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A dynamical theory of coherent inelastic (accompanied by creation or absorption of phonons in 
the crystal lattice) Mossbauer scattering of synchrotron radiation (SR) from crystals 
containing nuclei of the Mossbauer isotope is developed. Two-wave dynamical diffraction theory 
is used to construct general equations describing inelastic Mossbauer scattering, which are 
analyzed for the general case and solved analytically for the cases permitting separation of 
polarizations. A detailed analysis of the solutions is performed for thick samples in the 
case of pure nuclear reflections. Some qualitatively new effects compared with the case of elastic 
Mossbauer scattering are revealed in inelastic Mossbauer scattering of SR. They include, for 
example, a larger number of frequencies in the pendelosung beats versus sample thickness, a 
different fine structure of the angular distribution inside the region of strong diffraction, and 
effectively increased transparency of samples for the resonant component in the primary and the 
diffraction directions. O 1995 American Institute of Physics. 

I. INTRODUCTION 

New perspectives have been opened by the application 
of modem synchrotron radiation (SR) sources to Mossbauer 
spectroscopy.' Experiments which were impossible with con- 
ventional Mossbauer sources can now be performed with 
modern SR sources, like experiments on inelastic (with ex- 
citation or absorption of phonons) coherent Mossbauer scat- 
tering, i.e., Mossbauer coherent scattering accompanied by 
phonon processes in the crystal lattice. 

Unusual angular distributions in inelastic coherent Moss- 
bauer scattering were predicted in Refs. 2 and 3. Specifically, 
it was shown that the direction of coherent inelastic Moss- 
bauer scattering is practically independent of the wave vector 
of the phonon participating in the scattering process (the 
physical reason for this is the very long Mossbauer scattering 
time compared with the characteristic times of the crystal 
lattice). As a consequence of this, the angular positions of 
inelastic and elastic diffraction reffections practically coin- 
cide. The observable effects of such a coincidence should be 
present in Mossbauer experiments with conventional sources 
(both in scattering geometry and in absorption geometry4). 
However, the most important implications are in Mossbauer 
experiments with SR sources (see, for example Refs. 5-7). 
The problem of distinguishing the elastic and inelastic chan- 
nels of Mossbauer scattering became urgent in a practical 
aspect. Thus, a quantitative description of these measure- 
ments requires a more exact theory than the kinematical 
0ne.~9~ 

The present paper is devoted to the dynamical diffraction 
theory of inelastic coherent Mossbauer scattering in perfect 
crystals. General equations of inelastic coherent Mossbauer 
scattering are derived and analyzed. The cases of most inter- 
est for experimental investigation, involving pure nuclear 
diffraction maxima, are examined in detail. 

2. GOVERNING EQUATIONS 

In Mossbauer experiments using SR a preliminary 
monochromatized SR beam interacts with a sample contain- 

ing nuclei of the Mossbauer isotope. One should keep in 
mind that the energy linewidth AE,  of the premonochroma- 
tized SR beam is nevertheless much wider than the Mijss- 
bauer linewidth T. For a typical case of ~e~~ with the Moss- 
bauer transition energy 14.4 keV the ratio AE,lT is equal 
1 0 ~ - 1 0 ~  for an SR energy linewidth 1-0.1 eV. Therefore in a 
theoretical description of SR Mossbauer scattering one can 
assume that the SR spectral density is constant in the fre- 
quency range which is much greater than the corresponding 
frequencies of the hyperfine nuclear interactions and of the 
thermal lattice excitations in a typical situation. 

