
Dynamics of rotating superfluid systems with pinning 
A. D. Sedrakyan 

Rostock University, 18051 Rostock, Germany 

D. M. Sedrakyan 

Erevan State University, 375049 Erevan, Republic of Armenia 
(Submitted 9 March 1995) 
Zh. ~ k s ~ .  Teor. Fiz. 108,63 1-641 (August 1995) 

Equations describing the dynamics of motion of superfluid systems with pinning are derived, and 
analytical solutions of these equations are established for the case where the difference 
between the angular velocities of the superfluid and normal components is small. The solutions 
can be used to explain the time-dependent behavior of the angular velocity of the Vela 
pulsar. It is shown that vortex pinning in the period between two consecutive jumps in the pulsar 
angular velocity can redistribute the vortex number density so as to produce both the 
observed jump and the after-jump relaxation of the pulsar. For one thing, the formulas obtained 
are shown to provide an explanation of the 1988 Christmas discontinuity in the angular 
velocity of the Vela pulsar. O 1995 American Institute of Physics. 

1. INTRODUCTION 

Studies of rotation of superfluid systems with pinning 
are of interest in connection with the problem of explaining 
the irregular behavior of the rotation of pulsars and a vessel 
with superfluid He 11. These irregularities were discovered in 
observations of the behavior of the angular velocity of vari- 
ous pulsars and in experiments with a rotating vessel filled 
with superfluid He I1 (see Refs. 1-4). The angular velocities 
of these two systems behave similarly because in both cases 
the motion of the Feynman-Onsager quantum vortices is 
responsible for the interaction between the superfluid and 
normal components. At the same time, the observed differ- 
ence in their behavior is due to the difference in the friction 
between the vortices and the normal component of the sys- 
tem. While in neutron stars (pulsars) the friction between 
quantum vortices and the normal component depends on the 
coordinates and can vary by several orders of magnitude (as 
a function of the distance from the center of the star), in a 
vessel with He I1 the friction coefficient is constant.596 

The problem of the dynamics of a rotating vessel with 
He I1 was solved by ~rasnov: and the solution provides a 
good description of Tsakadze's e ~ ~ e r i m e n t s . ~  

The case of a rotating neutron star (pulsar) was studied 
in Ref. 5, where equations describing the dynamics of super- 
fluid systems without pinning of quantum vortices were ob- 
tained. In solving these equations it was assumed that the 
relative moment of inertia of the superfluid liquid is small 
compared to the moment of inertia of the normal component. 
Solutions were found to within the term quadratic in the 
small parameter Po=I ,  / I , ,  where I ,  is the moment of iner- 
tia of the superfluid component, and I, is the moment of 
inertia of the normal liquid. 

The omission of pinning from the dynamic equations 
and the approximations in the solution of these equations 
limit the possibilities of explaining time-dependent dynamic 
phenomena observed in pulsars. Indeed, calculations show 
that linear relaxation originates in the layers of a star whose 

relative moment of inertia is of order 0.5. As for pinning, we 
must take it into account so as to explain the discontinuity in 
the angular velocity of a pulsar and to understand the multi- 
faceted behavior of relaxation for different jumps. We also 
note that it is possible to describe relaxation if we know how 
the angular velocity of the superfluid component depends on 
the distance to the star's rotation axis prior to the jump. This 
dependence can be found by solving the dynamic equations 
with pinning for the "period of preparation" of the disconti- 
nuity in the angular velocity of the pulsar. 

The goal of the present investigation is to obtain equa- 
tions describing the dynamics of a rotating two-component 
system that allow for pinning on the assumption that the 
external braking torque is time-independent. In this approxi- 
mation we find the solutions of these equations for any value 
of Po  and for an arbitrarily fixed dependence of the coeffi- 
cient of friction ~ ( r )  between the quantum vortices and the 
normal liquid. 

