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We consider the quantum electromagnetic radiation of a charged particle in the field of a rotating 
microscopic black hole. We derive transition probabilities for photon emission in various 
states, between quasistationary levels of a hydrogen-like "atom" with a black hole instead of a 
nucleus. We demonstrate that radiative transitions to low-lying energy levels in such an 
atom are more likely than tunneling to the black hole horizon. We show that the sum rules for 
the addition of angular momentum involved in photon emission break down when the 
black hole has nonvanishing angular momentum. O 1995 American Institute of Physics. 

1. INTRODUCTION field Ap---can be described in curved spacetime with metric 
tensor gpv by means of the gauge invariant, generally cova- 

Problems that relate the interaction of quantum particles riant Lagrangian 
with a gravitational field are of great theoretical interest. 
Most studies in this field have addressed quantum processes 
in the vicinity of microscopic black holes (mass loi7 g),l and 
have established that a multitude of quantum effects come 
into play near such a black hole, profoundly influencing its 
evolution. Foremost among these is the creation of particles 
near a collapsed hole via the Hawking process.2 There is 
another process, first predicted by ~e l 'dovich~ and his 
 coworker^?^ that takes place in the vicinity of a rotating 
black hole. It is known as superradiant scattering, with out- 
going radiation extracting energy from the black hole. 

Creation processes are localized near the horizon, where 
the gravitational field is more moderate (quasi-Newtonian). 
Here, massive particles can be captured in quantized bound 
states that are structurally similar to atomic the dif- 
ference being that these states decay via particle tunneling to 
the horizon. These levels are filled by particles created near 
the horizon that tunnel in the opposite direction. 

These processes are due to interactions between a quan- 
tum field and the background gravitational field, disregarding 
effects of other fields. The quantum theory of interacting 
fields in a background gravitational field has, in turn, been 
studied in some detail (see e.g., Refs. 1, 8, 9); consideration 
has been accorded the choice of a vacuum state and the in- 
fluence of particle creation on interaction processes. 

In that regard, there is interest in studying the emission 
and absorption of quanta of the electromagnetic field by 
charged particles in the strong gravitational field of a micro- 
scopic black hole. In the present paper, we model such pro- 
cesses by examining radiation generated by charged particles 
in quantum bound states in the field of a black hole. 

2. RADIATION OF A SCALAR PARTICLE 

where Le-,  is the generally covariant electromagnetic field 
Lagrangian. Here we assume the gravitational field to be 
given. 

The Hamiltonian of this system of fields can be written 
in the form 

where H,,  and He-, are the free-scalar and electromagnetic 
field Harniltonians, and Hht is the electromagnetic interac- 
tion Hamiltonian, which can be treated as a perturbation on 
account of the smallness of the coupling constant. 

In first-order perturbation theory, the transition probabil- 
ity from state la) to state IP) is 

We consider the electromagnetic radiation of a single scalar 
particle in the field of a black hole, with transitions between 
initial and final quasistationary bound states with quantum 
numbers i = { e l m )  and f = {e'l 'rn '1, where E is the particle 
energy, 1 is its orbital angular momentum, and rn is its azi- 
muthal quantum number. 

A system consisting of two interacting fields-a scalar The matrix element for the quantum transition of a par- 
field @ with charge e and mass p, and an electromagnetic ticle emitting a photon in the field of a Kerr black hole is 
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a 
- ( P * ~ ~ - p ~ ~ ~ ) @ ~ ~ o @ i ( m + m ' ) -  sin 8 . Jz I I 

(7) 

Here we employ the notation of Newman and  enr rose" and 
Press and ~eukolsk~" :  

p= -(r- ia  cos 8)-', 

d v 
L =-+-- 

sin0 
aw sin 8+ s cot 8, 

L~+=L(-w,-v) ,  (8) 

where M is the mass of the black hole, a is its angular 
momentum per unit mass, t, r, 8, and 4 are spherical coor- 
dinates, and A,, A l ,  and A ,  are the components of the elec- 
tromagnetic vector potential in the Kinnersley basis: 

Ap=Alnp+Anl~-Amm*p-A,*m",  

n j ' = ( 2 ~ ) - ' [ r ~ + a ~ , - A , o , a ] ,  

1p=A-'[r2+a2,A,0,a], 

mp= - $[ia sin 8,0,1,- . 
s ~ n  8 I 

We assume that the operators L and D act on wave functions 
whose dependence upon t and 4 takes the form exp(-iwt 
+iv+). 