That is why the processes of coherent inelastic Moss- 
bauer scattering are present along with coherent elastic 
Mossbauer scattering (the dynamical theory of coherent elas- 
tic Mossbauer scattering is presented in Ref. 1, 8-10). Al- 
though the probability of an individual inelastic scattering 
event (with the absorption or excitation of phonons) is much 
lower than the probability of elastic (recoilless) scattering, 
the probability integrated over all phonon processes can be 
quite comparable with the probability of recoiless scattering. 
The latter is proportional to f 2  and the former to 1 - f2, where 
f 2  is the Lamb-Mossbauer factor. Because nuclear resonant 
scattering is a slow process (compared to typical lattice 
times) and proceeds via two stages, the first being the ab- 
sorption of a photon and the second being a transition of the 
nuclei to the ground state accompanied by the emission of a 
secondary photon, the inelastic coherent scattering involving 
phonons may be two different groups. In one the scattering 
events are, accompanied by excitation or absorption of 
phonons when the incident photon is absorbed by the Moss- 
bauer nucleus, while in the other scattering is accompanied 
by excitation or absorption of phonons when the secondary 
photon is reemitted by the Mossbauer nucleus. 

The most probable is inelastic scattering in which pho- 
non absorption or excitation occurs only during absorption or 
reemission of a photon by the Mossbauer nucleus. This cor- 
responds to the fact that the processes of the first group lead 
to a "pumping" of nonresonant quanta from the wide SR 

405 JETP 81 (2). August 1995 1063-7761 /95/080405 -08$10.00 O 1995 American Institute of Physics 405 



line to the narrow Mossbauer line with linewidth T. But the 
processes of the second group lead to "pumping" of the 
resonant Mossbauer photons from the narrow Mossbauer line 
to the wide SR line. In this way the resonant and nonresonant 
photons are interconnected. The nonresonant photons create 
a current at the Mossbauer frequency and the Mossbauer 
quanta create a current at the frequencies in the range of the 
SR linewidth. This relationship may be described by two 
equations which follow directly from the Maxwell equations: 

where EM is the Mossbauer (resonant) component of the 
photon electric field, E, is the synchrotron (nonresonant) 
component of the electric field outside the Mossbauer line- 
width, s, is the dielectric tensor for the resonant component 
of the electric field taking into account the elastic Mossbauer 
scattering, E, is the dielectric tensor for the nonresonant com- 
ponent (if the elastic nuclear interaction of quanta is not 
taken into account), and xMS and xSM are quantities analo- 
gous to the nonlinear susceptibilities in the optics, the first of 
which describes generation of photons at the frequency wM 
due to the field of frequency o, and the second describes the 
generation of photons at the frequency os due to emission of 
frequency wM . 

The expressions for EM and s, are well k . n ~ w n , ' ~ ~ - ' ~  and 
the expressions for xMS(r) and xSM(r) are determined accord- 
ing to Refs. 2 and 3 by the amplitudes for coherent inelastic 
scattering, and their Fourier-transforms will be given below. 

In the most general case the solution of Eqs. (la) and 
(lb) is quite difficult and demands the use of numerical 
methods. Therefore let us outline some straightforward ap- 
proximations which simplify Eqs. (la) and (lb). One can 
neglect the inhomogeneous term in Eq. (lb) while describing 
the "pumping" of radiation into the Mossbauer line from the 
wide SR line because the correction to the amplitude of the 
SR field for each individual frequency w, due to the pumping 
from the resonant line is much less than the ratio of the 
corresponding linewidths hwM/ ho, . This means that in de- 
scribing the inelastic coherent Mossbauer scattering of SR 
the pumping" of radiation into the Mossbauer line can be 
described with a high accuracy by Eq. (la) with the assump- 
tion that the field E, in the right hand side of Eq. (la) is 
determined by the interaction of the SR beam with a sample 
without taking into account the nuclear channel of interac- 
tion. But the contribution to E, due to the inelastic coherent 
Mossbauer scattering is determined in this approximation by 
Eq. (lb), in the right-hand side of which the amplitude E M ,  
found, from Eq. (la), is substituted. The corresponding con- 
tribution to the nonresonant component of radiation may be 
quite important in Mossbauer experiments because the inten- 
sity of this component integrated over the frequency can be 
comparable with the intensity of the elastic component of 
nuclear scattering and its angular distribution practically co- 
incides with the angular distribution of the elastic nuclear 

scattering. It can be very different from the SR angular dis- 
tribution in the absence of nuclear interaction (for example, 
nuclear diffraction peaks can be present). 

