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We give a nonlinear theory of the Kelvin-Helmholtz instability based on a Hamiltonian 
description and the small-angle approximation of the boundary surface of the two fluids. The 
basic nonlinear process is connecr.ed with a wave-wind interaction which differs 
significantly from the nonlinear intjeraction when there is no wind. We show that the nonlinearity 
does not saturate the linear instability but, on the contrary, leads to an explosive growth of 
the amplitude. Near the instability threshold we obtain an equation for the envelopes which is the 
same as the (2+ 1)-dimensional noillinear Klein-Gordon equation. We find for this equation 
the sufficient conditions for the collapse of the integral form. O 1995 American Institute of 
Physics. 

1. INTRODUCTION 

For a long time the tangential disconttnuity instability 
(see, e.g., Ref. 1) which was discovered in the last century by 
Kelvin and Helmholtz has been considered h e  main mecha- 
nism for exciting sea waves by wind. The two stabilizing 
factors, the surface tension and the gravitational field, imply 
that there is a threshold for this instability. The threshold 
value V,, of the velocity above which the suiface oscillations 
begin to be excited is determined by the minimum phase 
velocity Vmin=min(wklk) of the surface gravitational- 
capillary waves when there is no wind: 

Here 

is the dispersion law for the surface waves, g is the accel- 
eration of the field of gravity, a is the surfa.ce tension coef- 
ficient, and &=p2 lp, is the ratio of the densities p2 and p, of 
the upper and lower fluids, which we shall assume to be 
small. For instance, for air and water we have 
e= 1 . 2 4 ~ 1 0 - ~ ~ 1  and the critical velocity Vc,=6.4 mls is 
consequently large compared to the minimum phase velocity 
Vmin=23 cmls. It is important that this instability is aperi- 
odic; this fundamentally changes the small-oscillation spec- 
trum, especially in the region where the growth rate is the 
greatest. The maximum growth rate occurs at the transition 
between the gravitational and the capillary sections of the 
spectrum, where k - k, = dm. Far from the instability 
region (in the gravitational and the capill;u-y regions) the 
dispersion law for small oscillations goes over to (2). If the 
velocity is just above the threshold value, pt:rturbations with 
wavevectors in a small neighborhood of k=k,,  where the 
direction of the vector k, is the same as the direction of the 
wind velocity V and the magnitude is equal to k, 
= dm, are unstable. 

It is important that the Kelvin-Helmholtz instability oc- 
curs for ideal liquids, i.e., when one neglects their viscosity. 
This, indeed, explains the fact that the value (1) of the criti- 
cal velocity for this instability is overestimated by a factor 11 
6 in comparison with the minimum phase velocity Vmin of 
the gravitational-capillary waves. The spectrum (2) of the 
surface waves is similar to the spectrum of the Landau exci- 
tations of liquid h e l i ~ m . ~  Therefore, exactly as in the case of 
the destruction of the superfluidity of liquid helium, the ex- 
citation of waves by a wind must start for V>Vmin. The 
corresponding linear theory was developed in papers by 
~ i l e s . ~  According to this theory the wave generation process 
is possible for V> Vmin if viscosity is taken into account. The 
viscosity leads to the formation of a boundary layer in the air 
near the wave surface. Waves are generated because of the 
existence of a shear flow V=V(z) in the boundary layer, 
where the coordinate z is measured in the vertical direction 
from the unperturbed boundary between the two fluids. The 
growth rate of this instability is small compared to the fre- 
quency wk close to Vmin , and increases with wind speed and 
has no singularity for velocities V- V,, , which significantly 
distinguishes this instability from the Kelvin-Helmholtz one. 

