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The influence of the quantum gyration of electrons in a magnetic field on the propagation of radio- 
frequency waves in cadmium is studied theoretically. It is shown that in a quantizing 
magnetic field the damping of the bole doppleron caused by the cyclotron absorption of waves 
by electrons exhibits a set of high sharp quantum peaks separated by deep minima. Such 
a quantum structure of the cyclotron damping results in giant oscillations of the surface impedance 
of cadmium as a function of the magnetic field. This effect should be observed in fields of 
the order of 100 kOe at a temperature of 1 K and a frequency of the exciting field of the order of 
10 GHz. O 1995 American Institute of Physics. 

1. INTRODUCTION 

It was shown in Ref. 1 that quantization of electronic 
energy levels in a magnetic field can result in giant quantum 
oscillations of the magnetic Landau damping2 and in corre- 
sponding oscillations of the surface impedance of a compen- 
sated metal when the magnetic field is at an angle to the 
symmetry axis of the Fermi surface. Besides magnetic Lan- 
dau damping, another type of collisionless absorption of rf 
and microwave waves, viz., cyclotron absorption by elec- 
trons whose displacement during a cyclotron period is equal 
to the wavelength of the electromagnetic wave, can occur in 
metals. Such a situation is observed, for example, in cad- 
mium. Besides the electron doppleron caused by the 
Doppler-shifted cyclotron resonance of the lens reference- 
point electrons, in cadmium there is a hole doppleron asso- 
ciated with the Doppler-shifted cyclotron resonance of the 
"monster" holes which undergo maximum displacement 
during a cyclotron period.3 Since this displacement of the 
holes is approximately four times smaller than the displace- 
ment of the lens reference-point electrons, the hole dopple- 
ron propagates under conditions under which there is cyclo- 
tron absorption by electrons whose displacement is equal to 
the wavelength of the hole doppleron, i.e., is four times 
smaller than the displacement of the reference-point elec- 
trons. Thus, the damping of the hole doppleron is caused by 
collisional cyclotron absorption by electron!; in a section of 
the lens located considerably closer to its equator than to the 
reference point. This raises the question of whether quanti- 
zation of the gyration of the electrons in a magnetic field can 
cause a significant change in the character <of cyclotron ab- 
sorption. This question is treated from a theoretical stand- 
point in the present paper. 

2. HOLE DOPPLERON IN THE CLASSICAL LIMIT 

mo is the mass of the free electron, and the z axis is parallel 
to the hexagonal axis of the crystal. 

If the constant magnetic field H and the propagation vec- 
tor of the electromagnetic wave k are parallel to the z axis, 
the Fourier transform of the electronic part of the nonlocal 
conductivity in the absence of quantum effects is given by 
the expression 

where 

w is the angular frequency of the wave, e is the charge of the 
electron, c is the velocity of light, w, is the cyclotron fre- 
quency of the electrons, v is the frequency of their collisions 
with impurity atoms, S is the area of the section of the isoen- 
ergetic surface E = const formed by the pz = const plane, and 
f ( e )  is the Fermi function. 

In the absence of quantum effects, the derivative 
df(e) lds can be assumed to be equal to - E ) ,  and 
Eq. (3) takes the form 

The electron Fermi surface of cadmium has the form of Substitution of the expressions in (4) and (5) into (6) and 
a lens, whose shape is described well by the equation3 integration with respect to pz  give 

where where 
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n, is the electron density. The logarithmic singularity of 
a?) at q:= I represents the Doppler-shifted cyclotron reso- 
nance of the lens reference-point electrons. 

In this paper we are interested in the case of a strong 
magnetic field, in which the cyclotron frequency exceeds w 
and v: 

In this case 

where u, is the displacement of the lens reference-point elec- 
trons during a cyclotron period. 

In the limit q ; ~  1 the expression for afe) is simplified: 

i.e., the electron conductivity associated with cyclotron ab- 
sorption in this case has the same form as in the case of an 
anomalous skin effect in the absence of a magnetic field. 

