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The problem of pulse propagation in a medium consisting of two-level atoms with arbitrary 
detuning of the field frequency the frequency of the atomic subsystem and arbitrary ratio of the 
pulse duration and the period of the optical oscillations is investigated using the complete 
(untruncated) sytem of Maxwell-Bloch equations. It is shown that self-consistent solutions of this 
problem exist and the pulse profile and its dependence on different parameters of the medium are 
determined. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The phenomenon of self-induced transparency has been 
studied intensively, both experimentally and theoretically, for 
the last thirty years. Over this period a powerful theoretical 
apparatus has been developed for determining the soliton 
solutions of the system of truncated Maxwell-Bloch equa- 
tions for a field interacting with a system of two- or three- 
level atoms.'-6 The small parameter in the truncated equa- 
tions or the equations for the slowly varying amplitudes is 
the ratio of the period of the optical oscillations to the pulse 
duration, i.e. (wrp)-'. The soliton solutions of the truncated 
equations corresponding to the case w r p S  1 do not exhibit 
phase modulation. The question of the possibility of the ex- 
istence of a phase-modulated solition7-l2 and the effect of 
phase modulation on the shape of a pulse propagating in a 
resonant medium have long been discussed. A perturbation 
theory in the parameter (wr,) - ' has been developed, nu- 
merical experiments have been performed, and the integrals 
of motion of the untruncated equations have been deter- 
mined. However, the analytical form of the intensity profile 
of a pulse has been obtained only in the particular case of a 
pulse with no ~ar r ie r .~  The untruncated system of Maxwell- 
Bloch equations is conventionally written for the vector E of 
the electric field intensity and the polarization P. In the 
slowly varying amplitude approximation the same equations 
are obtained with different choices of the independent vari- 
ables (the vector potential A of the electromagnetic field and 
the current density j of the resonant transition or the vector E 
of the electric field intensity of the wave and the polarization 
P of the medium, and others). However, when we are deal- 
ing with effects that depend on the frequency of the optical 
field, it is desirable to employ the relativistically invariant 
form of the Hamiltonian of the field. For the case of circular 
polarization this Hamiltonian has the form 

1 1 J A +  aA-  
+curl A +  curl A -  

c2 at at 

second-order differential equations for the field are reduced 
to to first-order equations. The system of equations for A and 
J does not admit such a reduction. 

In the present paper the profiles of the self-consistent 
solutions of the untruncated system of Maxwell-Bloch equa- 
tions for the variables A and j with arbitrary values of the 
parameter wrp are determined. 

2. CONSERVATION LAWS FOR THE UNTRUNCATED 
SYSTEM OF MAXWELL-BLOCH EQUATIONS 

The Hamiltonian (1) together with the Hamiltonian of a 
two-level atom leads to the following system of untruncated 
Maxwell-Bloch equations in the one-dimensional case: 

d2A' 1 d2A' 

- = - 
j ' ( w ~ ) f ( r n ~ ) d o ~ .  

where f(wo) is the contour of an inhomogeneously broad- 
ened line, Iml is the matrix element of the current of the 
resonance transition of a separate atom, and p is the density 
of the population inversion. 

The equations (2) have a well-known Bloch integral of 
motion 

which relates the absolute value of the current density of the 
resonance transition to the population inversion density. Us- 
ing Eq. (3), we can introduce the Bloch angle B(z , t )  as 

The system of equations for the variables E and P in the 
one-wave case admits a red~ction"~'~ which lowers the 

where p o ( z )  is the density distribution of the medium for 
8=0 and cD(z, t)  is the phase of the current density. 
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The law of conservation of energy for the system of 
equations (2) takes the form 

We introduce the dimensionless time t' = tl r  and the dimen- 
sionless coordinate z '  = zlL, where r=  LIc. 

The equations for the new atomic variables 8(z,t) and 
cp(z,t) follow directly from the system of equations (2) and 
have the form 

For the equations (2) there is also a continuity equation where 

It is convenient to use the conservation laws (5) and (6) 
to express the equations for the field variables a(z,t) and 
&z,t). Assuming that the amplitude of the field is equal to 
zero at infinity and the medium is in either the ground state 
(Ro = - 1 ) or the excited state (Ro = 1 ) , we obtain from Eqs. 
(5) and (6) 

Using the indicated conservation laws, we shall seek the self- 
consistent solutions of Eq. (2) in the form 

Here w is the carrier frequency of the field and k is the wave 
vector represented in the form k =  wlv , where v can be 
chosen15 so that w can be interpreted as the amplitude- and 
phase-modulation-independent carrying frequency of the 
pulse. To simplify the equations, however, in what follows 
we employ the following notation: 

+&a sin 8 cos(cp- *)I 

where 

The phase velocity of the wave vp can be different from both 
the velocity of light c and the propagation velocity v of the 
pulse, i.e., the group velocity. Indeed, v, is found by differ- 
entiating with respect to time the condition expressing the 
constancy of the phase: 

For v = v, the parameters S, r, and A determined by the 
expressions (13) assume the form 

Therefore 

and for v = c they have the form 

S=(c+v)/2wru, T=Rovl(v - c), A=O. whence 
It is evident from the expressions presented above that S is a 
small parameter, expanding with respect to which we obtain 
from the untruncated Maxwell-Bloch equations the equa- 
tions for the slowly varying amplitudes. For S= 0 we should 
obtain from Eqs. (10)-(13) the solitons of the truncated 
equations. 