Ternov et ~ 1 . ~  derived a bound-state particle wave func- 
tion defined both with the localization region of the particle 
and outside it, near the horizon. Its frequency contains an 
imaginary correction -is, which acts as a wave function 
damping constant. For present purposes, a separate descrip- 
tion of the two quantum states, with real frequencies, is more 
reasonable: one in the particle localization region, and the 
other outside it, near the horizon. Transitions between the 
states are described by the transition Hamiltonian 
H,,,,= 8(b+c+cf b), where c, c+  and b, b+ are particle 
annihilation and creation operators in the localized state and 
near the horizon, respectively. 

Given that p M 4  1, the wave function for the bound state 
of a scalar particle in the localization region 
r-ao+r+ (a0=(p2M)-' is the typical size of an "atom," 
r +  is the radius of the black hole horizon, and 
r 2 = ~ t J Z 2 )  is then 

The radial function &f,(r) can be approximated in 
terms of the degenerate hypergeometric function @(1+1 
- n, 21 + 2,q), where n is the principal quantum number of 
the particle's energy level in a Newtonian ptentia16 when 
the particle energy is E : 

In Eq. (9), oSlm(a,8) is a spheroidal wave function, 
which can be expanded in powers of a2(p2-2) with the help 
of the associated Legendre polynomials P y :  

1 

m)! W' 

The state of a photon in the field of a black hole can be 
characterized by its energy w, azimuthal quantum number v, 
dipole moment J ,  and polarization P, plus the asymptotic 
behavior of the wave function at the black hole horizon H- 
and at null infinity J-. We can write an expression for the in 
mode,I2 corresponding to a particle arriving from J- (with 
r=m) in the gauge Al=O, that is compatible with the normal- 
ization criterion at J- (Ref. 13): 

A$(x,wvJP= 2 l )= ( l -+ I I )  (L,-iap* sin 8) [ $ 
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TABLE I. Trans~t~on probab~l~tles for a scalar partlcle w~th photon emlsslon In an In mode. 

Here, rI is the spatial reflection operator: rIcp( t , r ,  0,4) = p(t, r ,  
- 0,- 4 ) .  

We can write an expression in the gauge An=O for the 
up mode corresponding to a particle departing from H- that 
is compatible with the normalization condition at H - :  

L: 
A t & x , m v J P = ~ l ) = ( l f H ) [ $ ( - - - p + i a  sin 0 

(16) 
where 6 = m -  v O , O = a ( 2 ~ r + ) - '  is the rotation rate of the 
black hole, and the coefficient B, which can be determined 
by the method given in Ref. 5, is equal to 113. 

The spheroidal wave functions ,S,O,(a,0) can be ex- 
pressed in terms of orthogonal polynomials P:,- ,  g' lven in 
Ref. 14: 

From here on, we consider only dipole radiation (J= 1). The in and up modes form a basis in the state space, in 
In the localization region r - a,  of a scalar particle, the radial which it is necessary to define the quantization method and 
function .lRJ,(r) can be expanded in series: the vacuum state. The case of a permanent black hole corre- 

sponds to ?quantization, in which modes with D>O are 
deemed to be positive-frequency15: 

TABLE 11. Angular integrals contributing to transition probabilities for a scalar 
particle. 
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where c and c+ are the photon annihilation and creation 
operators. 

Unruh proposed'6 (-quantization as a means of describ- 
ing the state of the electromagnetic field (which is character- 
ized by a flux of Hawking particles) following gravitational 
collapse. The up modes are then positive-frequency for all (3, 

and an additional factor is incorporated beyond Eq. (14): 

The initial state of the electromagnetic field is taken to be the 
vacuum, defined by c(O)~=O for all operators c: ci,, , c:p for 
?quantization (Boulware vacuum), and c, ,  ciP for 
[-quantization (Unruh vacuum). 

Substituting (8)-(19) into the matrix element (7), we 
find the following selection rules for electromagnetic radia- 
tion 

1) energy: E '=  E-  o ,  

2) azimuthal quantum number: m ' = m  - v, (20) 

3) parity: P = ( -  I)'-". 

If the metric is spherically symmetric (like the Schwarzs- 
child metric, for example), then 

which is analogous to the rule for the addition of angular 
momentum in the hydrogen atom. The Kerr metric, on the 
other hand, is not spherically symmetric, and the rule for 
adding angular momenta does not hold. 

Table I lists expressions for several transition probabili- 
ties between bound states involving the emission of a TM 
photon in an in mode with J= 1 if A1 is odd, and a TE photon 
if A1 is even. 