In a typical Mossbauer experiment with SR an incident 
SR beam also excites diffraction reflections in a sample con- 
taining Mossbauer nuclei along with the primary beam. 
Quite frequently a situation occurs when the diffraction re- 
flections are due to the nuclear resonant interaction of pho- 
tons and in the absence of this interaction (for photons not 
experiencing nuclear resonant scattering) the diffraction re- 
flections are absent and the photons propagate in the primary 
beam direction only. 

In most practically important cases one can use the two- 
wave theory of Mossbauer diffraction1 to solve the system 
(la-b). In this approximation one easily obtains (in full anal- 
ogy with the case of elastic Mossbauer diffraction) the fol- 
lowing system for the partial amplitudes of the two-wave 
approximation: 

where EM(ko), EM(kl), E,(h), E,(kl) are the partial ampli- 
tudes of the photon electric fields for the directions of the 
primary and diffracted beams related to the resonant and 
nonresonant components, respectively, as the arguments of 
these amplitudes are the corresponding wave vectors used, K 

is the magnitude of the wave vector in vacuum, i.e. wlc, 
where w is the photon frequency and c is the light velocity, 
i&, i!, ;A, i$ are the Fourier transforms of the dielectric 
tensor for the resonant and nonresonant photons, ZS, ZS,, zM, %M are the Fourier transforms of the quantities analo- 
gous to nonlinear susceptibilities in optics, which describe 
pumping of photons between the resonant and nonresonant 
components. 

Formally, Eqs. (2a) account for both the processes of 
pumping of Mossbauer line, which involves lattice phonons, 
and the processes of recoiless SR scattering (if the quantity 

corresponds to purely elastic scattering). However, it 
will be assumed below that the right-hand side of Eqs. (2a) 
describes only inelastic processes involving lattice phonons, 
because the problem of the elastic coherent Mossbauer scat- 
tering has been investigated a ~ r e a d ~ . ' * ~ - ' ~  Due to the linearity 
of Eqs. (24  the total field of the resonant component of 
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radiation is a sum of the known solution of the problem of 
elastic coherent Mossbauer scattering and the solution of the 
problem of inelastic coherent Mossbauer scattering of SR 
considered below. 

3. THE BOUNDARY-VALUE PROBLEM 

For make further progress in solving the problem under 
consideration one should specify its geometry, i.e., specify 
the boundary conditions. Assume that a plane premonochro- 
matized SR wave is incident on a perfect plane-parallel 
single crystal sample containing Mossbauer nuclei. Assume 
also that the primary beam propagation direction is identical 
with or close to the direction corresponding to the two-wave 
diffraction. In solving the problem it is naturally to use the 
well known parametrization for monochromatic wave 
diffraction,' where the solution is found as a function of the 
primary wave incidence angle and the corresponding param- 
eter in the solution is 

where T is the crystal reciprocal lattice vector and K is the 
wave vector of the incident quantum out of the sample. 

System (2a) for the resonant component in the SR in- 
elastic scattering differs from the corresponding system for 
elastic Mossbauer diffraction by the inhomogeneous terms. 
With very high accuracy one can assume that the amplitudes 
Es(k,,), Es(k,), entering the right part of system (2a) are de- 
termined without taking into account the SR Mossbauer scat- 
tering, i.e., they may be considered to be known. That means 
that the inhomogeneous terms in Eqs. (2a) are known and the 
solution may be presented in the form: 

where the first term on the right side of Eq. (4) is a particular 
solution of the inhomogeneous system and the second term is 
a linear superposition of the general solutions of the corre- 
sponding homogeneous system. The coefficients C,  in the 
superposition are to be determined from the boundary con- 
ditions. Thus, the expression (4) determines the general so- 
lution for the resonant component of the field generated by 
the SR wave. 

The field of the nonresonant component connected with 
inelastic coherent Mossbauer scattering is also described by 
an expression similar in form to Eq. (4) and may be deter- 
mined in an analogous way from the solution of system (2b) 
if the amplitudes EM(ko), EM(kl) found from (4) are inserted 
in the right-hand sides of (2b). 

