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We develop the theory of interaction of coherent light pulses with thin-film planar Fabry-Perot 
resonator structures filled with media containing resonant atoms. Anomalous propagation 
effects have been detected for ultrashort pulses. We prove the McCall-Hahn "areas theorem," 
which plays the role of one of the integrals of the motion of the system. The occurrence 
of bistable and soliton solutions is discussed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

In recent times, the nonlinear optics of thin-film planar 
resonant structures (PRS) (Fabry-Perot resonators) has at- 
tracted the attention of many On the one 
hand, the study of such structures is of purely practical inter- 
est in view of the frequent necessity for efficient control of 
laser radiation, and this type of setup could provide a modu- 
lar basis for ~~toelectronics .~- '~ On the other hand, substan- 
tial progress has been achieved recently in understanding the 
physics of nonlinear dynamics, both in open dissipative sys- 
tems and exactly integrable Hamiltonian systems. 

Planar resonant structures constitute an example of the 
simplest physical model that admits the possibility to consis- 
tently take into account the boundaries when utilizing a reso- 
nant medium of finite thickness under the conditions for for- 
mation of standing waves. This model also subsumes the 
problem of nonlinear surface wave propagation. In addition, 
the nonlinear coupling between the field of the transmitted 
wave and the optical properties of the resonant medium can 
lead to such important physical phenomena as optical bista- 
bility and multistability, self-pulsation under quasicontinuous 
light interaction, creation of ultrashort solitons, etc.13*14 Un- 
der certain conditions, the nonlinear dynamics of such sys- 
tems can display the properties of dynamical chaos.'5716 

The main difficulty in the theoretical description of the 
dynamical behavior of planar resonant systems, and with it 
the feature that distinguishes these systems from, for ex- 
ample, ring resonators, is the need to take into account the 
interference of counterpropagating waves, and the emer- 
gence of high-frequency spatial structures. The latter, gener- 
ally speaking, makes it impossible to study the problem in 
the framework of slowly changing amplitudes of the field 
and polarization of the medi~rn. ' .~. '~ Progress in this field 
was achieved mainly due to the substantial simplifications 
afforded by the single-mode approximation and uniform 
field approximation, known also as the mean field 
approximation.18 These simplifications are essential to an 
analytic description of quasistationary solutions, while in the 
general case, the problem must be solved n ~ m e r i c a l l ~ . ' ~ - ' ~  
For that reason, the main interest in the cited literature was in 
the study of optical bistability and other related phenomena. 

On the other hand, the interaction of ultrashort optical 
pulses (USP) with a PRS that contains nonlinear media of 
finite extent has received far less attention. As we shall see 

below, the interaction of the USP with a PRS turns out to be 
closely related to the transmission of light through a surface 
layer of resonant atoms whose thickness is less than the 
wavelength of light.20-25 

In this paper, we study the nonlinear interaction of USP 
of light with thin-film Fabry-Perot PRS filled with resonant 
media of "two-level" atoms, under conditions conducive to 
standing wave formation. Our main interest to search for 
possible analytic solutions and appropriate approximations. 
The theoretical model is a general one that enables one to 
study the dynamical behavior of resonant systems interacting 
with external optical fields. For USP of light in which the 
excitation pulses are much narrower than typical polarization 
and population-inversion relaxation times of the resonant 
medium, as well as under conditions with no phase modula- 
tion, it is possible to formulate the analog of the McCall- 
Hahn "areas theorem."26 The given integral of the motion 
permits one to establish a correspondence between the "ar- 
eas" of the incident, transmitted, and reflected light. For cer- 
tain parameters of the nonlinear interaction, the transmission 
of light through the PRS under conditions of USP is bistable 
in nature. In addition, we study regions of stable solutions. 

2. FUNDAMENTAL EQUATIONS AND APPROXIMATIONS 

We analyze USP in PRS on the basis of the semiclassical 
approach, which is commonly used to describe the propaga- 
tion of laser pulses in a resonant medium, both in the coher- 
ent and the incoherent cases. As is well known, this approach 
is justified provided one can ignore the quantum fluctuations 
of the electromagnetic field. 