The Fermi surface of the holes in cadmium (a so-called 
"monster") has a third-order symmetry axis parallel to the 
hexagonal axis (the z axis) and has a very complicated form, 
which precludes calculating the hole contribution to the non- 
local conductivity in an analytical form. The displacement u 
of the holes during a cyclotron period reaches its maximum 
value u = u,/4 in a section of the monster close to the cen- 
tral section. Then the Doppler-shifted cyclotron resonance of 
the holes is expressed by the fact that the hole part of the 
nonlocal conductivity has a root-type singularity. The disper- 
sion of the dielectric function in the vicinity of this reso- 
nance causes the existence of a hole doppleron, whose field 
rotates in the same direction as the holes ("plus" polariza- 
tion). A calculation of the surface impedance of the metal in 
the case in which the nonlocal conductivity has two different 
branching points corresponding to the Doppler-shifted cyclo- 
tron resonance of the electrons and holes is a complicated 
mathematical problem. To simplify it we consider a model in 
which the hole Fermi surface has the form of a parabolic 
lens4 with an axis parallel to the C,5 axis. In this case the 
displacements of all the holes during a cyclotron period are 
identical in magnitude and the hole conductivity has a pole- 
type, rather than root-type, singularity: 

where oCl = eHlm IC. Here m I is the hole cyclotron mass, 
v ,  is the velocity of the holes parallel to the z axis, and v, is 
the frequency of collisions with impurities. The vanishing of 
the denominator in (12) corresponds to the Doppler-shifted 
cyclotron resonance of the holes. Neglecting the small quan- 
tities o and v 1  in ( 1  2), we can write 

where 

Replacement of the root-type singularity a, by a pole-type 
singularity causes the behavior of the wave field in the model 
under consideration to differ from that observed in cadmium. 
One of the differences is that along with the hole doppleron 
with plus polarization there is another hole doppleron with 
minimum polarization [in our model a* is imaginary not 
only for q2< 1, but also for q2> 1, so that the dielectric 
function 4ra, I ( - i w )  can be real and positive for both 
circular polarizations]. To avoid the problem associated with 
the appearance of a "false" hole doppleron with minus po- 
larization, we shall consider only plus polarization below. 

A second difference is that the amplitude of ths hole 
doppleron drops more slowly with increasing H than in the 
case of a root-type singularity. However, if a comparatively 
small range of values of H near the doppleron threshold 
(where its amplitude is largest) is considered, this difference 
becomes insignificant. On the other hand, our model has an 
important advantage: the absence of a branch point in (13) 
makes it possible to calculate the surface impedance of a 
metal in an analytical form and to analyze the role of quan- 
tization of the electronic energy levels. 

The dispersion equation for a wave with plus polariza- 
tion has the form 

Substituting the expressions for a+ and a!") into Eq. (15), 
we can write it in the form 

In (16) we used the asymptotic expression (11) for ay) at 
large q, and took into account the relation q,= 49. 

For small values of 5, i.e., for strong magnetic fields 
( ( - H - ~ ) ,  Eq. (16) has roots whose imaginary parts are 
small compared with their real parts. These roots correspond 
to propagating modes, their spectrum being determined by 
the holes and their damping being determined by the elec- 
trons. Approximate expressions for the roots can be obtained, 
if the equation is first solved omitting the small imaginary 
term on the right-hand side of (16) and then, after substitu- 
tion of the values of q obtained into the imaginary term, the 
roots are found with cyclotron damping already included. 
This gives 
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These roots specify propagating modes in the range of mag- 
netic fields H > H L ,  where H L  is the threshold value of the 
field corresponding to the condition t= tl = 114. The root 
q l  specifies the wave vector of the hole helicon, and q2 
specifies the hole doppleron. This helicon has considerable 
damping and exists in the narrow range of values H > H L ,  
since q i  decreases with increasing H, while q'; increases. 
This corresponds to the real situation in cadmium, in which a 
helicon is not observed. Nevertheless, it must be taken into 
account, since its contribution to the smooth part of the im- 
pedance exceeds the contribution of the doppleron. As will 
be seen from the content of the next section, the quantum 
effects are associated mainly with the doppleron, rather than 
the helicon. Therefore, even though (17)-( 18) give a very 
rough approximation for q,  , we use it to evaluate the clas- 
sical (nonoscillating) part of the surface impedance. 