The quantity ~ p ~ ) ( ~ , p ' )  in the expression for the prob- 
ability takes the form 

and values of the Y $ - ~  are given in Table I1 in terms of 
Clebsch-Gordan coefficients. 

In either type of vacuum, radiative transitions only take 
place with particle energy losses and photon creation in an in 
state (E'<E, o>0). 

According to the rule for the addition of angular mo- 
menta, only transitions with A1 =0,+ 1 are permitted in di- 
pole radiation. The transition probabilities, which are subject 
to the addition rule, are the same in the "particle-black 
hole" system and the hydrogen atom. There is no discernible 
dependence of the probability of such transitions on the 
black hole rotation rate. 

The transition probabilities in Table I have the following 
orders of magnitude: 

W ( A l =  2 3) -e2 ( ,ua )4 (p~)8p .  (22) 

Clearly, even for a rotating black hole, for which the angular 
momentum addition rule does not strictly hold, transition 
probabilities that violate the addition rule tend to vanish in 
the limit as A1 increases. The only exception is the case in 
which a= M, for which the probabilities of magnetic transi- 
tions with A1=0 and A1 =+2  are of comparable magnitude. 

The probabilities of the most intense transitions with 
photon emission in an up state are shown in Table 111; de- 
pending on the type of vacuum-Unruh or Boulware-they 
differ by a factor p2((3): 

~~(nlm+n'l'm')=~~((3)~~(nlrn+n'l'm'). (23) 

This results in large differences in order of magnitude: 

WB(Al= + ~ ) - e ~ ( , u M ) ' ~ p ,  

Wu(A1= 2 ~ ) - e ~ ( , u M ) ~ ~ ,  

w ~ ( A ~ = o ) - ~ ~ ( ~ M ) ' ~ ~ ,  

w,,(AI= O) -e2 ( ,u~ )9p .  (24) 
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In the vicinity of a black hole in the Boulware vacuum, 
transitions involving the emission of an up photon with en- ~ i f j = Y (  lflA( lil &d3x:Hd: l o ) * /  l  i )y  

ergy 6 > O  are permitted. When O> - v a, the particle loses 
energy: E' = E - (3 - v a< ei . Conversely, upon emission of a 
photon with ij< - va, it gains energy: E':>E. The absorp- 

= fiI & $ e x p [ i ( m - m i ) * ]  

TABLE Ill. Transition probabilities for a scalar particle with photon emission in an up mode. 

tion of energy from the vacuum is associated with the non- 

( 
R ~ * R ; A , *  RJ*R,AF 

vanishing energy-momentum tensor in the vacuum state of a x ( s ; * s ; + s ~ * s ~ )  A + 
rotating black hole. 2 I: 

Additionally, transitions involving photon creation with R;*R' -R;*R,? 
energy 6 < O  are permitted in the Unruh vacuum, so the pos- + ( P ~ f * ~ , ~ ~ ~ - P * ~ ; * ~ ~ ~ ~ * )  2 A 
sibility that a particle will extract energy from the vacuum is 
significantly enhanced. (26) 

Nevertheless, it can easily be seen by comparing (22) 
and (24) that photon emission in in states is much more Here we represent the spinor wave function in a form derived 
likely than emission in up states. The most likely transition by chandrasekhar17: 
with a photon in an up mode in the Unruh vacuum is 
( p ~ ) - ~ ~ l  times less probable than the most likely transi- e x p ( - i e t + i m + )  
tion with photon creation in an in mode. @(ern js  ,x) = 6 The radiative transition probabilities given in Tables I 

A1 

and I11 govern the interaction between a scalar particle in a 
bound state in the field of a black hole and the electromag- s + ( B ) R + ( ~ )  S - ( O ) R + ( r )  p * ~ + ( 0 ) ~ - ( r )  
netic vacuum. - 

6 7 

J;i: fi 
(27) 

W u p ( n l m  -+ n'l'm') 

3. RADIATION OF A SPINOR PARTICLE 

The spheroidal wave functions S(0) in (26) can be expanded 
in orthogonal polynomials14: 

-- 

The Hamiltonian for the interaction of a spinor field with 
an electromagnetic field takes the form S,;(S,O)= di(j+ f ) [ ~ ' , , , , ~ ( c o s ~ ) + a ( r + s p ) r r , + ~  

\IjL-rn' 
K .= S;, , , (S,O)= - s ( -  l ) i - m ~ , ~ , ( ~ , ~ -  o ) ,  where the yp(x)  are gamma matrices in curved spacetime. J ( 2  j ) 2  ' 