Recently Newell and zakharov4 have proposed a nonlin- 
ear theory for the excitation of waves by a wind, taking the 
Miles instability into account. This theory is based on a 
weak-turbulence description of the waves using kinetic equa- 
tions. For V >  Vn,in oscillations are excited in the instability 
region, which lies in the gravitational part of the spectrum. 
The growth of the oscillations is limited by cascade pro- 
cesses, as a result of which two Kolmogorov-type turbulent 
spectra are f ~ r m e d . ~  One of them corresponds to a constant 
flux of wave action or of the number of waves and develops 
in the long-wavelength region. The other Kolmogorov spec- 
trum corresponds to a constant energy flux directed to 
smaller scales. In the gravitational-capillary transition re- 
gion the spectrum with a constant energy flux must be joined 
to the Kolmogorov spectrum of the capillary waves.' For 
wind velocities up to velocities comparable to V,, given by 
(1) such a joining is possible. For higher velocities the en- 
ergy outflow to the capillary region does not agree with the 
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energy flux from the gravitational region. As a result, oscil- 
lations build up in the transition region and a condensate is 
formed, which according to Newell and zakharov4 is the 
cause of the sharp increase in the formation of foam when 
waves are excited by a wind. This prediction is in agreement 
with observations in which it was found for wind velocities 
V-6 m/s that the fraction of the sea surface occupied by 
foam increased (see Refs. 6-10). For the same velocities the 
Kelvin-Helmholtz instability was observed. Is this a chance 
coincidence or not? Could it be one of the possible mecha- 
nisms corresponding to the formation of foam? In the present 
paper we attempt to solve these problems by using a small 
parameter-the angle of inclination of the boundary 
surface-in perturbation theory to study the nonlinear stage 
of the Kelvin-Helmholtz instability. Of course, since we use 
a small parameter we cannot pretend fully to describe the 
foam formation process. From a mathematical point of view 
this process corresponds to the development of singularities 
on the boundary surface, i.e., of angles of inclination of order 
unity. In the present paper we note the tendency for this 
instability to develop in the nonlinear stage. We show that 
the nonlinearity does not stabilize the instability in the first 
nonvanishing order in the amplitude of the oscillations but 
leads to an explosive growth of oscillations. For wind veloci- 
ties below the critical one (1) a stable regime of excitations is 
possible where small perturbations are stable but when one 
reaches a critical amplitude and width of the distribution the 
explosive growth of the oscillations starts. 

The plan of the paper is the following: in $2 we give the 
basic equations of motion which describe the excitation of 
surface waves due to the Kelvin-Helmholtz instability and 
we give their Hamiltonian formulation. We restrict ourselves 
to considering irrotational flows of the liquid. In that case the 
canonically conjugate quantities are 'P=pl'P1 -pz'P2, where 
the 'PI,, are the values of the velocity potentials of the first 
and the second fluid taken at the boundary z = 7;l(x,y , t) ,  and 
7 . l ( ~ , ~ , t ) : ~ O * ' ~  

The Hamiltonian here is the total energy of the system. 
In Secs. 3 and 4 we construct a consistent perturbation theory 
in the small parameter l V v  I-the characteristic angle of in- 
clination of the surface-up to fourth-order terms in the 
Hamiltonian H. The analysis shows that the main contribu- 
tion to the interaction of unstable perturbations comes from 
the interaction of the surface waves with the wind. It is es- 
sential that this interaction does not reduce to the usual in- 
teraction of surface it vanishes as the wind veloc- 
ity decreases to zero. Near the instability threshold, if the 
amount by which the threshold is exceeded, 

is small, the analysis of the perturbation theory series be- 
comes simpler. In that case a wavepacket which is narrow in 
k-space is excited with a "carrier" wavevector ko; this 
makes it possible to change to envelopes in the equations of 
motion. We show in Sec. 4 that the envelope packet satisfies 
a nonlinear (2+ 1)-dimensional relativisticnliy invariant 

Klein-Gordon equation (the model). The square of the 
mass in that equation is equal to -Sand the nonlinear inter- 
action describes attraction. This means that in the first non- 
vanishing order the nonlinearity cannot stabilize the instabil- 
ity; on the contrary, it is the cause for an explosive growth of 
the oscillations. For this equation we construct a spatially 
uniform solution and a self-similar asymptotic form which 
describes the behavior of the singularity after a finite time. In 
Sec. 5 we use the integral estimate method to obtain a suffi- 
cient criterion for collapse. This criterion follows from a 
second-order differential inequality for the square of the 
norm of the envelope. After a simple substitution the solution 
of this inequality reduces to an analysis of the motion of a 
Newtonian particle in a given potential. In the concluding 
section we give comparative estimates of the roles of the 
Kelvin-Helmholtz and the Miles instabilities. 

