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For a spin-polarized Fermi liquid the transition from a localized spin wave to a coherently 
precessing structure as the wave amplitude increases is traced. The frequency spectrum of the small 
oscillations of the structure thus formed is found, and its stability is demonstrated. The 
possibility of the existence of coherently precessing nonlinear structures in other physical objects 
is discussed. O 1995 American Institute of Physics. 

1. INTRODUCTION 

The Fermi-liquid interaction in Landau theory is mani- 
fested in different ways, depending on the magnitude of the 
product of the characteristic frequency w of the phenomenon 
under investigation and the time r between colIisions of qua- 
siparticles. In the hydrodynamic regime, i.e., when the con- 
dition 061  is fulfilled, the interaction leads only to a 
change of the magnitudes of the susceptibilities that charac- 
terize the response of the system to small external perturba- 
tions. In the collisionless regime (wTZS-I) the Fermi liquid 
acquires properties that are qualitatively new in comparison 
with those of the ideal gas. Since in a pure Fermi liquid we 
have 7 a l l ~ ~ ,  the condition ~ 7 - 9 1  can always be realized in 
such a liquid by lowering the temperature. 

In a spin-polarized Fermi liquid, because of the degen- 
eracy of its states with respect to the spin directions, even a 
weak Fermi-liquid interaction can lead to appreciable effects. 
For example, in the collisionless regime the character of the 
spin transport changes in addition to the spin diffusion a 
nondissipative spin current arises. This current leads, in par- 
ticular, to the existence of spin (Silin) waves.' Such waves 
have been detected experimentally in metals: in liquid 3 ~ e , 3  
and in solutions of 3 ~ e  in 4 ~ e . 4 5  In effect, resonance spin- 
wave modes were observed. In particular, in the experiments 
of Ref. 3  with liquid 3 ~ e  and in the experiments of Ref. 6  
with solutions of 3 ~ e  in 4 ~ e  a continuous NMR method was 
used to observe spin-wave modes localized at the container 
wall by means of a nonuniform magnetic field, i.e., by means 
of a gradient of the Larmor frequency. It was recently dis- 
covered that in solutions of 3 ~ e  in 4 ~ e  (Refs. 6, 7, 8) and in 
pure 3 ~ e  (Ref. 9), in conditions similar to those in which 
localized spin-wave modes are observed, as the power of the 
high-frequency pumping increases and one goes from con- 
tinuous to pulsed NMR a coherently precessing spin struc- 
ture is formed. The structure consists of two domains. In one 
of the domains the magnetization is parallel to the magnetic 
field, while in the other it is antiparallel. Although the devia- 
tions of the magnetization from equilibrium are not small, 
the entire structure precesses with the same frequency, i.e., it 
remains a well defined mode. The spin density S rotates 
through angle .rr over the width of the transition region-the 
domain wall. As it rotates, S remains in the same plane. The 
entire structure precesses with the same frequency w,, , equal 
to the Lnrmor frequency at the position of the domain wall. 

The above properties of the structure follow from analysis of 
that solution of the equations of the spin dynamics of a nor- 
mal Fermi liquid (the Leggett equations1') which describes a 
coherently precessing ~tructure.".'~ This solution is gener- 
ated by the nonuniformity of the field, and cannot be ob- 
tained by a small modification of the previously found non- 
linear stationary solutions for the case of a uniform field.13 

In this paper we perform a further theoretical investiga- 
tion of the precessing structure. In particular, we establish its 
relationship to the spin waves and trace the transformation of 
the fundamental standing-spin-wave mode in a nonuniform 
magnetic field into the precessing structure as the wave am- 
plitude increases. It is also shown that, besides the funda- 
mental structure, in which the rotation of the field within the 
domain wall is through angle .rr, there may also exist other 
modes, corresponding to rotation through (2m + l ) ~ ,  where 
m is an integer. For the "fundamental" structure, corre- 
sponding to m =0, we find the spectrum of the frequencies of 
its small oscillations. All the frequencies are real, indicating 
that the structure is stab1e:Analysis of small oscillations of 
the structure is also of practical interest. Periodic variations 
of the amplitude and frequency of the induction signal are 
practically always observed when the structure forms in 
pulsed NMR experiments. The variation of the frequencies 
of the observed oscillations and comparison of them with the 
calculated frequencies can serve as a means of measuring the 
Fermi-liquid parameters. 