We represent the field inside the resonator as a superpo- 
sition of two counterpropagating traveling waves, 

E(z,t) ={E+(z,t)exp(iwt- ikz)+E-(z,t)exp(iwt 

+ ikz) + c.c.} (1) 

with amplitudes E,(z,t) that vary slowly in space and time. 
For the field to be represented in this form, we require that 

where r is the characteristic width of the exciting light 
pulses, w is a frequency close to the resonance transition 
frequency y, ; d12 is the reduced dipole moment of the reso- 
nance transition; a is the absorption coefficient, and k is the 
wave number. In addition, it follows from the "slowness" of 
the amplitudes E,(z,t) that over times of order 2wlw and 
distances of order 2wlk, variations in E,(z,t) can be ne- 
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glected. This last circumstance permits one to view the field 
E as a function of "quasi-independent" variables z, t ,  7 
(where g=kz):' 

Substitution of Eq. (3) into the Maxwell equation 

yields 

where P(z , t ,  g) is the slowly-varying polarization amplitude 
as a function of time but not space. 

Multiplying Eq. (4) by exp(+in) and noting that 

where Smo is the Kronecker symbol, we obtain the equations 
for the slowly varying amplitudes of the counterpropagating 
waves in the resonator: 

Note that the field amplitudes of the counterpropagating 
waves are coupled, and are determined by the common po- 
larization P(z, t ,  g) . 

In deriving the expression for the macroscopic polariza- 
tion 

one must take into account the possibility of inhomogeneous 
broadening of the resonance transition line 

Here N o  is the number of atoms per unit volume that partici- 
pate in resonance transitions, and angle brackets denote fre- 

quency averaging over the offset c=%,-o with a weighting 
function ,g(c) that characterizes the inhomogeneously broad- 
ened line profile: 

In the following, we start with the equation of motion for 
a quantized oscillator (see, for example, Ref. 27) interacting 
with an external field, 

where y, and 71 are phenomenological damping coefficients 
that govern the relaxation of the polarization and the popu- 
lation, p is the dipole moment, and n the inversion per reso- 
nant atom. 

Representing P ( z , t )  as 

we obtain the equations of motion of the quantized oscillator 
in the form 

x exp( - i g)] - c.c.). (10) 

Equations (6)-(8) and (10) form a closed system de- 
scribing the dynamics of the field and the material medium 
in PRS with the two counterpropagating waves taken into 
account. Naturally, it must be supplemented by appropriate 
boundary conditions relating the field amplitudes at the 
boundaries of the resonant medium, i.e., the resonator mir- 
rors. We assume that reflecting surfaces with reflection coef- 
ficients R , and R2 close to unity are located at z =0 and z = L 
(Fig. 1). 

Then 

E,(O,t)= - KEO+ \ I ~ E - ( 0 , t ) ,  

where Eo is the amplitude of the external field and E ,  and E, 
are the amplitudes of the reflected and transmitted fields. 

Note that an analogous statement of the problem for a 
planar Fabry-Perot resonator appeared under certain simpli- 
fying assumptions in the work of Lugiato and ~arducci.' By 
transforming the field, they were able to reduce the system of 
equations to a form typical of an ideal resonator with no 
losses at the boundaries that is often utilized in laser theory.28 
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FIG. 1 .  Fabry-Perot resonator formed by plane reflectors with reflection 
coefficients R ,  and R , .  The subscripts + and - refer to the forward and 
backward waves within the resonator, and 0, r, and r refer to the incident, 
reflected, and transmitted waves. 

The system of equations (6)-(8), (10) and (11) turns out 
to be convenient for the solution of a number of different 
problems of coherent and incoherent interaction of light with 
a resonant medium in a planar resonator, including the gen- 
eration of laser radiation by an active medium. 

To obtain the general solution of Eqs. (6)-(8), (lo), and 
(1 l), one must solve a complex nonlinear electrodynamic 
problem. The point is that the interference of the forward and 
backward waves in the nonlinear medium leads to terms in- 
volving various powers of the parameter iv in the expan- 
sions of the polarization and inversion (odd powers for the 
polarization, even powers for the inversion); those terms 
characterize the rapidly oscillating factors. The appearance 
of "high" spatial frequencies in the problem is due to strong 
spatial inhomogeneities. The result is an infinite set of 
coupled equations for the polarization, inversion, and field, 
which can only be solved numerically, having first truncated 
the infinite set of equations at some point.6 

Henceforth, we retain only the leading terms in the ex- 
pansion of p ,  in the parameter 7 assuming that the z depen- 
dence of p: can be neglected: 

This can obviously be done only if aL61 ,  which means that 
absorption is small over the length L of the resonant medium 
( a  is the absorption coefficient of the medium at field fre- 
quency w). 