We have treated the field structure in the Mossbauer 
scattering of SR in the case of two-wave diffraction in a 
general form, specifying neither the crystalline nor magnetic 
structure (the structure of the hyperfine fields in the Moss- 
bauer nuclei) of a sample. Nevertheless, the general form of 
the solution, while is similar to Eq. (4), allows one to make 
some qualitative assertions about the specifics of Mossbauer 
scattering of SR as compared with the thoroughly studied 
Mossbauer diffraction of gamma-photons produced by con- 
ventional Mossbauer sources. 

Let us first consider the resonant scattered component. 
The structure of solution (4) shows that for the scattering of 
SR an additional term in the resonant component emerges 
which is due to the creation or annihilation of the lattice 
phonons in the primary photon absorption stage. The reso- 
nant component of the intensity due to this term is propor- 
tional to I - f 2  and can be quite comparable with the intensity 
of the purely elastic scattering. The angular distribution of 
this component is the same as for the purely elastic scatter- 
ing; however, the interference effects connected with the in- 
terference of the particular and general solutions of the sys- 
tem (2a) are present in expression (4), unlike the case of 
purely elastic scattering. This interference can result in inten- 
sity beats that depend on sample thickness, incidence angle, 
and the other parameters of the problem, as well as in the 
corresponding polarization beats for the scattered beam. 

The angular distribution of the nonresonant scattered 
component connected with the creation or annihilation of 
lattice phonons when a photon is reemitted by the Mossbauer 
nucleus is almost the same as the corresponding distribution 
for purely elastic Mossbauer scattering. This distribution can 
differ substantially from the angular distribution of SR which 
does not experience nuclear scattering if the scattering con- 
ditions correspond to pure nuclear reflection in the Moss- 
bauer scattering. As far as the intensity of this nonresonant 
component integrated over the frequency is concerned, it is 
proportional to 1 -f 2, i.e., can be quite comparable with the 
intensity of purely elastic Mossbauer scattering of SR. Just 
as in elastic scattering, the inelastic coherent Mossbauer scat- 
tering of SR exhibits interference between the particular and 
general solutions of the system (2b) in expressions like (4), 
which leads to beats analogous to those described for the 
resonant component. 

In the general case the qualitative behavior of the Moss- 
bauer scattering of SR discussed above can be quantitatively 
described only by numerical methods. For a quantitative il- 
lustration of these effects a specific case allowing for an 
essential simplification of the problem of coherent Moss- 
bauer scattering of SR is examined in detail. 

4. PURE NUCLEAR REFLECTIONS 

Assume now that the SR scattering from the sample is 
close to the Bragg condition for purely nuclear reflection in 
the Mossbauer diffraction. In this limit Eqs. (2) simplify con- 
siderably because the primary SR wave is not subjected to 
diffraction connected to the scattering at the electrons of the 
sample. That is why SR wave may be considered as a plane 
wave propagating in the sample along the primary SR beam 
direction. This means that the amplitude E,(kl) in (2) is 
equal to zero and one gets the following system: 
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The nonresonant components in system (5b) are marked 
by the indices "s" and "My' to emphasize that they originate 
with the inelastic scattering of the resonant component. That 
is why, in particular, a nonresonant component connected 
with inelastic scattering and propagating in the secondary 
(diffraction) direction arises, whose amplitude enters in the 
last equation of the system (5). As the amplitudes EM(ko), 
EM(kl), E,(k,,), E,(k ,) are two-component vectors, in gen- 
eral the systems (2) and (5) consist of eight equations for 
eight scalar unknown quantities and the polarizations of the 
partial waves in the solutions are, in general, elliptical. 

Further simplifications of Eqs. (2) and (5) occur when 
the polarizations separate in the dynamical equations, i.e., 
when systems (2) and (5) decompose into two disjoint sets of 
equations. There are several well known cases of polariza- 
tion separation1 and it will be assumed below that one of 
them takes place. To be specific we shall assume below that 
it is the case of purely nuclear reflection in an antiferromag- 
net crystal when the antiferromagnet axis is in the scattering 
plane or perpendicular to it. In both cases the characteristic 
polarizations of the partial waves are linear (T- and 
a-polarizations)' and the problem reduces to the solution of 
system (5a), an inhomogeneous system of two linear equa- 
tions. 