2. TRANSITION FROM A SPIN WAVE TO A PRECESSING 
DOMAIN 

The spin dynamics of a Fermi liquid in the collisionless 
regime is described by the system of equations obtained 
by ~ e g e t t "  for the spin density S and spin-current density 
J j  . For what follows it is convenient to write out the Leggett 
equations using the following notation: o~ is the Larmor 
frequency, a= ?stX, and ji= ? J , / ~ ,  where x is the magne- 
tic susceptibility of the liquid under consideration and 
y is the corresponding gyromagnetic ratio. The subscript 
i = l ,  2, 3  labels the space components of the spin- 
current tensor, and the bold print denotes spin vectors. 
In addition, in the equations we have introduced abbrevi- 
ated notation for combinations of the Fermi-liquid param- 
eters: u2= u:( I + F:)( 1 + F:/3) /3 ,  7, = d(1 +F:/3), and 
K=-(F!-  F?/3)l( I +F!),  where ul; is the Fermi velocity, T 
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is the time between collisions of quasipartic:les, and F: and 
Fq are the coefficients of the first two harlr~onics of the ex- 
change part of the Fermi-liquid interaction. In this notation, 

For Eqs. (1)  and (2) to be applicable it is ~equired that the 
characteristic distances over which u and ji vary be large in 
comparison with the smallest of the lengths .$ ,=ul~a and 
Z , = U T ~ .  In the case 1,45, the collision term in the right- 
hand side of Eq. (2) is the most important term, and diffusive 
transport of spin occurs, with diffusion coefficient D o =  u 7,. 

In the opposite case, which is realized when KUT~S-1, the 
most important term is the term proportional to K. It is this 
case (the high-frequency limit) that we shall consider below. 
Even in this case, however, the collision term cannot be 
omitted-as before, it determines the transport of the spin 
magnitude, as becomes obvious when we take the scalar 
product of Eq. (2)  with a ,  when the term containing K van- 
ishes. In Eq. (1)  there is no collision term; this corresponds 
to neglect of the spin-orbit interaction of the quasiparticles. 
For the normal phase of liquid 3 ~ e  and for solutions of 3 ~ e  
in 4 ~ e  at temperatures of the order of a millikelvin this is a 
very good approximation. As a consequence 13f the neglect of 
the spin-orbit interaction the component of the spin along the 
direction of the magnetic field is conserved. 'h is  leads to the 
result that Eqs. ( I ) ,  (2) have the stationary solutions ji=O, 
u=uo=aL+b,  where b is a constant vector parallel to a , .  
The solution with b=O describes the equilibrium state. 

In the limit T+W Eqs. ( I ) ,  (2) for a weakly nonuniform 
field have solutions u0 and jy, corresponding to steady pre- 
cession of the spin and spin current."*12 The time depen- 
dence of a0 and j: for these solutions is determined by the 
equations 

a 4  dj? 
- =[uOmp]  and -=[ j?wp] .  

dr d t  

We shall assume that the z axis of the rotating coordinate 
frame is parallel to W, and that the Fermi liquid is placed in 
a container with walls that are impenetrable for spin current. 
In fact, it is sufficient to have one such wall, perpendicular to 
the direction of the magnetic field. On this wall the condition 

is fulfilled, where n is the normal to the wall. Solving Eqs. 
( I ) ,  (2)  under the conditions (3) ,  (4)  makes it possible to 
determine the dependence of u0 and jy on the coordinate z. 
Because of the uniformity of the external conditions, u0 and 
jp do not depend on the coordinates x and y transverse to the 
field. By virtue of the condition (4), d remains in the same 
plane, which can be conveniently taken to be the yz plane of 
the rotating coordinate frame. To describe the entire structure 
it is sufficient to specify two functions a(i:)=lul  and the 
angle 62) between u and the z axis. In the most interesting 
case, when the variation of the Larmor frequency within the 
volume under consideration is small in comparison with the 

Fermi-liquid field, i.e., when the strong inequality 
1~491 wL -- w,,I is fulfilled, we obtain for 8 the simple equa- 
tion 