2. BASIC EQUATIONS 

We consider the motion of the boundary of two ideal 
fluids in the field of gravity, g. We take the direction of the 
acceleration g to be the -z direction. 

Let the shape of the boundary be given by the function 
z= v(x,y,r) which is such that the first, heavier fluid (we 
shall indicate it by the index 1) occupies the region 
- W < Z < ~  and the second, light fluid (index 2) occupies the 
region 17 <z<m. The normal to the surface z = 7 (x,y ,t) is 
given by the vector 

We assume that the flow of the fluids is irrotational and that 
the upper fluid as a whole moves relative to the lower one 
with a velocity V (parallel to the x axis): 

By virtue of the incompressibility the potentials are 
determined by the solution of the Laplace equations 

A+1,2=0 (5) 

with the boundary conditions at infinity 

C$~-+O for z--+-m, 

4 9 4 0  for z -++w.  (6) 

The boundary conditions at the z= v surface can be split 
into kinematic and dynamic conditions. 

The kinematic condition at z =  7, 

which is valid both -%r the upper and for the lower fluid, 
gives the condition that the normal components of the veloc- 
ity are equal: 
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a42 We must express the normal velocity component V ,  and 
( 4 )  82 = ( x - ( v ~ n )  the potential Q2 in Eq. (14) in terms of Q and 7. To do this 

Z =  7 we first find the solution of the Laplace equations (5) with 
the boundary conditions (6): 

- (v+~vV)) I  z =  $ . (8) 

+ ~ , ~ ( r , z ) =  1 41,2k(0)exp( .~kz+ikr )d~k,  
The pressure difference at the boundary of the two media 

(15) 

which is determined by the surface tension gives the dy- where 
namic boundary condition: I ,- 

v q  *,,2,(O)= & j 41,2('.0)exp(- ikr)d2r, 
p 2 - p I = a  div m' (9) 

k=(k,,k,), 
Using the time-dependent Bernouilli equat:ions we can ex- and afterwards use the conditions (8) and (11) at the z= 
press this difference in terms of derivatives of the potentials to determine the required dependence. However, 
on the z = 7  boundary: even in the first step it is clear that explicit expressions for 

v77 V ,  and Q2 can be found only by expanding all quantities in 
+- + a div - 

2 
(8) and (11) in series in the parameter IV7 1, the small angle 

at 
Z= q 4 + ( V d 2  of inclination of the surface. As a result we expand the 

a42 (V+2I2 
Hamiltonian in powers of the canonical variables. One sees 

=&(-+- (10) easily that the Hamiltonian (14) is quadratic in W. 
dt  2 

z= q 

Here E is the ratio of the densities of the fluids, ~ = p ,  lp,. 
Equations (5)-(10) form a closed set of ecluations. 3. THE KELVIN-HELMHOLTZ INSTABILITY 

We consider the value of the velocity potentials at the 
boundary of the two fluids, Ql=41(,=, ,  W2=#9)z=,,  and We discuss how one can use the Hamiltonian approach 

use them to construct a new quantity to solve the linear problem of the stability of a plane bound- 
ary. 