The impedance of a semi-infinite metal with diffuse re- 
flection of the carriers from the surface is given by the well 
known formula 

Substituting expressions (13) and (11) into ( 19) and making 
the transition to integration with respect to the dimensionless 
variable q = kue/8.rr, we obtain 

z;'=- dqln 1 - + --T+ - 
TwueJ-m I 9 \ I - q  lo@)] . (20) 

In the approximation in which Eq. (16) was solved, the inte- 
gral in (20) equals - 2 r i ( q  + q2 + 1 ) and, therefore, 

where q,  and q2 are assigned by Eqs. (17)-(18). 
For H = H L  ( t= 1/4), the real part of the second root 

satisfies q;= 11fi and asymptotically tends to - 1 as H  in- 
creases, so that the sum 1 +q2 decreases with increasing 
field strength proportionally to 5. In strong fields, however, 
q ,  is proportional to &, i.e., q l  is the main term. 

3. QUANTUM CASE 

Let us now proceed to a study of the influence of quan- 
tization of the electronic energy levels on the properties of 
the propagating modes. We first note that q ,  and q2 are al- 
ways less than unity, i.e., the wave vectors of the hole heli- 
con and doppleron are found in a range of values where there 
is no cyclotron absorption by holes. Therefore, quantization 
of the hole energy levels cannot have any influence on the 
properties of the helicon and doppleron, and we assume that 
the motion of the holes is described, as before, by the clas- 
sical expressions. 

In the case of strong fields and low temperatures, in 
which hw, .BkBT holds ( T  is the temperatuae, and k8 is the 

Boltzmann constant), we must take into account the quanti- 
zation of the electron gyration around the magnetic field 
lines, as a result of which the energy of the transverse motion 
assigned by the first term in (1) takes only the discrete values 
h  o , ( n  1- 112), where n  = 0,1,2 ,... . In other words, the energy 
levels have the form 

where, for simplicity, we disregard the spin splitting of the 
levels. 

The area of the electron orbit S is quantized along with 
the transverse energy. Therefore, to obtain the conductivity 
a?) in the quantum case, S ( E , ~ , )  must be replaced by 
S, = 2 .rrm h  o , ( n  + 112) in the classical expression (3), and 
E must be replaced by cnpL. In addition, the integration with 
respect to E must be replaced by summation over h o , n ,  i.e., 

It is assumed in (23) that h w 9 k B T .  Otherwise, the follow- 
ing additional replacement must be made: 

This formula can be rigorously derived by a method similar 
to the method developed in Refs. 5 and 6 to derive the quan- 
tum theory of the absorption of ultrasound and magnetic 
Landau damping. 

Expressing the derivative of the Fermi function in (23) 
in terms of the hyperbolic cosine and neglecting the fre- 
quency o in comparison with w , ,  we write the expression 
for a t )  in the form 

The integrand (25) is a product of two rapidly varying fac- 
tors. The first represents a set of narrow high maxima sepa- 
rated by deep minima. The maxima are located at values of 
p,= p, which correspond to the conditions 

It follows from (26) and the second equation in (22) that for 
n - N F ,  

p~=2nl l l [ c , . . - f iw , . (n  + +)I, (27) 
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and the distances between successive maxima are 

The second factor, i.e., the fraction with a frequency- 
dependent denominator, has a maximum at p,= P, which 
corresponds to the condition 

whence 

l p l = P l ( l -  mZF-9. 
Since the value of (gel for the hole doppleron is close to 4, P 
is close to - p  1/8 and depends weakly on H .  The value of P 
for the helicon is considerably greater, however, i.e., the cy- 
clotron damping of the helicon is caused by electrons which 
are located closer to the reference point of the lens. 

The width of the maximum of the second factor is 

We are interested in the case in which Sp, is small compared 
with the distance between neighboring maxima of the first 
factor: Sp,9 Apn . Taking into account (29) and the fact that 
Sp,= vp l /2wcqe ,  this inequality can be represented in the 
form 

For a collision frequency v= lo9 s-I and a field H = 10' Oe, 
we have E ~ / ? ~ W , = ~ X  lo3 and U / ~ , = I O - ~ ,  so that the 
quantity on the left-hand side of (33) amounts to approxi- 
mately 0.1. 

When the inequality in (33) holds, a?) depends on 
whether the maximum of the second factor falls on one of 
the maxima of the first factor. If the maxima coincide, the 
value of the integral is maximal. If the maximum of the 
second function falls in the middle of the interval between 
the maxima of the first function, the integral is minimal. As 
the field H varies, the values of pn vary, and the maxima of 
the first function alternately pass through the maximum of 
the second function. As a result, the cyclotron absorption 
specified by ~ e ( a y ) )  will have the form of a set of sharp 
peaks which are periodic in 1/H and are separated by gently 
sloping and deep minima. 