The dependence of a on z is determined by the equation 

We shall assume, for definiteness, that K~,>O, that 
wL increases in the direction of positive z, that the vessel 
wall is at z=0, and that the liquid occupies the region 
z<0. The Larmor frequency can be written conveniently in 
the form wL(z) = wL(0 )  + z(doLldz) .  The combination 
~ = [ u ~ l ( ~ a ~ ( d w ~ l d z ) ) ] ' / ~  defines the characteristic length 
in Eq. (5). According to Eq. (6), the quantity a varies little 
over distances of the order of A, and in Eq. (5) we can as- 
sume that a=const. Having solved Eq. (5) we can then find 
a by integrating Eq. (6). The only nonzero component of the 
spin current is expressed in terms of the derivative of 8 by 
j]; = - (u21 ~ ) ( d  81dz). Introducing the dimensionless coordi- 
nate [=z/A and the dimensionless frequency shift 
up= (w,- ~ ~ ( O ) ) l ( A ( d ~ ~ l d z ) ) ,  we bring Eq. (5) to the 
form 

We are interested in solutions of this equation that satisfy the 
boundary conditions dOld[=O at [=O and deld[+O as 
[+-W. Making the change of independent variable 
[= up + s ,  we eliminate the parameter up from Eq. (7): 

d2e  
- + s  sin 8=0 ,  
ds2 

and the boundary condition dOlds=O must now be imposed 
at s= - up.  The other boundary condition does not change: 
d Olds-tO as s+-W. Equation (8)  has solutions independent 
of s that also satisfy the boundary conditions 8=nv ,  where 
n =0, t 1, 2 2 ,  ... . These are the previously mentioned sta- 
tionary solutions, for which the vector u is parallel or anti- 
parallel to mL . We shall linearize Eq. (8) about these values 
of 8. For small deviations @o from the "even" points, setting 
8=2mv+& we have 

For the "odd" points, after the substitution 
8=(2m + l ) v +  @1,@14 1, we obtain an equation that differs 
from (9)  by a sign: 

Since the angle 8 is defined to within 2 v m ,  we can stipulate 
that as the even stationary solution we shall always take 
8=0. The bounded solutions of Eqs. (9) ,  (10) are the familiar 
Airy functions. In the case of even n the solution 
&,=CoAi(s) (where C o  is a constant) decreases like 
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FIG. 1. Bounded solutions of Eq. (8) for values of 0 close to 0=0 (lower 
curve) and 8=r (upper curve). 

e~~[- (2 /3) )s ("~]  as s t - w ,  and oscillates for s>O (the 
lower curve in Fig. 1). For sufficiently small values of the 
constant Co this function is also a solution of Eq. (8). The 
condition dq501ds=0 is fulfilled at s = s j ,  where sj are the 
roots of the derivative of the Airy function. This implies that 
the boundary condition d0/ds=0 at s=O can be satisfied 
only for the discrete values v,= t$= - sj . The function &, 
taken in the intervals (-m, sj), describes the changes of the 
angle 8 for the successive modes of standing spin waves, 
while the eigenvalues sj determine the frequencies of these 
modes in units of Adw,ldz. Below we shall need the first 
few values of sj : so= 1.01 188, s,=3.2482, s2=4.8201. In an 
analogous way the function cjl=C,Ai(-s) in the intervals 
(-sj, w) depicts successive spin-wave modes in the case 
when the liquid occupies the region s>O and the magnetiza- 
tion is antiparallel to the field. The functions qjo and 4, are 
real. In application to the spin waves, this means that for 
each of the modes all the spins precess in phase about the 
direction of the magnetic field. 

As the amplitudes Co and C, increase the functions 40 
and 4, cease to be approximate solutions of Eq. (8). The 
effects of the nonlinearity should be manifested earliest of all 
on the behavior of the solutions in the region s-0, where the 
values of +o and are a maximum. Here, & and 41 can 
remain a good approximation to the true solution in those 
regions in which they are small. At a certain amplitude, the 
solution for which 6 tends monotonically to 0 as s -+-w in 
the region of small s goes over continuously into the solution 
for which 0 tends monotonically to n- as S--+ +w. AS a result, 
a domain wall is formed in which a rotates through angle n-. 