Before deriving the equations of motion we note the fol- 
lowing. The considerable variations of the coefficient of fric- 
tion ~ ( r )  in neutron stars occur over macroscopic distances 
much greater than intervortex distances. This makes it pos- 
sible to use hydrodynamic equations to describe the behavior 
of the superfluid liquid. We assume, in addition, that the 
normal component rotates like a rigid body. This condition is 
met thanks to the presence of ultrahigh magnetic fields 
B- loL2 G inside the star, which couples the normal com- 
ponent in the superfluid layers with the solid crust of the star. 
We also assume that during motion the vortices remain par- 
allel to the rotation axis. Our investigation was conducted on 
the assumption that cylindrical symmetry is present. 

The equations of motion for a two-component liquid 
with pinning are derived in Sec. 2. In Sec. 3 we find an 
analytical solution for the problem on the assumption that the 
difference between the angular velocities of the normal and 
superfluid components is small. In Sec. 4 the solutions are 
used to explain the jumps and the relaxation of the pulsar 
angular velocities after jumps. 
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2. THE EQUATIONS OF MOTION 

Suppose that the system rotates with an angular velocity 
w( t )>  o .,, where ocl is the critical angular velocity of 
formation of a vortex lattice. The circulatiori of the average 
velocity of the superfluid component is quantized and has the 
form 

curl vs= von(r , t ) ,  ( 1 )  

where n(r , t )  is the density of the vortex lattice, 
vo = 2 ~ h l m  is the circulation quantum, vo 1 vo is the unit 
vector parallel to the vortex direction, and rn is the mass of a 
helium atom or the mass of a Cooper pair of' neutrons in the 
pulsar. 

If instead of the linear velocity vs we introduce the an- 
gular velocity o s ( r , t )  by the formula vs= l;w,r] and inte- 
grate Eq. (1) with respect to r, we arrive at a relationship 
linking ws(r , t )  and n(r , t ) :  

From Eqs. (1) and (2) we can easily derive another form of 
the same equations to be used in what follows: 

Now we discuss the equation of continuity of the mov- 
ing vortex system. If we denote the velocity of free vortex 
motion by vL and the number density of the pinned vortices 
at point r  and time t  by n p ( r , t ) ,  the equatic~n of continuity 
assumes the form 

where we have allowed for the fact that pinned vortices do 
not participate in the motion of the vortex system. In the 
absence of pinning, i.e., when np(r , t )  = 0, the equation of 
continuity (4) assumes the usual form.5 Integrating Eq. (4),  
we get 

$ / ;n( r ' , t ) r r  dr' = - [ n ( r , t ) - n p ( r , t ) ~ l r v ~ r .  

Allowing for (2), we can write Eq. (5)  as 

Any variation in the angular velocity of the vessel or the 
crust of the neutron star causes the free vortices to move and 
leads to a new quasiequilibrium distribution of vortices. 
Hence the vortex distribution depends on the velocity field 
V L .  This field can be found from the equation of vortex 
motion, i.e., the requirement that the sum of forces acting on 
each element of a vortex vanish:697 

Here the first term is the Magnus force, and the second and 
third terms are the forces of friction between the vortices and 
the normal liquid, p, is the mass density of the superfluid 
component, v,, is the velocity of the normal component, and 

~ ( r )  and P ( r )  are the coordinate-dependent longitudinal and 
tangential (in relation to vL - v,,) friction coefficients. Equa- 
tion (7) was solved in Refs. 5  and 6 and the following ex- 
pressions for the velocity components vLr and vLcp were ob- 
tained: 

where 

Here o c ( t )  is the angular velocity of the normal component 
of the liquid, and since we assume that the normal compo- 
nent rotates like a rigid body, w , ( t )  depends only on time. 