Resonant component of inelastic scattering 

To find the resonant component in coherent inelastic SR 
scattering we must solve system (5a). The particular solution 
of (5a) has the form 

where A is the determinant of system (5a), A,, and A, are the 
determinants obtained from the matrix of system (5a) by 
replacing the first and second columns, respectively, with the 
source column. Note that the result of equating the determi- 
nant A to zero is the dispersion equation for the reflection 
under consideration in the case of purely nuclear diffraction. 
It is a known function of the parameter a determined by Eq. 
(3) (or a function of the SR wave vector projected on the 
surface of a sample under consideration).' 

The explicit solution of system (5a) of the form (4) for 
the assumed conditions may be easily written in the form 

where the subscript "s" of the wave vectors emphasize that 
the values of the wave vectors relate to the case when there is 
no nuclear interaction of SR with the sample, the superscript 
"f" marks the quantities related to the eigensolutions of the 
elastic Mossbauer diffraction problem, and "p" labels these 

solutions. [n the case under consideration, of linearly polar- 
ized partial waves with the amplitudes E{,  and Ef,, the sum 
over p contains two terms. It must be emphasized also that, 
as follows from the boundary conditions, all the wave vec- 
tors entering Eq. (7) have the same tangential components. 
However, their normal components, generally speaking, are 
different and are functions of the propagation direction of the 
primary SR beam (parameter a). 

Because the coefficients C, in (7) are to be determined 
from the boundary conditions on the electric and magnetic 
fields, one should specify the diffraction geometry to obtain 
their explicit form. 

For the Bragg geometry these conditions demand that 
the waves EM(ko) and EM(kl) go to zero at the front and rear 
surfaces of the sample which results in the following system 
of equations: 

c,E{, exp[i(kE h ) ]  + c,E{, exp[i(kE h ) ]  

where h  is the sample thickness and the superscript "I" 
marks components of the wave vectors normal to the surface. 

For the Laue geometry the boundary conditions demand 
zero values of EM(ko) and EM(kl) at the front surface and 
result in the following system. 

The Bragg case for a very thick (in theory semi-infinite) 
sample is the easiest to solve. In this case only one eigenso- 
lution, which decays toward the sample interior, is excited in 
the sample and the sum in Eq. (7) reduces to one term only. 
Assuming that p = 1 relates to the decaying solution one eas- 
ily finds from Eq. (7): 

Expression (10) gives the amplitude of the diffracted 
wave as a function of the SR beam incidence angle. The right 
hand side of the obtained expression is a function of param- 
eter a, depends on the SR intensity, the Lamb-Mossbauer 
factor, and the nuclear transition characteristics. Expression 
(10) describes reflection of linearly polarized SR with the 
polarization coinciding with the polarization of the eigenso- 
lution 1. Reflection of SR with the second linear polarization 
is described be a formula analogous to Eq. (lo), containing 
the amplitudes of the second eigensolution that decay in the 
direction into the sample. 

Nonresonant component of inelastic scattering 

The field of the resonant component found above and the 
field of purely elastic Mossbauer diffraction determine the 
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nonresonant component of coherent inelastic Mossbauer 
scattering of SR via systems (2b) and (5b). In the case of a 
nuclear reflection the equations for the waves scattered in the 
primary and diffraction directions are uncoupled in this ap- 
proximation [see Eq. (2)]. We restrict ourselves to consider- 
ation of the nonresonant component scattered in the diffrac- 
tion direction only, because both the incident SR beam and 
the scattered SR propagate in the primary direction, and dis- 
tinguishing the inelastically scattered component experimen- 
tally is more difficult than for the diffraction direction (the 
approach to the problem for the primary direction is com- 
pletely analogous). 