Because of the nonlinearity, as the amplitude of the spin- 
wave mode increases the frequency of the mode also 
changes. In what follows it is convenient to regard this fre- 
quency as a parameter characterizing the solution. Figure 2 
shows how this mode is transformed into a domain wall in 
response to a continuous change of the frequency of the fun- 
damental spin-wave mode. After the wall has been formed, 
as the frequency further decreases it moves into a region of 
weaker fields while remaining of practically the same shape. 

FIG. 2. Transformation of a standing spin wave into a coherently precessing 
spin structure with increase of the amplitude of the wave. The parameter 
here is the shift of the wave frequency from the Larmor frequency at the 
coordinate origin: E = [ w ~ - w ~ ( O ) ] / X V W ~ .  The curves depict the depen- 
dence of the angle 0 on zlA: curve a) E=-  1.0349; b) e= - 1.3540; c) E= 

-2.5550; d) e= -4.8018. 

The two-domain structure thus formed can be considered as 
a stable spin-wave mode of arbitrarily large amplitude. An 
analysis of the stability of the two-domain structure against 
small perturbations will be performed in Sec. 4. 

3. MULTIPLE DOMAIN WALLS 

For sufficiently large amplitudes of the solution that de- 
cays at --a, this solution can be joined with solutions for 
which 6 tends at +w to 3n-, 5n; ... , with the formation of the 
corresponding domain walls. The existence of walls with ro- 
tation through angles 3n-, 5 7 ~ ,  ... is confirmed by numerical 
solution of Eq. (8). For fixed positive orientations of a at 
+a and -a, these structures cannot be transformed into 
each other without taking o out of the plane, and this indi- 
cates that they are topologically stable. From the above ar- 
guments it is also clear that domain walls with rotation of a 
through an even multiple of n- do not exist. 

The observation of multiple walls may be made difficult, 
first, because they possess very high energy, so that it is 
difficult for them to be formed, and, second, because such 
walls should relax faster than the "fundamental" structure. 
The relaxation of a two-domain structure occurs differently 
in a completely isolated volume (where the longitudinal 
component of the spin is conserved) and in a volume in 
contact with an equilibrium reservoir. In both cases the shape 
of the domain wall appears in the relaxation rate in the form 
of the dimensionless coefficient J =  hJ~",d0ldz)*dz. For- 
mulas describing the relaxation of the structure in an isolated 
volume are given in Refs. 11 and 12. The derivation per- 
formed in those papers is easily reformulated for a semi- 
infinite volume. In this case the longitudinal spin component 
can change as a consequence of the influx of spin from the 
reservoir, while the magnitude uo of the spin density at the 
center of the domain wall remains constant. Using the ex- 
pression for the energy-dissipation rate as before, we obtain 
for the rate of change of the wall coordinate 20: 
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The rate of change of the precession frequency wp is found 
by multiplying both sides of Eq. ( 1  1 )  by Vq, . The values of 
the coefficient J increase rapidly with the number of rota- 
tions of a within the wall. For a m-wall we: have J,=2.35, 
for a 3~-wal l  we have J3--18.1, and for a 5m-wall we have 
J5-37. 1. 

4. OSCILLATIONS OF THE PRECESSING STRUCTURE 

In order to find the frequencies of the oscillations we 
shall follow the standard procedure and consider a small per- 
turbation of the precessing structure, i.e., we set a=ao++ 
and ji=jP+gi, where +and gi are small. Next, we substitute 
a and ji into Eqs. ( 1 ) .  (2),  and confine ourselves to terms 
linear in + and gi in these equations. In the coordinate frame 
rotating with frequency wp we obtain for # and gi the fol- 
lowing system of equations: 

To separate the perturbations that are longitudinal with 
respect to Go from the transverse p e r ~ r b ~ i o n s  we rewrit? 
Eqs. (12), (13) in a coordinate system (5,$,5) such that the 5 
axis is along the direction of a. at each point, the 2 axis is 
along the direction of jQ, and the direction of' is chosen so 
that (g,$,& form a right-handed basis. Since, with change of 
z ,  this basis rotates about 6, when we go over to the new 
coordinate system the space derivatives must be transformed 
in accordance with the rule 

where a is any of the indicated vectors, and (tUdx1)' denotes 
a derivative of the projections of the vector a onto the axes 
($,*,&. Taking into account the rule (14), we obtain the fol- 
lowing equations for the longitudinal components tf, g f  and 
circularly polarized transverse components @ = &?i $", 
gf = g f ? i g ?  of +and gl: 