Therefore up = v for u = v . 
It is convenient to introduce the dimensionless amplitude 

a of the field, defined as 

3. SOLITONS OF THE TRUNCATED MAXWELL-BLOCH 
EQUATIONS 

For f(wo) = S(oo- w,) Eqs. (10)-(13) have the form 

0 = 2  @a sin(cp- $), 

where laI2 is the photon number density normalized to the 
density NIV of the number of resonant atoms. It is conve- 
nient to write the phase @(z,t) of the transition current den- 
sity in the form 4 = ~ + 2 @ a  cot 0 cos(cp-#), 
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+ @a sin 8 cos( cp- +)I. 
We shall show that the soliton solutions for the slowly vary- 
ing amplitudes follow from Eqs. (14) with S= A = 0. The last 
two equations of the system (14) with 6= A = 0 assume the 
form 

It is evident from Eq. (21) that the field variables depend 
only on the combination alsin(812) and the variable 
cos(812)cos 77, where v= 9- +. For this reason, we intro- 
duce the new variables x ,  y, and F defined as follows: 

First, let Q = 0. Then we have cp- += 7r12, and substituting 
the first equation from Eqs. (15) into the first equation in 
Eqs. (14) we obtain x  = cos( 81 2) sin ?;I, 

This equation has the well-known solution 
D 8 

a =  - F sin -, 
Ji? 

where D  is a constant. The equations for the variables x  and 
y follow from Eq. (14) and have the form 

where ao=  fi and I / T ~ =  m. The area of the pulse (17) is 
equal to 2 ~ .  

Now let a= o,- o Z 0. Then we obtain from Eq. (15) 

8 n 
cos - cos(cp-- *)= - - 

2 2 r n '  

where we have written in the form Substituting the expression obtained into Eq. (14), we obtain 

The solution of this equation has the form and Ql  and B are determined by the following expressions: 

The last equation in Eqs. (21) can be written in the form 
where 

where 

To within constant factors, this expression is identical to the 
well-known expression for a soliton with de tu r~ in~ .~  The 
population inversion varies in time according to the law 

On the other hand, using the last equation in Eqs. (22), we 
obtain for a la  

Equating the expressions (26) and (28), we obtain 

F 
- = ,/E- D F ~ ,  
F (29) 

4. SOLITONS OF THE UNTRUNCATED MAXWELL-BLOCH 
EQUATIONS where 

The last two equations of the system (14) can be rewrit- 
ten in the following form 
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Premultiplying both parts of Eqs. (29) by 
( D F y  + 0, - B l y 2 )  and using Eq. (23),  we can easily rewrite 
Eq. (29) in the form 

On the other hand, the variables x and y  are determined by 
the expressions (22),  whose dependence on 17 allows us to 
conclude that the expansions of x and y in power series in F 
should not be symmetric, since y at 7 = O  has a maximum 
and so its derivative is zero, whereas x is equal to zero and 
its derivative is a maximum. Comparing likewise the expres- 
sions for a from Eqs. (22)  and (15), we can see that in the 
zeroth-order approximation in 6 the variable y has the form 

We note that according to Eq. (26) 

The sign on the right-hand side is chosen so as to satisfy the 
conditions, discussed above, at infinity. 

5. CONDITIONS FOR SELF-CONSISTENT PULSE 
PROPAGATION AND THE FORM OF THE SOLITON 

It can therefore be conjectured that the expansion of y in a 
power series in F should also contain negative powers of F 
even for S f 0 ,  so that y (F)  for S # 0 will have the form 

The equations (31) are, in principle, sufficient to deter- 
mine the conditions for the appearance of soliton solutions, 
since by comparing Eqs. (30) and (31) we can see that the 
right- and left-hand sides of Eq. (31) depend on the same 
combinations of variables. However, we shall make a more 
incisive and detailed analysis of the combined system of 
equations (23) and Eq. (29) or its equivalent Eq. (31). We 
expand the variables x and y in power series in F: 

After the expression (37) is substituted in Eqs. (30)  and 
(31),  Eq. (31) assumes the form 

where 
Substituting these expansions into Eq. (23) and equating the 
derivatives F obtained from the first and second equations in 
Eqs. (23), we obtain the following equation: 

The equation (38) can be simplified by introducing the new 
variable a: 

Then 

The coefficients fn  and gn do not depend on F under the 
following conditions: 

2fnfmfk+gngmfk+fngmgk=0 m + k Z o ,  

fn fm+l+gngm+l=O for m Z 1 . 3 .  (34) 

The equation (33) then assumes the form 

n m = - m  C [ ( f n f m + ~ n ~ m 1 f - m + f n ~ f m f - m + ~ m ~ - m )  

Substituting the expressions (30)  and (40) into Eq. (38) we 
obtain 

where 

- f,,=O. (35) 

Comparing Eqs. (34) and (35),  it is easy to see that only the 
coefficients fn  and g n  with n =  - 3 ,  - 1 ,  1 ,  and 3 can be 
different from zero, i.e. y  and x can be represented in the 
form 

437 JETP 81 (3), September 1995 A. V. Andreev 437 



The solution of Eq. (41) can be written in a general form, but 
it is quite complicated. The equation (41) leads to solutions 
in the form of a solitary pulse, whose envelope approaches 
zero at infinity for 

In the case when at least one of the inequalities (42) is not 
satisfied, the solution is oscillatory. 