We consider only one-particle states. The matrix element for (28) 
a transition between such states that is accompanied by the 
creation of a photon in the electromagnetic vacuum can be where s = +  1, j and rn are half-odd integers, and l r n l ~ j .  
written in the following manner, using Newman-Penrose no- With p M <  1 at r 9 r  + ,  the radial wave functions of the 
tation: quasistationary state take the f ~ r m ' ~ " ~  
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TABLE IV. Transition probabilities for a spinor particle with photon emission in an in mode. 

where Cn1 and q are given by ( l l ) ,  and 1= j+s/2.  
Substituting (27)-(29) and the photon wave functions 

(13)-(16) with quantum numbers {w,P,J,v} into (26), we 
obtain exactly the same energy, azimuthal quantum number, 
and parity selection rules (20) as for a scalar particle. 

The rule for the addition of angular momenta for a 
spinor particle, 

A1 

- I  

- 3 

0 

-2 

-2 

where j and J are respectively the total momentum of par- 
ticle and photon, holds in the field of a Schwarzschild black 
hole, and breaks down in the field of a rotating black hole. 

Table IV gives probability expressions Wi,(njlm 
4 n 1 j ' l ' m ' )  for some of the most intense transitions be- 
tween bound states involving photon emission in an in state 
with J = l  (with electric or dipole radiation). Values of 
y j ' r n ' s '  ,,,, are given in Table V. 

The expressions for the probability of normal transitions 
with A1 =0,2 1,?2 (which satisfy the angular momentum ad- 

dition rule) are the same in the field of a Schwarzschild black 
hole and for a hydrogen atom. In transitions with no spin flip 
(A1 =0,+2), the dependence of the transition probability on 
the black hole rotation rate is negligible, while the probabil- 
ity of normal spin-flip transitions (Al=+l,Aj=O) depends 
heavily on the rotation rate. 

Table IV gives the order of magnitude of the transition 
probabilities 

W(A1= + l ,A j=  2 1)-W(A1= + l ,Aj=O) 

- e 2 ( p W 4 p ,  

W(Al=O)-W(Al= +2,Aj= + 1 ) - e 2 ( p ~ ) ' p ,  

W(A l=  2 l ,A j=  2 2 ) - e 2 ( p a ) 2 ( p ~ ) 4 p ,  

W(A l=  2 3,Aj= + 2 ) - e 2 ( p a ) 2 ( p ~ ) 8 , u ,  

W(Al= Aj= - f 2 ) - e 2 ( p ~ ) 2 ( p ~ ) 6 p ,  

W(A l=  Aj= 2 3 ) - e 2 ( p a ) 4 ( p ~ ) 8 p .  (31) 

Probabilities of anomalous transitions, which violate the an- 
gular momentum addition rule, fall off with increasing A1, 
and when 1 and pM< 1, they are much lower than 
probabilities of normal transitions, which conform to the 
rule. The probabilities of transitions with A1 = A j are of the 
same order of magnitude as for a scalar particle with the 
same A1 and Am (for either type of transition). Note that 

Aj  

0 
- 1 
-2 

-2 
- 3 

0 
- I 

- 1  

-2 
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Cn',l- I Cnl 4 

4e2w3 [ n,- (7) ~i,! f , ) (n - 1 - I ,  n' - ~ ) y ~ ~ ~ ; v * s '  3 

Cnl,1-3Cnl 3e2w3 [ n~ l -3n1  (?I4 
j - 3  m-v,sf 

~ & : ' ~ ' ( n  - 1 - 1, n1 - 1 + 2)~,,,,5 I' 
Cn',lCnl w 

4e2w3 [-- (?) Ji:;,)(n - 1 - 1,n' - 1 - 1 )  
3 n'lnl p 

x ! (. ( j  + f )  + r. ( j '  + f )) qyA;-v.sl] 2 

2 
4 2 3 (Cnt.l-2Cnl (714) -e w 
3 nrl-2nl 

" (0 4) - J,,;, (n - 1 - 1 ,  n' - 1 + l)Y,<,f;"-"'-* 

- 1 - 1 ,  n' - 1 + l ) ~ ~ ~ ; m - v y - s  

a (713 
x JL: '~ ' (~  - 1 - 1 ,  n' - 1 + I ) ~ , ~ ; ~ - " ' ~  I' 
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TABLE V. Angular integrals contributing to transition probabilities for a spinor particle. 

spin-flip transitions with A1 = + 1, A j =  5 2  are the most fre- 
quent of the anomalous transitions, and for w>(,uM)2, they 
are even more likely that normal magnetic transitions with 
A1 =o. 