a+[ dgJ d e  -+-= g? z- @ A ,  sin 8 ,  dt dxl 

a*[ grS - + u 2  -= - g f A o  sin 8- -, 
dt J X I  71 

a#+ at?: d e  
-+-+ii ,b+Aw cos 8=i,bcAo sin 8 - i g $  -, (17) d t  dxl dz 

+gfAw sin 8 ,  (18) 

where Aw = w,- wp. The equations for fi- and g l  are 
obtained by complex conjugation of Eqs. (17) and (18). To- 
gether with Eqs. (15)-(18) they form a linear system of 
homogeneous differential equations, the coefficients in 
which are independent of t ,  x, and y.  The solution of this 
system must be sought in the form of $ + ( ~ , ~ , z , t )  
= e ~ ~ ( i k , ~ - i w t ) * + ( z )  with analogous expressions for the 
other unknown functions. Here, p has components ( x , y ) ,  and 
k, is perpendicular to the z axis. Introducing the abbreviated 
notation q: = k,g: + k,g;, we obtain for $+ and g+ the fol- 
lowing equations: 

dB 
= $ C A W  sin 8 - i g 5  -, 

d z  

+qf Aw sin 8 ,  (20) 

d*+ 
( : - iw)g:+u2 x= - i g : ( b w  cos 8+ K U ~ )  

+ g $ ~ w  sin 8. (21) 

Below, we shall be interested in the low-frequency vibra- 
tions, i.e., those for which ~ * K u ~ .  Use of this smallness, 
and also of the previously made assumption that Aw is small 
in comparison with KU,, makes it possible to solve Eqs. (20), 
(21) for g: and q,': 

Substituting the expressions obtained into Eq. (19), we find 
an equation for *+. It can be written conveniently using the 
dimensionless coordinate s = ( z  - zo)/Aw and the dimension- 
less frequency iI=wlA,(dwLldz) : 

d 2  *+ 
- + [ s  cos e - a - ( k , ~ , ) ~ ] * +  
ds  

= - i s  sin 8f15- 
84 d o  

( d w , l d z ) ~ %  Z' 
The equation for I)- is obtained from (23) by changing the 
sign in front of the frequency and in front of i .  The deri- 
vation of the equation for t)[ is analogous to that of Eq. (23), 
and the result is 

1 +- s sin 8i,b [. (24) 
K C 0  7 I 

350 JETP 81 (2), August 1995 



Here, 

g,= - - d*[ 51v 
[ u  , + G s  sin 881 . i 

In the right-hand sides of Eqs. (23) and (24) we have col- 
lected the terms that couple the longitudinal component and 
transverse components of the perturbation #. We note, how- 
ever, that the functions sin8 and dOIds, which are nonzero 
only in the region s- 1 (or z - zo- A,,), appear as coefficients 
in the right-hand sides. For Eq. (23) A, also determines the 
scale over which the solution varies. For Eq. (24), at the 
same frequency, the combination A,(KU~T,) '"S A, serves 
as the characteristic scale. For this reason, we can assume 
that the right-hand side of Eq. (24) has the form const. q s ) .  
To determine the constant we must integrate the right-hand 
side of Eq. (24) over s between infinite limits. If, now, we 
take into account that in Eq. (25) A,%-(,, and that the de- 
pendence B(s) is determined by the equation 

d2 8 
y= - s  sin 8, 
ds 

the integral vanishes. This implies that in the leading ap- 
proximation in (KU~T~)-'CI the oscillations of the transverse 
components of t,b do not perturb the longitudinal component, 
and the changes of the longitudinal and transverse compo- 
nents can be treated independently. For longitudinal pertur- 
bations in the indicated approximation we obtain a diffusion 
equation, the solutions of which are not characterized by 
definite frequencies. Therefore, we shall consider only trans- 
verse perturbations. Putting #=o and g5=0 in Eq. (23), we 
obtain the equation for $+: 