The next relationship of interest is the equation deter- 
mining the number density of the pinned vortices, n p ( r , t ) .  
We assume that the vortices are captured by pinning centers, 
i.e., the "roughness of the inner surface" of the boundary 
region between the core and the crust of the star, and are 
freed only after a discontinuity in the angular velocity of the 
pulsar. Then the rate of variation of the number density of the 
pinned vortices is proportional to the number density of free 
vortices, i.e., 

where r p ( r , t )  is the characteristic time describing the pin- 
ning process. The law (9) assumes not only the presence of a 
certain distribution of pinning centers but also that all the 
events in which moving vortices are captured are equally 
probable. Knowing these two factors makes it possible to 
find the function r p ( r , t ) .  However, in this paper we assume 
the function to be given, and in the period between two 
jumps in the pulsar angular velocity it depends only on r. 

Finally, to complete the system of equations determining 
the dependent variables of the problem we must write the 
equation of motion of the normal component in the system: 

Here I, is the moment of inertia of the normal component of 
the system, Kin, is the moment of the force acting between 
the superfluid and normal components of the system, and 
Kext is the external braking torque, Kext=cw: ,  where 
k = 3  for pulsars and k = 1 for a vessel with He I1 if the 
latter is rotating in a viscous medium. 

Now we obtain an expression for the moment of forces 
of internal friction. As is well known, 

where F is the force of friction between the vortices and the 
normal component of the liquid. If we allow for the fact that 

then 
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Kint=2nvo  p s [ n ( r , t ) - - n p ( r , t ) ] ~ L r l r 2  d r ,  I 
where 1 is the length of a vortex filament. Using Eq. (6),  we 
can eliminate n(r , t ) -np(r , t )  from this expression. After 
fairly simple transformations we finally obtain 

where dIs=r2  drn=2?rp,lr3 d r .  Here I ,  is the moment of 
inertia of the superfluid component in the volume of a cyl- 
inder of radius r  and length I .  Substituting (12) into (10) we 
finally get 

If we substitute v ~ ,  specified in (8) into Eq. (6),  then Eqs. 
(3), (6), (9), and (13) form a closed system of equations for 
finding the unknown functions of our problem: ws(r , t ) ,  
n(r , t ) ,n , (r , t ) ,  and wc( t ) .  Here it is assumed that the func- 
tions ~ ( r ) ,  /I ( ' ) ,  and r p ( r , t )  are given. 

Since the velocity of the vortex motion depends on 
Sw(r,t)  = ws(r , t )  - w c ( t ) ,  it is convenient, as will be seen 
shortly, instead of o s ( r , t )  to select Sw(r,t)  and instead of 
np(r , t )  the corresponding angular velocity w p ( r ,  t )  deter- 
mined by the following relationship: 

We introduce the dimensionless functions 

and the notation 

Then Eqs. (6),  (3), and (13) assume the form 

where 

If we integrate Eq. (14) with respect to P and use (15) to 
eliminate d R c  ld t ,  we obtain 

where we have introduced the notation d P = P o  dy,  with 
Po the total relative moment of inertia of the superfluid com- 
ponent. Since the condition (17) must be met for any arbi- 
trary functions r r ( r )  and r p ( r , t ) ,  we finally arrive at the 
following equation determining SR: 

Here we have introduced the notation 

Y 
( r = ( l - P 0 ) r f ( r ) ,  y=-. l - P o  

Finally, we can integrate Eq. (15) with respect to r. Since 
y= y(r) ,  the integral of Eq. (15) with the initial conditions 
Clc(0) = 1 and SR(r,O) = SRo has the form 

As a result Eqs. (9), (16), (18), and (19) can be said to 
constitute a closed system of dynamic equations for rotating 
superfluid systems with pinning. 