The scattering in the diffraction direction is described by 
the last equation of system (5b). As we have seen, the field of 
the resonant component in the sample is a linear superposi- 
tion of the eigensolutions of Mossbauer elastic diffraction 
and the particular solutions of the inhomogeneous system 
(5a). That is why, in order to simplify the formulas, we as- 
sume that the inhomogeneous term in the last equation in 
system (5b) is determined by only one eigensolution of the 
elastic Mossbauer diffraction problem. From the solution 
found this way any other situation may be described by sum- 
ming the result over all eigenmodes with appropriate weights 
by virtue of the linearity of the problem. 

The particular solution of the last equation in system 
(5b) may be presented in the form 

where kg, is the normal component of the wave vector in the 
primary direction for the qth eigensolution of the elastic 
Mijssbauer diffraction problem, k is the tangential compo- 
nent of k ,  , and ~i~ and E&, are the amplitudes of the partial 
waves in the primary and diffraction directions (depending 
on the parameter a). 

For the Bragg geometry the boundary condition on the 
desired solution reduces to the vanishing of the amplitude of 
the wave propagating in the diffraction direction at the exit 
surface and the solution takes the form 

The expression for the reflected wave amplitude follow- 
ing from Eq. (12) is given by the formula: 

For a thick sample (half space) the expression (13) gives 

For the Laue geometry the boundary condition on the solu- 
tion to be found is the vanishing of the amplitude of the 
wave propagating in the diffraction direction at the front sur- 
face, and the solution takes the form: 

+ ii"~{, exp[ i( kg + r )  r]} . (15) 

We illustrate the general formulas obtained above for the 
case of thick samples. For this we use the explicit form of the 
quantities i&, .Gr and 2, z:, zM, sM connected with 
nuclear interactions. These parameters of the problem de- 
pend on the unit cell structure, the existence of resonant fac- 
tors is common to all of them. In the case when the Moss- 
bauer nuclei occupy equivalent positions in the unit cell, 
which will be examined below, all Mossbauer nuclei have 
the same resonant energy, and the expressions for the param- 
eters mentioned above are simplified. In the values .G&, 2: 
the following resonant behavior1 is important: 

where Ti and r are the radiative width and the total width of 
the Mossbauer level, and No and N, are factors depending on 
the unit cell structure. The analogous expressions for p, 

take the form2 

where P(no-+n)  is the probability that the phonon state of 
the lattice changes a Mossbauer nucleus absorbs a photon, 
and ~ ( n )  and &(no) are the energies of the corresponding 
phonon states of the lattice. 

Let us examine first the inelastic coherent Mossbauer 
scattering of the SR into the resonant component. To do this 
one should specify Eq. (10) with the help of Eqs. (16) and 
(17). The determinant A, in particular, can be expressed in 
terms of these quantities as follows (see Ref. 1): 

Finally, for the amplitude of the elastic component in the 
Bragg geometry one gets from Eq. (10). 
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FIG. 1. The calculated angular distribution of the intensity of the resonant FIG. 2. The calculated angular distribution of the intensity of the nonreso- 
component in the reflected SR beam (arb. units) for a semi-infinite sample nant component in the reflected SR beam (arb. units) for a semi-infinite 
versus a I&:, where E: is the magnitude of s, at exact resonance, at different sample at different departures from the resonance in Ihe elastic eigensolution 
departures from resonance (AEIT=1000, 100; 5; 2) and different ratios of M6ssbauer diffraction (AEIT=1000, 100; 5; 2) and different ratios 
ResdRea, (in (a), (b) and (c) the values of ResdRes, are. equal to 1; 1.2; 1.4 ResdRes, (in (a), (b) and (c) the values of ReedRes, are equal to 1; 1.2; 1.4 
respectively). respectively). 

If one substitutes Eqs. (16) and (17) into Eq. (10) the 
expression for E l  in the Bragg case for thick samples takes 
the form 

From Eq. (20), the angular distribution of tht: resonant com- 
ponent in inelastic coherent Mossbauer scattering of the SR 
from a semi-infinite sample is identical to the distribution in 
elastic Mijssbauer scattering. 