Integrating over 7 in Eq. (6) with Eq. (5) taken into 
account, we obtain 

On the other hand, neglecting the z dependence of the 
fields E ,  should mean that the relation 

between the pulse width and light propagation time within 
the resonator is satisfied, and that also means that it is pos- 
sible to neglect the spectral width of the pulse 7' compared 
to the separation c/2Lno between longitudinal modes of the 
resonator or, in other words, to make use of the single-mode 
approximation. 

Then integrating the first equations for E ,  over z ,  we 
obtain 

Finally, eliminating E -  from Eq. (14) with the help of 
the boundary conditions Eq. (lo), we obtain an equation for 
the direct wave, 

where 

Note that if we neglect the first term in Eq. (15), which 
results, as will be seen below, in a correction to the disper- 
sion law k(w), even for the steady-state solutions with 
R , = R2 = R ,  Eq. (15) acquires a form often used in the 
theory of optical bistability.I3 

We now introduce the characteristic lifetime of the pho- 
ton in the resonator, which governs the loss of stored energy 
over time due to emitted radiation: 

W(t) = Wo exp - - ( :I 
In time 2Lno/c, the energy will change in accordance with 
the expression 

R,R2Wo= Wo exp - - 2cL:0i 
whence 

(16) 
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For values of R, ,  R2 close to unity, one can use in place 
of Eq. (16) the relation 

For the following, isolating the real quantities 
E + =8+ exp(iq) in (15) as well as the reactive and active 
components of the dipole moment p: = (u: + iv:)exp(i q ) ,  
which describe the contribution to dispersion and absorption 
of light by the resonant medium (for weak fields), we obtain 

= gI, sin(qo- q) ,  (17b) 

where 

r ~ P ) = G s i n P ,  r ~ , ( ~ ) = l + m c o s , O ,  

We represent the phase shift P in the form 
P= 2kL = 2 .rrm + Po (integer m), where 

and oc is one of the resonator eigenfrequencies in the uni- 
formly spaced spectrum. 

In what follows, we confine any detailed discussion to 
the "tuned" resonator, for which we can set Po=O, which 
means that the traditional equality L =  mXI2 is satisfied. In 
that case, in the absence of phase modulation of the external 
field at the "entry point" (cpo=const), such modulation can 
also be ignored inside the resonator, and we can assume that 
q=cpo. Then the second equation in (17), as in the case of an 
infinite medium, can be transformed into a constraint on the 
dispersion law k(o), and the first of the equations in (17) can 
be significantly simplified: 

where 

Note that an "offset" resonator can be treated in a simi- 
lar manner. 

This last Eq. (18), together with the constitutive equa- 
tions for the medium (17c), determines the dynamics of the 
field inside the resonator system and provides the starting 
point for the study of a number of phenomena: transmission 
and reflection of USP of light, photon echoes, and optical 
bistability. Although Eq. (18) is written for the forward wave 
in the resonator, the expression for the backward, transmit- 
ted, and reflected waves is not hard to obtain by utilizing the 
corresponding boundary conditions. 

3. INTEGRAL OF THE MOTION UPON INTERACTION OF 
ULTRASHORT LIGHT PULSES WITH PLANAR RESONANT 
STRUCTURES 

Ultrashort pulses of light, as before, are pulses whose 
duration satisfies 

At the same time, we assume, as before, that the inequality 
(13) is satisfied and, since (1 - RlR2)G 1 and ?.>AV;', the 
relation between r and T, can be arbitrary. 

In the approximation of Eq. (19), the constitutive equa- 
tions for the reactive and active components of the dipole 
moment, as well as for the inversion of an individual reso- 
nant atom, take the form. 