3. THE GENERAL SOLUTION OF THE EQUATIONS OF 
MOTION FOR RELATIVELY SMALL JUMPS IN ANGULAR 
VELOCITY 

Now let us solve the system of dynamic equations in the 
approximation in which the discontinuities in the angular 
velocity of the normal component of the system are fairly 
moderate. In this approximation, both in experiments with a 
rotating vessel with He I1 and in pulsars the functions S a  
and Sn and all their variations are small compared to Ro and 
no.  This makes it possible to linearize Eq. (18). Indeed, if we 
substitute no for n in Eq. (16), the factor of 6R17(r) in Eq. 
( 1  8)  becomes equal to 1 - np(r ,  t) lno and no longer depends 
on 6 a .  The same substitution can be done in Eq. (9) since 
on the whole the rate of variation of the number density of 
pinned vortices is determined by the variation of np(r , t ) .  If 
we assume that between two consecutive jumps in angular 
velocity the function r p ( r )  is time-independent, Eq. (9) can 
be immediately integrated, and its solution has the form 

This solution corresponds to the initial condition 
np(r,O) = 0 ,  which in turn follows from the assumption that 
after each jump all vortices become free. The moment t  
= 0  is the moment of a delta-like discontinuity in the angular 
velocity of the normal component of the system. Substituting 
the solution (20) into Eq. (18), we get 

If we allow for the fact that y depend weakly on time, the 
unknown function 6 0  is determined from (21) with the con- 
dition that y=const. Knowing SO and employing Eq. (19), 
we can easily obtain the observed angular velocity R c ( t )  of 
the normal component. 

The general solution of Eq. (21) with the initial condi- 
tion 6f l ( r ,0 )  = 66l0 has the form 
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where 

From the general solution (22) it is clear how to obtain a 
solution in the absence of pinning, i.e., the solution for free 
vortices. For this it is sufficient to send T~ to infinity in (22). 
Under this condition the function x(t) tends to t l r  and hence 

Substituting this solution into Eq. (19), we finally obtain 

a , ( t ) =  1 - P o  ( y r -  S f l o ) ( l  -e-'IT) d y - .  y t .  I (24) 

Finally, we note that the problem of free vortices has a 
steady-state solution. Indeed, for times t satisfying the con- 
dition t % -  T the solution becomes time-independent: 

Such a difference between the angular velocities of the su- 
perfluid and normal components of the system ensures an 
equal rate of decrease of the angular velocitie:~ of these com- . . 
ponents, i.e., f l ,= f l ,=  y .  Note that the solution (23) and 
(24) for Po< 1 coincides with the solution obtained in Ref. 
5. 

4. USING THE SOLUTIONS OBTAINED TO EXPLAIN THE 
DISCONTINUITIES AND SUBSEQUENT RELAXATION 
OF THE PULSAR ANGULAR VELOCITY 

Theoretically, as will shortly be seen, the equations ob- 
tained can be used to describe irregularities in the behavior 
of the angular velocities of pulsars. Leaving a qualitative 
comparison of the theory with the specific observational data 
for later, we first formulate what requirements following 
from observation the theoretical model must meet. 

Observations of the jumps in angular veltcity of the Vela 
pulsar have revealed sudden increases in the spin of this 
pulsar; for instance, the eighth jump in the angular velocity 
of this pulsar took less than two  minute^.^ As for the relax- 
ation times, they can be as long as several years: first, expo- 
nential relaxation with a growing characteristic time, whose 
value changes from several days to values of order of a hun- 
dred days, and then linear (in time) relaxation with a charac- 
teristic time of the order of the interjump time, which for the 
Vela pulsar is three years on the average.' Note that although 
the characteristics of different jumps in the angular velocity 
of the Vela pulsar are similar in their general features, both 
the relative value of the jump in angular velocity and the 
spectrum of characteristic times describing re taxation change 
from jump to jump. 

To explain such diversity in the behavior of discontinui- 
ties and relaxation of the angular velocity of the Vela pulsar 
(in a single model of a neutron star), one must assume that 
the pinning mode changes after each jump in angular veloc- 
ity. For a given pinning mode, i.e., for a given function 

r , , ( r ) ,  relaxation is accompanied by a change in vortex 
structure, which "prepares" the star for the next jump in 
angular velocity. The solutions that we found make it pos- 
sible, by specifying r P ( r ) ,  to find an initial condition Sflo 
that ensures both the observed spontaneous jump in angular 
velocity and the angular-velocity relaxation in the pulsar. 
Different initial conditions Sflo before each jump ensure the 
difference in the magnitude and relaxation behavior of the 
jumps in the angular velocity of the star. On the whole, how- 
ever, r p ( r )  and hence Sflo  change little from jump to jump, 
with the result that the overall features of the jumps in the 
angular velocity of the Vela pulsar are the same. 