In Fig. 1 the calculated angular distributions of the reso- 
nant component scattering for a thick sample into a pure 
nuclear reflection for different departures of the photon en- 
ergy from the resonant energy and different ratios of the 
nuclear structure scattering amplitude to the corresponding 
forward scattering amplitude are given as functions of the 
deviation of the primary SR propagation direction from the 
Bragg direction. A typical feature of the calculated curves is 
a manifestation of the Kagan-Afanas'ev effect (i.e., the 
nuclear Borrmam effect, in which the inelastic channels of 
gamma-ray interaction with the nuclei are suppressed) in the 
form of a sharp maximum at the edge of the diffraction scat- 
tering region when the structure scattering amplitude and the 
corresponding forward scattering amplitude are equal. The 
figure also shows a sharp decrease of the angular width of 
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FIG. 3. The calculated angular distribution of the intensity of the resonant 
component in the reflected SR beam (arb. units) integrated over the energy 
of the incident SR beam for a semi-infinite sample versus a 14, where E: is 
the magnitude of e, at exact resonance, Ree,/Res,= 1.2. The calculated 
curve (see the text) corresponds to a detector acceptance angle equal to 0.05 
of the angular width of the reflection curve at exact resonance). 

the reflection curve as the quantum energy departs from the 
exact resonant value. 

Moving now to the nonresonant component of the SR 
scattering, by substituting into Eq. (14) the explicit form of ,y 
and E we obtain the following expression for the denomina- 
tor of Eq. (14): 

and the following formula for the amplitude of the inelastic 
component scattered in the Bragg direction: 

Expression (22) shows (see Fig. 2) that the nonresonant 
component in the coherent inelastic scattering associated 
with scattering of an eigenmode in elastic Mossbauer diffrac- 
tion differs from that of the distribution in the Mossbauer 
elastic scattering. 

In Fig. 2 the calculated angular distributions of the reso- 
nant component of scattering from a thick sample into a pure 
nuclear reflection for different departures of the photon en- 
ergy from the resonant energy and different ratios of the 
nuclear structure scattering amplitude to the corresponding 
forward scattering amplitude are given as functions of the 
deviation of the primary SR propagation direction from the 
Bragg direction. Note, that the curves presented in Fig. 2 
(unlike the case of Fig. 1) give angular distributions of the 
nonresonant scattered component for a fixed photon energy 
as a function of the dimensionless angular variable normal- 
ized by the nuclear structure scattering amplitude dependent 
on the primary photon energy. This can give an impression 
that the angular width of the reflection curve is weakly de- 
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pendent on the deviation of the photon energy from the reso- 
nant value. However, the real angular widths of the reflection 
curves in Fig. 2, as well as in Fig. I, are strongly dependent 
on the deviation from the resonance and for large deviations 
are inversely proportional to the deviation (the almost con- 
stant width of the reflection curves in Fig. 2 is due to the 
energy-dependent normalization of the angular variable). 

As can be seen from Fig. 2 the calculated curves for the 
nonresonant scattered component are as a whole qualitatively 
different from the corresponding curves for the resonant 
component (compare with Fig. l), decreasing more sharply 
as the deviation of the SR propagation direction from the 
Bragg direction increases. If the scattered photon energy is 
not detected, the observed angular distributions can be ob- 
tained with the help of the distributions presented on Figs. 1 
and 2 by integration over the primary photon energies. A 
qualitative difference between the Mossbauer scattering of 
SR and scattering experiments with conventional Mossbauer 
sources should be noted here. This is connected with the fact 
that for a conventional Mossbauer source only the resonant 
component of the primary beam is important (spectral den- 
sity of the nonresonant component is negligibly low) and 
usually scattering spectra that differ in the energy of the pri- 
mary photon are presented. In the SR case the spectral den- 
sity of the primary beam is the same both inside the resonant 
linewidth and out of the resonant line. Therefore in the ex- 
periments on Mossbauer scattering of SR an integration over 
the primary beam energy is actually performed. This sharp- 
ens the angular dependence of the scattered intensity com- 
pared with the curves given in Figs. 1 and 2. 