Noting that cuL4 1, making use of the last boundary con- 
dition in (10) and the condition Po=O in the resonator, we 
can confine our attention solely to the field of the direct wave 
K+ . Then the last equation in (20) takes the form. 
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Equations (18), (20), and (21) admit the existence of an 
integral of the motion for the system, which is the analog of 
the McCall-Hahn "areas" theorem in a semi-bounded ex- 
tended medium.26 To derive it, we introduce the "area" of a 
coherent light pulse 

and its asymptotic value O=&t =w). 
After integrating Eq. (18) over time between -w and 

+m, we obtain 

where we have used the obvious relation 

Based on the properties of the solution of the first equa- 
tions in (20) and (21), we can integrate the active component 
of the resonant medium's dipole moment (averaged over the 
inhomogeneously broadened line profile). Indeed, it is not 
hard to show that 

and since for long times (exceeding Tz , which characterizes 
the inhomogeneous broadening of the energy levels) we have 

s in[~( t -  t l ) ]  
lim = 7r8 (~ ) ,  

E 

we find that 

sin( ,/-e), = - rg (0 )  - JR2T-T 
(25) 

(here we have made use of the fact that n,=o(-m)=- 1). 
Ultimately, the relation (22) takes the form 

G + c  sin G =  Go, (26) 

where the constant C turns out to be 

and a. is the absorption coefficient for a weak signal, 

FIG. 2. Incident pulse "area" Bo as a function of the "area" B of the light 
pulse of the forward wave inside the resonator for C=2.0 and 0.8. 

and the "areas" of the pulses within the resonator and out- 
side it are respectively 

Note that Eq. (26) was obtained asymptotically, i.e., in 
the limit t+m. From a frequency point of view, infinitely 
long times (long compared to the characteristic time T,*) 
correspond to infinitesimal frequencies (a frequency range 
significantly narrower than the characteristic inhomogeneous 
spectral line width (T,*)-l for the resonant transition). It is 
for this reason that Eq. (26) contains the value of the absorp- 
tion coefficient q, at the frequency u 2 ~ =  w (&=O). 

4. "BISTABLE" AND SOLITON SOLUTIONS. STABILITY 
REGION 

Expression (26) represents the analog of the McCall- 
Hahn "areas" theorem in the case of the interaction of USP 
of light with thin-film Fabry-Perot resonator structures, and 
establishes the correspondence between the "areas" of the 
pulses of light within the resonator 0 and the external inci- 
dent pulses Bo. There is a similar correspondence between 
the "areas" of the transmitted and reflected pulses. 

The relation (26) can be conveniently analyzed graphi- 
cally by treating the "area" of the external incident pulse io 
as a function of the "area" of the pulse of the field of the 
direct wave within the resonator a ~ i ~ .  2). As can be seen 
from the figure, the character of possible solutions for 8 is 
determined by the nonlinearity parameter C, which is the 
ratio of two small quantities (a& and 1 - m) and can 
therefore take on various values (both greater and smaller 
than unity). When C C  I ,  there is but one unique solution for 
5 and io for arbitrary values of "8,. 
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For C> 1, the dependence between "8, and "Beases to be 
single-valued-near Oo= mrr (odd m), there are regions with 
three solutions "8 that satisfy Eq. (26). 

Values of "eor which the derivative d80/d"8anishes can 
be determined by solving the equation 

- 1 
cos o =  - -, 

C 

whence 

and values of at these points turn out to be 

In regions where the solutions are multivalued, we obtain 

The stability of the solutions h e  of interest when they 
are not single-valued. To this end, one must know the exact 
equation for the area of the pulse a t ) ,  which goes over 
asymptotically into "8. We are not able to obtain an equation 
describing the evolution of a t )  for arbitrary t, but we can 
make use as before of the properties of the solutions (23)- 
(25) for large but finite t. 

As a result, we obtain an asymptotic equation valid for 
large t ( t ~ T z ) :  

7, a &+ - - &+ c sin &= &o(t). 
2 at 

We linearize Eq. (28) and introduce a new variable 

s&t )=  a- tj(t). 