*=~p,'4'1-~2'4'2. (11) In the linear approximation in Q2 and V ,  one finds easily 

Specifying QlV2 guarantees the solvabilitj of the Laplace from (8) and (I1) 

equations (5). Through direct calculations we can then estab- 1 
lish that the set (5)-410) can be written in Hamiltonian Q --- 

2 -  1 + &  
{ Q + i - I ( v v  n)}, 

form:11.'2 

where the Hamiltonian Here is a two-dimensional integral operator; its Fourier 
transform is equal to k = Jw. After we substitute these 

& [ ( ~ + 2 ) ~ + 2 ( ~ + 2 ~ ) 1 d ~ r  expressions into (14) and change to the k representation, the 
quadratic Hamiltonian H(') takes the form 

is the same as the total energy of the two fluids, apart from a 1 E 

constant. Here and henceforth we shall assume that the den- - z / -  ( k ~ ) ~ )  nkl2d2k. (16) 
sity satisfies p, = 1 .  

For the later calculations it is convenient to write the When there is no wind, the first term in H(') gives 
Hamiltonian (13) in the form of a surface integral: gravitational-capillary waves with the dispersion law 

+ 2a(  d m 2 - -  I )]d2r. (14) The second integral in the Hamiltonian (16) is a conserved 
quantity, 

Here and everywhere in what follows r=(x,y) is a two- 
dimensional vector in the horizontal plane iind V is the gra- E 

dient operator with respect to x and y. - (VP), 1 + &  
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where P is the total momentum of the system. This term can 
be removed by changing to a comoving system of coordi- 
nates, moving with the velocity 

Everywhere in what follows we shall therefore write H ( ~ )  in 
the form 

Hence it follows that a plane boundary becomes unstable 
under the condition 

This instability is called the Kelvin-Helmholtz instability 
and its growth rate is equal to rk. 

In what follows we shall assume that the parameter E is 
small and this considerably simplifies the whole subsequent 
analysis. It is clear from (19) that the Kelvin-Helmholtz in- 
stability occurs for velocities V larger than the critical one, 

where ko = a is the value of the wavenumber of the 
neutral perturbation corresponding to the instability thresh- 
old. If one is just above criticality, 

the instability is quasimonochromatic in character. Wave ex- 
citation occurs in a small neighborhood of k=ko of width 
Ak - k f i  (here the vector ko is parallel to the wind veloc- 
ity and magnitude is equal to ko). In this case the growth rate 
rk can be written in the form 

where 

Near the instability threshold it is thus natural to change to 
envelopes: 

'P(r,t)=*,(r,t)exp(ik0r) +*r(r,t)exp(-ikor) 

v(r,t)= vl(r,t)exp(ikor)+ vT(r,t)exp(-ikor), (21) 

where 'PI and 7, are slowly varying functions of r, 

Substituting (21) into the Hamiltonian (18) and carrying out 
the necessary averaging we find 

After a simple scaling, 

the equation of motion for the amplitude vl corresponding to 
this Hamiltonian takes the form of the linear Klein-Gordon 
equation: 

This equation changes as S, the amount by which threshold is 
exceeded, increases. For an arbitrary value of S the equation 
for g,(r,t) becomes an integral equation: 

where we can use Eq. (17) to express the operator iri in 
terms of the operator k. 

Concluding this section we discuss a number of physical 
consequences connected with the existence of the small pa- 
rameter E ,  the ratio of the densities of the upper and the 
lower media. We have already discussed one of these effects 
in the Introduction: the threshold value of the velocity is 
larger by a factor 11 6 than the minimum phase velocity of 
the surface waves. Another consequence which is very im- 
portant for the nonlinear analysis can be obtained from a 
comparative estimate of and q2 in the linear stage of the 
instability (indeed, it is sufficient to consider the case where 
one is just above criticality): 

This estimate shows that the fluctuations in the velocity of 
the upper component are at least 11 6 times larger than the 
velocity of the lower component. Physically this situation is 
very transparent: the upper fluid being considerably lighter, it 
rapidly follows all changes connected with the motions of 
the lower fluid which are slow because of its higher density 
and, hence, its larger inertia. One understands easily that the 
relation between the velocity fluctuations will be maintained 
both when one goes further beyond criticality and also in the 
nonlinear stage of this instability. In particular, this means 
that to leading order in E the velocity component of the upper 
fluid will be equal to zero: 

The difference between the left-hand and the right-hand sides 
of this equation gives a boundary condition in the next 
order-the equality (8) of the normal components of the ve- 
locities. 

