C of the noise is given by C = S , ~ V / ~ ~ ) :  
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TABLE I.  Numerical values of the critical-scaling indices. 

a-from Ref. 29; b-from Ref. 30; c-from Refs. 6 and 31; *) results of this papet 

f f2 - f f1  m=-- 
2 

+ vd. 

- 2y1 Im"-2y" 
1.185 1 0.89 

+0.09* 
0.78 

-0.08 

Comparison of the index y with numerical values6 and 
upper and lower  bound^^,^ exhibits satisfactory agreement 
both in the case ai = a[ and in the case ai = a; : 

Y I Y" 
0.595 1 0.89 

0.6 f 0.1" 
0.76 f 0.04' 

In our view, in the three-dimensional case the agreement is 
better for ai = a; (see Table I), but with the available accu- 
racy of the values of the critical indices v, t, and q it is hard 
to give preference to either variant (ai  = cuj or ai = a;). 
Therefore, it is natural to turn to the relative spectral density 
of the excess llf noise: 

V t 

since the fourth moment of the current distribution should be 
more sensitive to the details of the structure. 

1.94" 1 0.7Sb 1 0.89b 

Numerical modeling 

9 

5. NUMERICAL MODELING 

In order to check the expressions obtained for the 
critical-scaling index m of the relative spectral density of the 
excess Ilf noise we modeled a network of resistances with a 
random distribution of resistances with an exponentially 
broad spectrum (ri= ro exp(-Ax,)). In each stage of the cal- 

culations we constructed a simple cubic lattice with linear 
dimension L and considered a possible distribution of resis- 
tances. After the creation of the lattice the resistances of the 
bonds were preserved in a matrix of network equations and 
unit potential difference was applied to opposite faces of the 
lattice. The solution of the system of Kirchhoff equations 
gave the voltages across all the bonds of the lattice. This 
made it possible to determine the conductance G and the 1/f 
noise SG = BS,,U; of the network of resistances, where Ui is 

the voltage drop across the i-th bond, sgi = {Sg, ,Sgi} is a 

temporal correlation function, g i  is the conductance of the 
i-th bond, and SG is related to C, by C,= G - ~ s ~ v ,  where V 
is the volume of the system (in the given case, v = L ~ ) .  In 
this notation, in the three-dimensional case, Eq. (12) has the 
form s ~ - - x ~ - ~ ~  exp(- Axc)L-l. The modeling was per- 
formed for different values of the parameter A from 6 to 80 
and for the largest possible size (in our case) Llao= 15 (the 
memory for lattice sizes Llao>15 is greater than 6 MB, and - 

this is important for programming with Windows). For each 
value of the parameter X several hundred realizations were 
modeled, and their conductances and noise were averaged 
arithmetically (G, and SG,) and harmonically (G, and 

SGL). The data obtained are presented in Fig. 4. The averages 
begin to differ from each other at A-30, and this implies that 
for A>30 the system possesses a fractal structure. In fact, 
according to (3), the correlation length &-A-"-Xv, and 
Llao= 15 corresponds to A-20, while for A 4 0  the correla- 
tion volume is already twice the chosen size of the system 
(&/ao-30). Up to this value the arithmetic and harmonic 
averages practically coincide, and on a double logarithmic 

FIG. 4. Results of the numerical modeling, and 
comparison with data in the literature. The depen- 
dence on A of the conductance G and noise So 
[multiplied by exp(Ax,)] of a network of  resis- 
tances, plotted in double logarithmic coordinates. 
The critical-scaling indices are determined by the 
slopes of  the lines, which are plotted by the 
method o f  least squares, applied separately for the 
arithmetic avenges (subscript a )  and the har- 
monic averages (sobscript h )  over realizations of 
the random spread of resistances: +) G,, ; 0) G,, ; 
x) SC;,  ; A) s,, . 
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cor 
0.995 - I 

1 

0 24 0 26 

FIG. 5. Dependence of the correlation coefficient cor (the product of the 
four correlation coefficients describing the quality of the approximation of 
the given G,, G h ,  S F , ,  and S,,) on the choice of values of x,. The 
maximum value of cor 1s reached at x,=0.2492, which coincides with the x, 
of Ref. 33. 

scale they lie on straight lines with slopes -y and m - 2y. 
The method of least squares (Fig. 4) for the given interval 
(X-40) gives 

To determine y and m -  2y it is necessary to use a specific 
value of x, , and, in accordance with Ref. 33, this was chosen 
to be xc=0.2492. In the literature, however, other values of 
x, are known (from 0.24 to 0 . 2 4 8 8 ) , ~ ~ - ~ ~  and, therefore, the 
method of least squares was repeated for values of x, lying 
in the range from 0.24 to 0.26. To find bounds on the linear- 
ity for different values of x, we used a general correlation 
coefficient cor in the form of a product of four correlation 
coefficients, each of which describes the quality of the ap- 
proximation of the given G ,  , Gh , SGa and SGh. As can be 
seen from Fig. 5, the correlation coefficient cor takes its 

Thus, the results of numerical modeling make it possible 
to postulate that the current-carrying cluster in systems with 
an exponentially broad spectrum of resistances differs from 
the cluster in two-phase systems (at least for the fourth cur- 
rent moment). In the latter case both the red and the blue 
bonds are important, while in the former case only the red 
bonds (the SCB) are important. It is evident that the higher 
the moment of the current distribution, the more substantial 
is the difference between these cases. It would be interesting 
to perform an analytical calculation and numerical modeling 
for the next (sixth) moment of the current distribution. 
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