where E=R++(~,A, , )~ .  For $- we obtain an equation that 
differs from (27) by the replacement of Q+ by -Q- . Thus, 
to each E there correspond two modes of oscillations, with 
frequencies R,=-+[E-(k,~,,)~]. Equation (27) is the 
Schrodinger equation with potential U(s)= - s cos 8; it has 
solutions localized on the domain wall, i.e., satisfying the 
conditions $+O as ~4203, with corresponding eigenvalues 
E=E, . The first few eigenvalues E, were found numerically: 
~~=0 .850 ,  E, =2.234, c2=3.207, e3=4.040, e4=4.792. Since 
U(s) is an even function, the solutions will be even or odd 
functions of s ,  depending on whether n is even or odd. For 
s S l  we have U = ( s ( ,  and for large values of n the solutions 
are close to Airy functions with known eigenvalues. Even at 
n =4, the eigenvalue E, found as the root of the derivative of 
the Airy function is equal to E$ =4.820. In dimensional units, 
the formula for the frequencies of the oscillations has the 
following form: 

For cells that are bounded in the transverse direction, k, 
is also quantized. If the cell is a circular cylinder with base of 
radius R, the azimuthal dependence of the perturbations is 
described, as usual, by the factor exp(inz$), and for each ni 

there is an infinite set of numbers v,!,~, which are found as 
the roots of the equations dJ,j,(v)ldv=O and determine the 
values of k, : k,R= vmj. The fundamental mode corre- 
sponds to m=O and k,=O, and the first nonzero v corre- 
sponds to m = I: vlo=l .84. For k, =O the frequencies of all 
the modes are proportional to ( d o , l d ~ ) ~ ~ .  In experiments 
with solutions of 3 ~ e  in 4 ~ e  (Refs. 6, 8) a periodic modula- 
tion of the induction signal has been observed, with a fre- 
quency of the same order as that calculated from Eq. (28). 
The dependence of the frequency on the gradient as found in 
Ref. 8 is close to the expected (doLldz)z3. However, the 
available data are not sufficient for a quantitative comparison 
with experiment, since there is no independent way of deter- 
mining the quantity uo. In addition, in both cases the height 
of the experimental chamber was comparable to the domain- 
wall thickness, and so it is not strictly possible to apply Eq. 
(28), which was obtained for a wall far from the upper and 
lower boundaries of the chamber. 

The oscillations considered here are essentially spin 
waves localized on the domain wall. They are similar in 
many respects to the previously studied spin waves localized 
near a vessel There are, however, substantial differ- 
ences between the two types of wave. In the case of the 
domain wall, there are, roughly speaking, four times as many 
modes. This happens for two reasons. First, in the case of the 
domain wall the boundary conditions on the perturbations 
admit the existence of both even and odd solutions, whereas 
on the vessel wall the odd solutions are excluded by the 
condition that the spin current vanish. Second, to each E, for 
oscillations of the domain wall there correspond two modes, 
with a positive and a negative frequency. With increase of n 
the eigenvalues E, for the even modes rapidly approach the 
corresponding values for waves at the vessel wall. We note 
also that waves localized on the domain wall are determined 
entirely by properties of the liquid itself, and do not depend 
on assumptions about the properties of the vessel wall. 

5. CONCLUSION 

The coherently precessing structure in a normal Fermi 
liquid has much in common with the structure that exists in 
the superfluid B phase of 3 ~ e ,  and even more in common 
with the structure predicted for antiferromagnetic solid 3 ~ e  
(Ref. 14). In all the cases considered, for the structure to 
form it is essential that there exist an interaction (BCS or 
exchange) that would maintain the spatial uniformity of the 
state, and also that there exist a mechanism that sustains 
anabsolute value of the magnetization that is constant or al- 
most constant over the entire volume under investigation. 
The structure is thereby described by one function, e.g., the 
coordinate dependence of the angle 8 between the spin and 
the magnetic field. The formal reason for the formation of 
the structure is the presence of an expression of the form 
s sin 8 in the equation determining the dependence of 8 on s. 
The essential point is that sin 8 has only simple zeros, and 
this leads to alternating signs of the derivative of this func- 
tion at successive zeros. Such properties are possessed by the 
equations describing the spin dynamics of other systems, 
e.g., spin-polarized hydrogenI5 or a ferromagnet;I6 in such 
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systems coherently precessing magnetic structures can also 
exist. In the case of the ferromagnet the spin-dynamics equa- 
tions should be solved together with the magnetostatics 
equations, and this can complicate the problem. 
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