The approximate boundary condition (25) together with 
the Laplace equation makes it possible to express the poten- 
tial q2 solely in terms of 7. It will be shown in the next 
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section that the nonlinearity which then arises on the same 
level as the nonlinearity due to capillarity i!; the main one in 
the nonlinear stage of the Kelvin-Helmholtz instability. 

4. NONLINEAR INTERACTION 

We turn to the analysis of the nonlinear interaction. It is 
clear from expression (14) for the Hamiltonian that the non- 
linearity come from three terms-the first, the second, and 
the third one. In order to find explicit expre:isions of the first 
two terms in terms of 'P  and 17 we must express the normal 
velocity component V, and the potential q2 as series in the 
parameter k 7 .  

It follows from the estimate (24) that if one is above 
criticality, so that S >  E holds, the potential q ,  apart from 
small terms of the order of E ,  S, or k v ,  is the same as the 
value of the potential q, of the lower fluid at the boundary. 
This means that the ratio of the cubic term to the quadratic 
one, (1 /2 ) Ik )qk l2d2k ,  will be of order k 7. Accordingly, the 
fourth-order terms will contain an additional small factor k 7 
compared to the cubic one, and so on. 

Similar relations between the cubic and the quadratic 
terms arise for the potential q2 when one sc~lves the Laplace 
equation (5)  with the approximate boundary conditions (25) 
and, hence, for the second term in the Hamiltonian (14). 
These evaluations are valid for S<E. Hence, it is clear that 
the ratio of the terms in each order from the first and the 
second terms will be on the order of the ratios of their qua- 
dratic terms, i.e., 

In the region of small S the main contribution to the nonlin- 
ear interaction will thus be connected with the renormalized 
velocity. In that case the interaction Hamiltonian has the 
form 

where S q 2  is the correction to q2 which is nonlinear in the 
parameter k 7 .  

It is important to note that by virtue of the boundary 
conditions (25) this interaction Harniltonian is a functional 
depending solely on 7. One sees easily that the contribution 
of the kinetic energy to Hi,, will be proportional to E V ~ .  It 
will be shown in what follows that just above criticality this 
term gives a renormalization of the instability growth rate. 

To find the gdependence of 11r2 we introduce an opera- 
tor i defined by 

It is clear that for harmonic functions which vanish as z ~ x  
the shift operator f, can be expressed in terms of the integral 
operator k: 

Analogous to the definition (28) we have for d& /dz(,, , 

Hence we easily find the solution of Eq. (25) for q2: 

q2=i[-ii-(~nLv)]-1(v~)v. 
Expanding q2 in the parameter k?;l and substituting it into 
(27) for Hht we get for the terms which are of third and 
fourth order in the amplitude 

It is well known that the nonlinear interaction leads to 
the generation of harmonics. If the system is close to the 
instability threshold multiples appear in addition to the basic 
spatial harmonic close to k=k,,. This means that we must 
write q ( r , t )  and (r , t )  not in the form (21),  but in the form 

The amplitudes of the harmonics q i ( r , t )  and ~ $ ( r , t )  are as- 
sumed here, as before, to be slowly varying compared to the 
exponentials. Their distributions in k-space will have widths 
on the order of the width of the main harmonic. The ratio of 
the amplitudes of the zeroth and the second harmonics to the 
amplitude of the first harmonic will be a small quantity in the 
case of a weak nonlinearity, i.e., at small angles. In that case 
their effect in the next order in the amplitude of the scilla- 
tions for the main, first, harmonic leads to a renormalization 
of the linear growth rate. It is clear that this renormalization 
will be proportional to 17, 1 2 .  