The differences between the selection rules in a black 
hole+particle system and a hydrogen atom are due to distor- 
tion of the angular part of the particle and photon wave func- 
tions resulting from black hole rotation. The rotation of a 
gravitational field exerts a major influence on a multicompo- 
nent field, so in the case of a scalar particle, rotational gravi- 
tational corrections to the electromagnetic field of order 
O(ao) engender magnetic dipole transitions with A1 = +2 
with higher probability than electric dipole transitions with 
A l =  t 3 ,  which are induced by corrections to the wave func- 
tion of the scalar particle. The O(ap) correction to the 
spinor particle wave function engenders even more likely 
A1 = + 1, A j =  2 2  spin-flip electric dipole transitions. 

Table VI lists the probabilities of the most intense tran- 

A 

- 1  

- 1  

-3 

0 

0 

-2 

-2 

sitions between quasistationary levels in which a photon with 
J =  1 is emitted in the up state. 

Like a scalar particle emitting a photon in the up state in 
the Boulware vacuum, a spinor particle goes to a higher en- 
ergy level if the photon satisfies the superradiant scattering 
condition B<- v IR(&>o- v IR>O). 

In the Unruh vacuum, the photon emission probability in 
an up state is given by Eqs. (23) and (19); photon emission in 
a state with W> - v R is accompanied by a decrease in par- 
ticle energy, while the energy increases in a state with 
6 < - v  R. 

The orders of magnitude of the transition probabilities 
involving photon creation in the Boulware and Unruh vacu- 
ums are 
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1 

- 1  

1 

- 1  
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y?',m',s' ~ , m , s  

( j - 1  I m - v v l j m )  

Y 

9 

( j - 1  l m - v v I j m )  

L (ms  m ( j - 1  l m - v v l j m )  

+ d-+T - ( j  I m - v v l  j m )  
j - 1  

m2)((j - 1)* - m2)(2j + 1 )  
( 2 j  - 3) (2 j  - 1 )  

2 j  - 5 - 1  1 ' - 3 1 m - v v I  j - 2 m )  
sCI - 1)d- 4j2  

-( j  l m - v v l j m )  

j+ 112 

m ( j  1 m - v v J  j m )  

a(€' - s p )  -- a(€ - s p )  
j - 1  

( j - 2 l m - v v l j - 1 m )  

x ( j - 2 1 m - v v I  j - 1 m )  



TABLE VI. Transition probabilities for a spinor particle with photon emission in an up 
mode. 

The probability of photon emission in an in state is much 
higher than in an up state. 

The emission of photons in an up state by a charged 
particle with spin is thus little different from emission by a 
spinless particle. Our analysis of the appropriate orders of 
magnitude suggests than in either case, processes in which 
electromagnetic particles are created near the black hole ho- 
rizon have little influence on the evolution of particles in 
bound states with pM < 1. 

It is interesting to compare the rates of two competing 
processes, namely the tunneling of particles out of a bound 
hydrogen-like level to the black hole horizon, and the fall of 
a particle to the lowest-lying energy levels with emission of 
a photon. It is well known that the tunneling probability falls 
off rapidly with increasing orbital angular momentum 1 and 
principal (energy) quantum number n.6,'8.19 An estimate 
shows that if a particle with the mass of the electron is cap- 
tured to a quasistationary level by the field of a microscopic 
black hole of mass ~ < 1 0 ' ~ ~ ,  a particle transition to the 
lowest-lying energy level with photon emission is more 
likely that decay of the level via tunneling to the horizon for 
all states of nonvanishing orbital angular momentum; for 
1 =0, the rates of these two processes are comparable in order 
of magnitude. Thus, when a particle is captured by a black 
hole, it will first shed its energy and angular momentum via 
radiation, and tunneling will take place principally from an s 
state-primarily from the lowest-lying hydrogen-like 1s 
state. 

The inverse of tunneling to the horizon is the filling of 
bound states with Hawking particles. The nonzero mass of 
these particles means that this process proceeds more slowly2 

A1 

- 1 

0 

-2 

than Hawking radiation of massless photons, and therefore 
the advent of another (Hawking) particle in a bound state 
during one particle lifetime is highly unlikely. The filling of 
quasistationary states with Hawking particles and the evolu- 
tion of particles in these states via radiation and tunneling 
back out to the black hole horizon must therefore be viewed 
as sequential, nonsimultaneous processes. 
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