Let us estimate the maximum value of a'= ~e(a ! f ) ) .  
Let the magnetic field H be such that for n = N ,  the maxima 
of the two functions coincide: pN= P. In this case it is suf- 
ficient to retain only the term with n = N in the sum (25), the 
main contribution to the integral with respect to p,  being 
made by a small neighborhood of the point p,= P .  There- 
fore, the difference E,,,~,- E F  in the argument of the hyper- 
bolic cosine and the difference wc-kv ,  in the denominator 
of the integrand in (25) can be expanded in powers of 
p , -  P, and we can restrict ourselves to the linear terms of 
the expansion 

As a result, the expression for a' conductivity, which de- 
scribes the cyclotron absorption of the wave by electrons, 
can be brought into the form 

where 

and the subscript M refers to the fact that the value of a' at 
the maximum is being calculated. 

It is convenient to characterize the quantum oscillations 
of the cyclotron absorption by the ratio of the conductivity 
a' to its classical limiting value a(e) given by Eq. ( l l ) ,  
rather than by a' itself. Neglecting the difference between N 
and NF= [ c F I f i  w,] in (35) and taking into account that the 
electron density equals n = 5 p o p ~ / 1 2 ~ 2 f i 3  in the model un- 
der consideration, we can represent QM = a h /  a:f' in the 
form 

In the case of a strong field and a long electron mean 
free path, when the inequality (33) holds, the multiplier in 
front of the integral in (37) is large. The value of the integral 
depends on a. When a is large, i.e., when the inequalities 

hold, the integral equals mla, and, therefore, 

This is the case in which the height of the quantum cyclotron 
absorption peaks is determined by the temperature and does 
not depend on the electron mean free path. 

When a is small, i.e., when the inequalities 

hold, the integral in (37) equals 2, and 

In this case the height and shape of the quantum peaks are 
determined by electron scattering. 

Let us evaluate Q at the absorption minima. Let the 
value of H be such that P decreases exactly to the midpoint 
between pN and p ~ +  I : 

In this case it is sufficient to retain only the terms with n = N 
and n = N +  I in the sum in (25) and to set v z  in them equal 
to v i ( p N )  and u , ( p N + ,  ), respectively. This gives 
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Taking into account the approximate relations 
pN'Pepl/2qe, hpN=mllhwc/pN, N = ~ , ~ l f i w , ,  and the 
fact that the integral with respect to pz  is approximately 
equal to 4mllkETlpN, we obtain the estimate 

Thus, the function Q(H) actually describes a set of narrow 
high quantum peaks separated by deep minima. Here the 
value of Qmin is inversely proportional to the electron mean 
free path, Qmi, v, while the maximum value of Q in the 
case of (40) is directly proportional to the mean free path, 
QM 0~ 1/v. 

It should be noted that relations (38)-(41) and (43) are 
strongly dependent on q. Since Iql= 1 holds for the hole 
doppleron and its value is considerably smaller for the heli- 
con, the quantum effects for the doppleron begin in weaker 
fields and are displayed more strongly than those for the 
helicon. The case in which the quantum oscillations of the 
helicon damping are insignificant is the simplest case. The 
quantum oscillations of the doppleron dam,ping can be de- 
scribed by introducing the additional factor Q(q;) on the 
right-hand side of the second formula in (18): 

This equation can fail only in the immediate vicinity of the 
summits of the quantum peaks, where q ; ,  as given by (44), 

can be greater than or of order of Iq;l. In the vicinity of the 
summits of the pronounced quantum absorption peaks, the 
calculation of the conductivity de)  requires considerably 
greater efforts and accuracy. Such a calculation and the cor- 
responding analysis of the dispersion equation are beyond 
the scope of the present work. 

In conclusion we discuss the conditions under which the 
observation of quantum oscillations of the cyclotron absorp- 
tion in cadmium is possible. Since the transverse mass of the 
lens electrons is fairly large (m= 1.25m0), the inequality 
TiwC9kET is very hard to satisfy. For a field strength 
H =  100 kOe and a temperature T= 1 K, the ratio ho,lk,T 
equals 10. In this case condition (33) is satisfied with some 
margin. The frequency of the exciting field remains to be 
selected. It must be chosen so that the hole doppleron thresh- 
old would be in a 90-100 kOe field. This occurs at a fre- 
quency equal to 5-8 GHz. 
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