In evaluating the contribution from these processes it is 
convenient to change in the Hamiltonian (30) to the 
k-representation. As a result H ( ~ )  takes the form 
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where 

+(k3V)(klV)C31)r 

( kikj) 
c i j = l +  -. 

kikj 

Using (32) we can write down the equations of motion for 
the separate spatial harmonics. In particular, for the first har- 
monic we have 

d2771(9) 
dt2 = r ; o + q v l ( 9 )  

We can write the equation for the second harmonic as fol- 
lows: 

Neglecting the time derivatives in this equation and assum- 
ing that for 641 we have riko a - w i  we find 

Substituting this expression into (34) and assuming 
.!-2k0,k0,k0 = - . S ( ~ ~ V ) ~ ,  we find that the contribution to 
the averaged Hamiltonian H from the interaction processes 
of the first and second harmonics can be expressed in the 
form of an integral: 

Similarly we look for the contribution from the zeroth har- 
monic: 

In this equation one can approximately put w  
2 

43 
= g J q 3 J .  The asymptotic form of the matrix element as q+O, 
is 

i.e., the matrix element tends to zero like q .  The left-hand 
side of Eq. (35) can be estimated as ~ $ 8 7 ~ ~ .  It is small com- 
pared to the linear term on the right-hand side, which is of 
the order of firlo. Taking into account the behavior of 
the matrix element (36) we get as a result a contribution from 
the zeroth harmonic which is small in the parameter S com- 
pared to the contribution from the second harmonic. 

We now find the contribution from the 2 4 2  processes 
themselves. To do this we substitute Eq. (21) for 77 into the 
Hamiltonian H ( ~ )  given by (31) and average. As a result we 

get 

Collecting all terms, (22), (34), and (37), together we are 
led to the following averaged expression for the Hamil- 
tonian: 

Here and everywhere in what follows we drop the index of 
the envelopes. 

After scaling, 

we can rewrite the Hamiltonian (38) in the form 

Accordingly, the Hamiltonian of the linear Klein- 
Gordon equation (22) acquires a nonlinear correction: 

The main feature of this equation, like that of the Hamil- 
tonian (39) which generates it, is the fact that the nonlinear- 
ity in the first nonvanishing order does not lead to stabiliza- 
tion of the instability. One can consider the nonlinearity in 
Eq. (40) as a correction to the critical velocity V,, ,  reducing 
its magnitude. It is clear that the nonlinearity amplifies the 
instability. 

It is important to note also that Eq. (40) describes the 
behavior of the system both for positive 6, corresponding to 
an instability, and also for 6 <O, when there is no instability. 
Although the system is stable for V <  V,, and small 6 in the 
linear approximation, for finite amplitudes an instability is 
possible due to the nonlinearity. The excitation of oscilla- 
tions in that case will have a stable character, and so the 
amplitude becomes infinite after a finite time. This statement, 
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almost self-evident for uniform (coordinate independent) so- 
lutions requires a special discussion in the case of initial 
conditions localized in some region. 

5. CRITERION FOR WAVE COLLAPSE 

To find the conditions for a stable excitation we must 
study the solutions of Eq. (40). The simplest of them is the 
spatially uniform solution 17 = 17 (t). In that case (40) is a 
Newtonian equation for the motion of a particle in a spheri- 
cally symmetric potential. Putting 17 (t) =Re ei9 we get the 
equation 

where the effective potential is defined by the expression 

and  const con st is the angular niomentum with 
Ro= R(t=O). Equation (41) has an energy integral 

whence we see easily for what values of E and M it is 
possible for R to become infinite. In that case the time to for 
reaching the singularity will be determined by the integral 

In the vicinity of t=  to the function R(t) has the asymptotic 
form 

- 

[For S=M=0 this is an exact solution of (,41).] Apart from 
the spatially uniform solution considered above, near the sin- 
gularity when the nonlinearity is much larger than the pump- 
ing (In 12@-S) Eq. (40) admits a self-similar substitution 

We can find g ( 8  for axially symmetric solutions by solving 
the ordinary differential equation 