Thus, to solve the problem completely we must be able 
to construct the function Tp(r)  from a knowledge of the in- 
ner structure of the neutron star and the internal processes in 
the star. This problem has yet to be examined because it 
requires selecting a certain pinning mechanism and studying 
the mechanism in detail. Here we consider the inverse prob- 
lem and discuss the requirements imposed on the properties 
of r p ( r )  that follow from the observation data on f l , ( t )  and 

fl,(t>. 
In Ref. 5 we showed that the time of dynamic relaxation 

of vortices in the n-p-e phase of a neutron star varies from 
several seconds to several years. This time is short near the 
boundary between the n-p-e and A-e-n phases and grows 
as we move closer within the core of the neutron star towards 
its center. The jumps observed in the angular velocity can be 
explained by a sudden release of the pinned vortices that are 
in the region where the dynamic relation time is shorter than 
one minute. As for the relaxation of the angular velocity, its 
cause lies in that region of the star region where dynamic 
relaxation times vary from one day to two thousand days. We 
will call the first layer the discontinuity zone and the second 
the relaxation zone. Since the phenomena of the discontinu- 
ity in angular velocity and of relaxation are different quali- 
tatively, the function ~ , ( r )  must also be different in the two 
zones. The logic of the problem implies that the time r , (r )  is 
short in the discontinuity zone and long in the relaxation 
zone. The characteristic time with which we must compare 
r p ( r )  must be of the order of the time between two consecu- 
tive jumps in angular velocity, t ,  . For one thing, we assume 
that in the discontinuity zone r p ( r ) 4 t g ,  while in the relax- 
ation zone the opposite is true: rp ( r )+  t ,  . 

We start with the discontinuity zone and assume 
rp4 t ,  . We will show that if this condition is met, then in a 
time interval t= t ,  the discontinuity zone accumulates a suf- 
ficient number of vortices to explain the observed jump in 
the angular velocity of the state. The function S f l ( r , t )  in this 
zone is determined from the general solution (22).  Let us 
examine its asymptotic behavior as t-+t,. If we require 
rp4 t ,  it follows that t% 7, holds, and asymptotically the 
function x ( t )  tends to the time-independent quantity rP/r .  
The solution (22) in these conditions assumes the form 

S f l -  6 f lo=  yt- S f lo ( l  -e-'el'). (26) 

Irrespective of the value of rp I T  the second term in (26) is 
always smaller than the first. Then we finally have 
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where TO= Ily is the pulsar characteristic lifetime. 
When a discontinuity occurs, the Magnus force on the 

vortices in the discontinuity zone exceeds the pinning force, 
which leads to a catastrophic release of all vortices accom- 
panied by a rapid decrease in their number density. The rapid 
jump observed in the angular velocity of the star can be 
described by the solution (24) if we assume that the relative 
moment of inertia of this zone is low and that at the center of 
the zone the dynamic relaxation time is of order of several 
minutes. Then for R c ( t )  we have the following expression: 

1, O c ( t ) =  1 - - [ Y T -  S O ( r , t , ) ] ( l  -e-"')- y t ,  
I 

where I, / I  is the relative moment of inertia of this zone. The 
solution (27) suggests that the angular velocity of the star 
grows rapidly. Eliminating SO(r , t , )  from (27), we arrive at 
the following expression for the pulsar angular velocity: 

As noted earlier, after the jump in the angular velocity relax- 
ation occurs, for which the relaxation zone is responsible. 
Here the reverse condition is met: r p ( r ) S t g .  Since S t , ,  
we have re r p .  In this approximation, according to (22), the 
function x(t) has the form 