In Fig. 3 the calculated angular distribution of SR scat- 
tering into the resonant component integrated over the pri- 
mary beam energy is presented (obtained by summing curves 
similar to the ones presented on Fig. I). The shape of this 
curve illustrates the assertion made above. The shape of the 
differential (in the energy) reflection curves for a semi- 
infinite sample (see Fig. 1) implies that the intensity of the 
scattered SR integrated over the initial energy should diverge 
if the primary beam as in the Bragg direction, because for an 
infinitely thick sample there is an angular range in which the 
reflection coefficient is finite for arbitrary large deviations of 
the SR energy from the resonant value. However, in the ac- 
tual experiment there are always factors which limit this di- 
vergence. These are finite sample thickness, finite energy 
linewidth of the SR beam, and finite solid angle of the scat- 
tered radiation detection. One of these factors dominates in 
the actual experiment. In the calculations presented in Fig. 3 
it has been assumed that a finite value of the detection solid 
angle is crucial for the limitation of the scattered intensity 
divergence (it was assumed that the corresponding angular 
width is equal to 0.05 of the reflection curve width for exact 
resonance). From the above discussion it follows also that 
the spectral width of the scattered SR radiation is large when 
the incident beam is close to the Bragg direction and the 
spectral width of the scattered SR radiation narrows around 
the resonant energy value while the incident beam direction 
deviates from the Bragg direction. The same can be also seen 
from the differential curves presented on Fig. 1. For the non- 
resonant component [Eq. (22)] integration over the incident 
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quantum energy results in a curve analogous to the curve 
presented on Fig. 3. 

We turn now to the Laue case for the resonant compo- 
nent of SR inelastic scattering. As follows from the general 
expression (7), for an arbitrary sample beats in the intensity 
as a function of the sample thickness are observed with three 
periods [the number of possible differences between the 
wave vectors of the eigensolutions and the particular solution 
of the inhomogeneous system (5a)l in the directions of the 
primary and stopped waves. For the Laue case there is also a 
thick sample limit which differs from the case of a semi- 
infinite crystal. This additional limit arises because the decay 
rate as a function of distance into the sample is very different 
for the particular and the eigensolutions of the system (5). 
The eigensolutions decay much faster because of the nuclear 
interaction. That is why there is some range of sample thick- 
nesses in which the eigensolutions are already absorbed and 
their interference with the particular solution is absent, but 
the amplitude of the particular solution is huge. This is the 
range of sample thicknesses that corresponds to the thick 
sample limit for the Laue case. In the thick sample limit for 
the Laue case beats in the wave intensity as a function of 
thickness in the primary and and diffraction directions disap- 
pear, and the decay rates of the resonant component intensi- 
ties are described by the following formulas. 

If the proportionality of x and E is taken into account, 
then, as in the Bragg case, one finds from Eiq. (23) that the 
resonant component in thick crystals "survives" for the pri- 
mary direction only and its intensity decays as a function of 
depth according to the expression 

1-f2 
~ o ( h ) =  I ~ , ( k o ) l ~  - f Z  exp( - 2h Im kcls* ), (24) 

where in obtaining of Eq. (24) the integration over the pho- 
non processes has been carried out in Eq. (23). As follows 

from Eq. (24), the resonant component due to the inelastic 
coherent scattering decays in thick crystals at the same rate 
as the one for the nonresonant component of SR. Thus the 
resonant component due to the inelastic coherent scattering 
becomes effectively more penetrating than the Mossbauer 
photons. However, this happens due to the pumping to the 
Mossbauer line of photons from the wide SR line. 

8. CONCLUSION 

This theoretical investigation of coherent inelastic Moss- 
bauer scattering of SR in terms of the dynamical diffraction 
theory has revealed some qualitative new effects which can- 
not be described by the kinematical theory. These include the 
beats in beam intensities versus sample thickness, where the 
number of the beats differs from the case of elastic Moss- 
bauer diffraction; the effective increase of the penetration 
depth of the resonant component in the beams (due to pump- 
ing of the nonresonant component into the resonant one); the 
details of the beam angular distributions, and so on. The 
estimates and computations show that many of these effects 
are accessible to experimental observation in existing SR 
sources. 
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