After substituting g=Re i'P we can write thi:j equation in the 
form of the set 

The second equation of this set can be integrated and as a 
result we have 
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The requirement that cp be finite at the origin means that we 
have C=O. Therefore we find cp=const and R satisfies the 
equation 

The solution of Eq. (45) for 5 + ~  has the asymptotic form 

It can be normalized ( J R ~ ~ ~ ~ < W )  for c2=0. All integrals in 
expression (39) for H turn out to be also finite in that case. 
This means that the total Hamiltonian in this solution is 
equal to zero (otherwise it would depend on the time). The 
square of the norm JR2d2t  is for this solution also indepen- 
dent of the time (under the condition c2=0), which is incor- 
rect in the general case. This self-similar solution can there- 
fore not be considered as the asymptotic form for the initial 
condition of the general situation. We can determine what 
solution actually develops by solving Eq. (40) numerically. 
We must add to what we have said that, apart from this, 
another equally important problem remains open-the prob- 
lem of the stability of the solutions considered above. How- 
ever, it is clear physically that if the initial condition for Eq. 
(40) has a sufficiently extended plateau the solution in the 
region of the plateau will be nearly spatially uniform. We 
shall show in what follows that the integral criteria for a 
wave collapse for Eq. (40) confirm this consideration. More- 
over, one can explain that these criteria are only weakly sen- 
sitive to a change in the dimensionality as, for instance, is the 
case for the nonlinear Schriidinger equation.'3v14 

We consider the time evolution of the quantity 
B = J I  I2d2r>0. Equation (40) makes it possible to write 

Multiplying both sides of this equation by B and using the 
Cauchy-Bunyakov inequality we have the following in- 
equality: 

This form of the majorizing inequality is the most general 
one known in the literature for obtaining a criterion for 
collapse.'5 A particular case of (46) is the inequality 

obtained from (46) for H<O and 6 >0. An inequality of the 
form (47) was first used in Ref. 16 and later in a paper by 
Kalantarov and ~ a d ~ z h e n s k a ~ a ' ~  for obtaining an integral 
criterion for collapse in the one-dimensional Boussinesq 
equation. In the present paper we analyze the general in- 
equality (46) and find sufficient criteria for collapse. 
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It is convenient to rewrite inequality (46), giving it the 
form of Newton's second law by introducing a new quantity 
A instead of B: B=A-2. As a result we get for A the in- 
equality 

where A has the meaning of a coordinate and the quantity 

that of the potential energy of a "particle" (cf. (41)). 
If the norm of B becomes infinite after a finite time this 

will mean that the solution of Eq. (41) is no longer smooth 
and a singularity arises in it no later than when B becomes an 
infinite quantity. The appearance of the singularity means for 
the quantity A that the "particle" would reach the origin 
(A =0) after a finite time. If the "velocity" A, is negative one 
can integrate inequality (48) once: 

The sign of the inequality means that the "particle" on its 
motion to the center acquires energy. One easily finds from 
this equation all possible cases when the "particle" reaches 
the point A =O. Collapse occurs 
1) for H<O and S<O, if E(O)>O and A,<O; 
2) for H<O and S>O, if A,<O; 
3) for H>O and 6>0, if A,<O, A ~ ( o ) < s / ~ H  and 
E(o)<s'/~H or if A,<O and E(O)> a 2 / 8 ~ .  

In all these cases one can give an estimate for the upper 
limit of the time to for collapse using the integral 

Let us note that the sign st in Eq. (48) means that, except 
of the potential force, dV(A)laA, an additional negative 
force directed towards the A=O, acts on the "particle." 
Therefore, the condition A,(O)<O in the first and second 
cases is not a must. Obviously in these cases the particle, 
after reflection, will reach point A =O. 