Then 

where S&~AO as t+w. 
We seek a solution of the homogeneous Eq. (29) as t 4 w  

in the standard manner: 

&t)= ~ t & t ' ) e ~ ~ [ ~ ( t -  t')], 

where upon we obtain the characteristic equation for X: 

It follows from Eq. (30) that stable solutions for &or- 
respond to x<O, which in turn means a positive slope for the 
tangent to the graph of "8,(8). Conversely, for d&,ldk0, the 
sign of x is positive, and an infinitesimal deviation f i t )  from 

6, will grow with time. Thus, unstable solutions w 0 )  corre- 
spond to decreasing, interior regions of the dependence "Boo($ 
where the derivative of the function "80 is negative. 

This behavior of "8nd ?), is reminiscent of intraresonator 
absorptive optical bistability in the region of quasistationary 
solutions for E +  , for which the presence of dissipative re- 
laxation processes for the polarization and inversion of the 
resonant medium is important.13 Transitions between 
branches of solutions characterized by differing intensities of 
the transmitted light ("optical" switching) turns out to be 
possible. In the case of ultrashort pulses, the "area" of the 
light pulse which determines the field within the resonator 
behaves similarly. 

Note that the integral of the motion Eq. (26) retains its 
physical meaning regardless of whether the duration of the 
USP of light exceeds the lifetime of the photon in the reso- 
nator or not. Furthermore, (26) has precisely the same form 
as in the case of interaction of USP with a thin surface layer 
of resonant atoms whose thickness is significantly less than 
the wavelength of light.24 

In contrast to Eq. (26), the fundamental equation of mo- 
tion (18) for the field within the resonator coincides with that 
for a thin film of resonant atoms only if P>T,, whereupon 
the second term with the time derivative in Eq. (18) can be 
neglected. It is known that the problem of transmission of 
USP of light through a thin resonant layer admits of a so- 
called "soliton" solution, for which all fields have a similar 
time dependence and g0=2.rr. Such a solution was obtained 
in the case of a thin surface layer of resonant atoms for the 
first time in Ref. 20 by the inverse scattering method. In 
particular, it was shown that the field of the transmitted wave 
has a two-soliton character. 

Similar conclusions regarding the soliton nature of the 
propagation of USP of light through a resonant planar struc- 
ture, containing resonant atoms, will be valid under the con- 
ditions of quasistationarity P>T, : the field in the resonator 
will be able to "track" variations in the external field. 

5. CONCLUSION 

The nonlinear interaction of light with planar resonator 
structures Fabry-Perot filled with a resonant medium dis- 
plays features in many ways similar to those seen in infinite 
media. The special features of this interaction are determined 
by the existence of forward and backward waves, resulting in 
the creation of a standing wave. For large values of the pa- 
rameter a L  (where a is the absorption coefficient and L is 
the distance between the resonator reflectors), the problem 
becomes inhomogeneous in space and reduces to an infinite 
system of coupled equations. For values aL<l and pulse 
widths greater than the light transit time across the resonator, 
solutions of the spatially homogeneous problem are possible 
with dynamical evolution in time. 

Coherent interaction of light pulses of ultrashort duration 
with PRS demonstrates properties possessed by semi- 
bounded resonant media. Under conditions in which the ex- 
citation pulses are significantly narrower than typical trans- 
verse and longitudinal relaxation times of the atoms in the 
resonant medium, but exceed the light-travel time between 
the resonator reflectors, in the approximation of slowly vary- 
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ing amplitudes, we obtain spatially homogeneous equations 
of motion referring to the appearance of one longitudinal 
mode of the resonator. In particular, we have shown that the 
problem then admits of an integral of the motion analogous 
to the McCall-Hahn "areas" theorem, regardless of the re- 
lation between the excitation pulse width and the lifetime of 
the photon within the resonator. We have investigated re- 
gions for the appearance of bistable and soliton solutions. We 
note that the character of multivalued solutions for the "ar- 
eas" of USP of light is largely similar to the phenomenon of 
optical bistability in the case of quasistationary interaction of 
light with the resonant medium in a PRS. 

It would be of interest to study the properties of an im- 
portant physical phenomenon in the field of interaction of 
USP of light with a PRS-namely the photon echo, to con- 
sider the ultimate possibilities of dynamic echo-holograms, 
and in particular to compare the dynamic efficiency of a 
hologram based on a PRS with the efficiency in the case of 
semibounded resonant media and neglect of standing waves. 
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