Substituting x ( t )  into (22) and replacing the function x ( t l )  
by ( t l / r ) ( l  - t /47rp)  in the integrand, we finally get 

SO- S f l , = ( y ~ -  S f l o ) ( l  -e-"7) 

and from Eq. (19) for R c ( t )  we obtain 

Let us show that on the whole the relaxation processes for 
S O ( r , t )  and O , ( t )  are described by the first term in (30) and 
the second term in (31). Indeed, the exponents in the solu- 
tions satisfy the conditions 

since t g G r p .  Hence in the relaxation process, i.e., when 
t 5  t ,  holds, the exponent in the first exponential terms is 
much greater than the exponents in the subsequent exponen- 
tial terms. This means that the above statement is true. Ne- 
glecting the third term in Eq. (31),  we obtain an expression 
for the relaxation of the star's angular velocity, f l , . ( t ) ,  that 
coincides with the solution (24) for free vortices. 

For the tinal solution of the problem we must specify the 
initial condition SO,.  The value of SOo is determined by 
two terms: SO(r , t , )  , a quantity that depends on the distri- 
bution of vortices along the radius of the star before the jump 
in the pulsar angular velocity; and A R C ,  the size of the 
jump. While the second term is determined from observa- 
tions, the first can be found from the solution (30). Substi- 
tuting into this solution t  = t ,  and allowing for the fact that 
74 tg  holds, we obtain 

If we introduce the notation AO = S O ( r ,  t,) - Y T ,  we have 

Since in the relaxation zone the value of T changes from days 
to several thousand days and it satisfies 1 0 ~ ~ s  y r s  at 
A O -  l o p 6  the following condition holds: A n /  y r s  1. Then 
from (33) we obtain 

For the solution (31) to correctly describe the observed re- 
laxation of the Vela pulsar, A 0  must be of order If we 
allow for the fact that TO= lo4  yr and r ,  = 3 yr hold, we ob- 
tain rp== 102tg.  Note that we assumed that in the relaxation 
zone t g e  r p ,  which agrees with this estimate. 

Thus, the solution (24) describes the relaxation of the 
pulsar angular velocity if the integral is taken over the relax- 
ation zone, and the initial condition AIRo is determined by 
the relationship 

where A R  is given by (33). Since the quantity measured in 
observations is h o ( t ) ,  by differentiating (24) with respect to 
t  and substituting SOo from (35) we finally obtain 

It is this solution that must be compared with the observation 
data. We will now show that the above formulas explain the 
observed characteristics of discontinuities in the angular ve- 
locity of the Vela pulsar. 

We apply the formulas to the 1988 Christmas jump in 
the angular velocity of the Vela pulsar. A distinctive feature 
of this discontinuity is that ( A A , ) ,  was greater almost by a 
factor of ten than in the other discontinuities in the angular 
velocity of the same pulsar; the jump time was less than two 
minutes, ( A O C ) , =  1.8X and t,=907 days (see Ref. 
8). These data are sufficient to determine I,/[ in the region of 
the jump. It follows from (28) that I,lI= 1.4X lop2 .  

For the same jump in the angular velocity of the Vela 
pulsar one can observe fast relaxation of the time derivitive 
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of the angular velocity with characteristic time ~ 0 . 4  days 
and ( ~ f i ~ ) d ( h ~ ) ~ = 0 . 2  (Ref. 8).  Substituting t = 0 into (36)  
we get 

where 

Since the relative moment of inertia of the relaxation zone is 
low, according to (37)  we have 

Here we have allowed for the fact that in this zone 
A R 4  A R C .  Substituting (38) into (37)  yieltls 

and for the particular disc on ti nu it:^ considered 
h l , I I = 5 . 3 ~  

In conclusion we note that these values of 1,lI and 
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A!,  / I  agree with the standard model for a neutron star with 
a mass of 1 .4Mo , where for 7 5  2 min the value of I ,  11 is of 
order and for the zone with an average relaxation time 
7-0.4 day the value of AI,  11 is of order 5 X 
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