Near the singularity the norm B = 51 11I2dr becomes in- 
finite as 

This estimate follows from the fact that the "particle" near 
the origin, A =0, has a well defined velocity. Therefore as 
t-+ to  the quantity A vanishes at least linearly: 

and this gives the estimate (50) for B. 
It is important to note that the estimate (50) is indepen- 

dent of the dimensionality of the space. It is clear from a 
comparison with (43) that it corresponds to an increase in the 
amplitude for spatially uniform solutions according to the 
law = ( to -  t ) - '  for an almost unchanged or even an in- 
creasing region of the collapsing solution. Compression of 

the distribution during the collapse is unlikely. If compres- 
sion is possible, it is considerably weaker than the self- 
similar law (44). 

6. CONCLUDING REMARKS 

We have thus shown that the generation of waves by a 
wind due to the Kelvin-Helmholtz instability has an explo- 
sive nature in the nonlinear stage. This growth occurs up to 
angles of order unity when Eq. (40) loses its applicability. 
Note that Eq. (40) was obtained assuming that the value of 
k q  was small. The cancellation of the fourth-order terms 
which were taken into account in (40) is therefore possible 
only when one takes into account the main nonlinearities 
which automatically gives an angle k q- 1. For such angles 
capillarity will play a decisive role. It is natural to assume 
that this explosive growth is stopped by the collapse of the 
waves, the formation of a drop, and the appearance of foam 
on the crests of the waves. We must note that this is in 
accordance with satellite and airplane data. According to 
Refs. 6-10 one observes for wind speeds close to the critical 
velocity (1) a steep increase of the fraction of the sea surface 
occupied by foam. 

We now discuss the role played by another mechanism 
for wave excitation by a wind which is connected with the 
Miles i n~ tab i l i t~ .~  We noted already in the Introduction that 
the Kelvin-Helmholtz instability presupposes the existence 
of a tangential discontinuity. For real fluids (water and air) 
viscosity destroys the tangential discontinuity, forming a 
boundary layer near the surface. The flow in the boundary 
layer is shear flow. The instability predicted by Miles arises 
due to a resonance between a surface wave uk and the shear 
flow in the so-called coincidence layer z= z* where the 
phase velocity of the oscillations is comparable with the flow 
velocity: 

This instability and the beam instability in a plasma'8 have 
much in common. The Miles instability is the analog of the 
kinetic beam instability when a beam is considerably broad- 
ened in energy so that its growth rate is determined by the 
structure factor of the beam distribution. For sufficiently cold 
beams the instability has a hydrodynamic character and is 
independent of the details of the beam distribution function. 
The Kelvin-Helmholtz instability is the analog of the hydro- 
dynamic beam instability. It is independent of the details of 
the transitional boundary layer and is determined only by the 
magnitude of the wind speed outside this layer. This problem 
goes far beyond the framework of the present paper. Here we 
note only that when waves are excited due to the Kelvin- 
Helmholtz instability one must at least satisfy the following 
condition: the wavelength of the excited oscillations must be 
long compared with the thickness of the boundary layer. In 
that case the flow outside the boundary layer can accurately 
be assumed to be irrotational, and this leads to the Kelvin- 
Helmholtz instability. For wind speeds around 6 m/s one can 
distinguish in the wave spectrum the gravitational and the 
capillary wavelength scales. Taking as a typical gravitational 
wavelength A=] m one can estimate the thickness h of the 
boundary layer when a wind with a speed of 6 m/s blows on 
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the hump. For this wavelength the thickness of the boundary 
layer is determined from the formula (see, e.g., Ref. I )  

where Re is the Reynolds number. Substituting real param- 
eters with A=l m gives h ~ 0 . 1 6  cm, which is small com- 
pared to the wavelength Ao=2.rrlko= 1.7 cm. This means that 
in this situation the Kelvin-Helmholtz instability will play 
an important role. If the thickness of the boundary layer is 
large compared to A, the Miles instability will be the main 
one and, accordingly, for the nonlinear regime the Newell- 
Zakharov theory5 is the main one. In a real situation appar- 
ently both mechanisms operate. They are united in the fact 
that both explain the strong increase of foam for the same 
velocities. 

In conclusion the authors thank V. E. Zakharov for use- 
ful discussions and also R. E. Glasman, who kindly drew 
their attention to Refs. 6-10. 
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