The simplest pulse profile obtains in the case when 
Bl =O. This can be achieved, for example, by the following 
choice of the coefficient f2 : 

In this case the envelope and the modulation of the fre- 
quency of the pulse are determined by the expressions 

where 

As one can see from the formulas presented above, in 
the presence of frequency modulation the pulse shape is dif- 
ferent from the case S= 0. It follows from the expressions for 
the coefficients c ~ . ~  that y 6  112. 

6. KERR NONLINEARITY 

In media with a Kerr nonlinearity the equation for the 
field has the form 

The Kerr nonlinearity will be manifested in the final equa- 
tions only as an additional term in the second equation of the 
system of field equations (21). This system now assumes the 
form 

8 
X cos - cos( cp -- *) , 2 1 

The form of the system of equations (23) and (29) will re- 
main unchanged, only the expression for G will change: 

The expansions (36) of the variables x and y in powers of F 
will remain the same, since their derivation employed only 
Eq. (23) for the atomic variables. 

In summary, Eqs. (23) and (29), in which G is deter- 
mined by the expression (49,  comprise a complete system of 
equations describing the self-consistent propagation of a 
pulse in media with Kerr nonlinearity. We can see that the 
Kerr nonlinearity will not lead to any qualitative changes in 
the structure of the equations describing the dynamics of 
self-consistent pulse propagation. 

7. CONCLUSIONS 

The present investigations show that the complete (un- 
truncated) system of Maxwell-Bloch equations contains so- 
lutions which correspond to the self-consistent propagation 
of pulses in a medium of two-level atoms. The solutions 
obtained do not contain any restrictions on the magnitude of 
the ratio S-' = 070 of the pulse duration TO and the period 
of the optical pulses or on the magnitude of the detuning 
In= oo- w of the frequency o of the field from the fre- 
quency oo of the atomic subsystem. The width TO of the 
soliton and its amplitude D are determined by the corre- 
sponding characteristics of the incident pulse and depend on 
the magnitude of the detuning. The relations between these 
parameters are determined by the formulas (44, and to find 
them explicitly it is necessary to know the explicit form of 
the coefficients f, and g,  in the expansions (36) and (37). 
The corresponding formulas are quite complicated, but the 
characteristic parameters of the pulse profile and the fre- 
quency modulation of the pulse can be obtained in different 
limiting case just from the general formulas (44). 

The pulse profile is determined by the parameters y and 
TO. Substituting into them the expressions for the coeffi- 
cients a,, b, and c, , we obtain in the general case 

The modulation of the frequency of the pulse is determined 
by the expression 

where 
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It follows from Eqs. (46) and (47) that the minimum pulse 
width and the maximum amplitude of the frequency modu- 
lation are achieved for K = 0. The condition K = 0 holds for 
w , v = w c .  In this case, as we noted in Sec. 2, the phase 
velocity of the pulse is equal to the group velocity, i.e. the 
pulse is stationary not only with respect to the envelope pro- 
file but also with respect to the high-frequency distribution of 
the field. 

It is also evident from Eqs. (46) and (47) that the formu- 
las simplify considerably in the case f, + 1. For this reason, 
setting f = 0  and K =  0, we obtain from Eqs. (45) and (46) 

It is evident from the last formula that the amplitude of the 
frequency modulation is largest for =O. Therefore, for 
pulses containing several periods of the optical oscillations, 
the equality w  - woB 1/28 will probably hold. In this case 
the amplitude of the frequency modulation is 

and the product A wr0 is 

The analysis performed above pertains to both absorbing 
(Ro= - 1 ) and amplifying ( R ,  = 1 ) media. It follows from 
the form of Eqs. (12) that the parameter r must be positive. 
In the case K=O,  we obtain T = R ~ ~ ~ / ( ~ ~ - c ~ ) .  For 
Ro= - 1 this quantity is positive for v  < c  and for Ro= 1 it is 
positive for v > c ,  i.e., just as for the case of slowly varying 
equations, the velocity of the pulse in an absorbing medium 
is less than the velocity of the light and in an amplifying 
medium it is greater than the velocity of light. 

The solutions found above describe self-consistent 
propagation of pulses. To determine whether or not these 
solutions are solitons, numerical experiments can be per- 
formed on collisions of pulses. Such experiments will make 
it possible to determine the pulse stability. As follows from 
the results of Sec. 3, for S=O the profile of the pulse inten- 
sity is the same both when the equations for the field inten- 
sity E and the vector potential A are used. For S # 0 these 
expressions are different, and for this reason real physical 
experiments would make it possible to resolve the question 
of the validity of different representations for the field. 
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