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We propose a pseudopotential theory for the state of an electron injected into a nonpolar liquid. 
We use for the initial data quantities known experimentally-the scattering length for an 
isolated atom, its polarizability, artd the pair correlation function of the liquid. We obtain an 
expression for the scattering length of the electron for the scattering by a Wigner-Seitz 
cell of the liquid. The calculated density dependence of the electron mobility and of the ground 
state energy are found to be in satisfactory agreement with experiments. O 1995 American 
Institute of Physics. 

1. INTRODUCTION 

The state of a charged particle in a dense medium is the 
subject of many studies. Its description gives a clue to the 
solution of a variety of physical problems. An electron in- 
jected into an atomic liquid is the simplest n:alization of such 
a system and is suitable for detailed experimental investiga- 
tions. It is well known that in that case various effects show 
UP. 

A most striking phenomenon is observed in weakly po- 
larizable liquids-the electron self-localizes. States appear in 
which the electron is bound to the substance (for recent sur- 
veys see Ref. 1). 

In liquids which have a high polarization the electron 
remains free and acquires a mobility which is higher than in 
a gas. This effect was already observed in the sixties. It was 
explained that it occurs as the result of the competition be- 
tween the polarization attraction between the electron and 
the atoms of the liquid and the short-range repulsion. The 
polarization attraction which predominates in a gas is weak- 
ened in a liquid due to the overlap of the electron-atom po- 
tentials to such an extent that in a liquid the repulsion domi- 
nates. This manifests itself in the change in sign of the 
electron scattering length from negative to positive. The 
theory developed at the same time explained the observed 
effects in the vicinity of the triple point of liquid argon, but 
for krypton and xenon it was already untenable (see the re- 
views in Refs. 2 and 3). 

In recently performed experiments measurements were 
carried out in a wide range of densities--from liquids to 
gases. The density dependence of the elecl.ron ground state 
passes through a minimum. The electron mobility passes 
through a maximum and its position is the :same as the posi- 
tion of the minimum of the ground state energy. It is obvious 
to connect this fact with the vanishing of the scattering 
length. However, the existing theory does not describe the 
behavior of the scattering length as a function of the density. 

This difficulty gave rise to a number of s t ~ d i e s . ~ - ~  How- 
ever, in all those the starting point is giving the explicit form 
of the electron-atom interaction potential. The short-range 
component of this potential is not known. Ilence, fitting pa- 
rameters necessarily appear. The inconsistencies which then 
arise have been discussed in detail in Refs. 8 and 9. At the 
same time these papers were inherently incomplete-the 

minimum of the ground state energy is described but not the 
maximum of the mobility. 

We start from the fact that one needs not give explicitly 
the short-range component of the electron-atom potential. 
The necessary information about it is contained in the length 
Lo for scattering by an isolated atom and its polarizability a, 
which are known from experiments. The phase shift of an 
s-wave scattered by the short-range component of the atomic 
potential remains the same for an atom in a liquid. As to the 
long-range polarization component, it is renormalized. The 
theory given below refers to a pseudopotential type theory 
and develops ideas expounded in a paper by Springett, Co- 
hen, and ~ortner." 

In what follows we construct the profile of the potential 
field in which the electron moves. We evaluate the scattering 
length for scattering by a Wigner-Seitz cell of that potential. 
Next we discuss the possibility for using kinetic theory and 
describe the mobility maximum. In the last section we cal- 
culate the ground state energy as function of the density (the 
affinity of the electron to the substance). We give a compari- 
son with experiments. 

2. SCATTERING OF AN ELECTRON IN A LIQUID 

The average field in which the electron interacts in the 
liquid is a muffin tin potential.11 One can model an element 
of this potential by surrounding each atom by a Wigner- 
Seitz cell of radius ?= ( 4 7 r ~ / 3 ) - " ~ ,  where N is the atomic 
density of the liquid. In the liquid the electron interacts with 
the atoms of the cell and also with its surroundings. We shall 
assume that the short-range component of the electron-atom 
potential has a range a which is much smaller than the size 
of the cell. At distances larger than a the interaction with the 
central atom will then be a polarization interaction, 

The potential of the surroundings is created by the atoms 
outside the cell which are at distances from the center close 
to u, where u is the parameter of the Lennard-Jones poten- 
tial responsible for the interatomic repulsion. It is given in 
Table I. Restricting ourselves to relatively high densities 
such that i <u holds, we can write the potential of the sur- 
roundings in the formlo 
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TABLE I .  2nl - 

L - L o = g  I 1 [ ~ 2 ( r )  + ~ 4 ( r ) l x d r ) i o ( r ) d r  
Substance a, l i i  Ln 40 (i , (1 n (r,(ln 0 - - 
Argon 1 1 . 1  - 1.63 1.68 6.4 
Xenon 27.1 -5.9 2.15 7.66 - 

3  a e 2  R ~ ~ ( R ) ~ R  where we have used the fact that for r > i  the electron-atom 
u ( r ) = ~  f ( r ) v P ( r - ~ j ) = -  F f j  ( R 2 -  r 2 Y .  potential is equal to the polarization potential (1). As the 

i 
(2 )  wavefunction i o ( r )  we take the well known wavefunction 

for the polarization potential,'5 
Here the sum over the ensemble of the surrounding atoms is 
replaced by an integration over a continuous density distri- 
bution in the liquid with a pair correlation function g ( R ) .  
The function f ( R )  is outside the cell equal to the Lorenz- 
Lorentz factor of the local field,12 f = ( 1 + 8 ? r a ~ / 3 ) - ' .  i o = A r  sin(: < - A ) ,  

We shall see in what follows that it is sufficient to use 
u ( r )  in the form of an expansion of the integrand in (2 )  in 
Rlr ,  retaining the first terms. We then have 

2 r2  a (8 )  

In= ( 1 + n )  g ( x ) x - ( 2 + n ) d x ,  n  = 0 , 2 , 4 .  I (3 )  

If we assume g(R)=O for R < a  and that for R>u,  we find 
that the In are equal to unity. When one uses real g ( R )  
known for Lennard-Jones liquids13 lo ,  I,, and I4 are practi- 
cally constant in the range of densities considered, lo= 1.2, 
12= 1.6, and I,= 1.8. The constant uo is equal to the average 
polarization energy of the medium and u 2 ( r )  and u 4 ( r )  are 
components of the cell potential determined by its surround- 
ings. 

The pseudopotential of the cell is the sum of the 
electron-atom potential cut off at the boundary of the cell and 
the averaged potential (3 )  of the surrounding atoms. We con- 
sider the problem of the scattering length L ( r )  for such a 
potential. To do this we use the well known expression14 for 
the change in the phase shift of an s-wave caused by a 
change in the potential, 

Here A  is the phase shift caused by the short-range compo- 
nent of the potential. The normalization constant A corre- 
sponds to the asymptotic behavior of (6)  and a .  is the Bohr 
radius. 

The wavefunction go(') describes the scattering by an 
isolated cell of the muffin tin potential. Outside the cell r a i  
it is the same as its asymptotic form (6) .  Inside the cell we 
use for the function xo(r) the polarization wavefunction (8)  
smoothly joined to the asymptotic form (6) at the boundary 
of the cell, x o ( i )  = f - L. We then have for xo(r)  

2m 
O X X O I = ~  [ ~ ( r ) - f ( r ) ~ ~ o ~ o d r ,  (4 )  where the phase shift K is determined by the equation: 

where xo(r) and i o ( r )  are wavefunctions with wavenumber 
k=O for the perturbed potential V ( r )  and the potential p ( r ) .  
The perturbed potential will be the cell pseudopotential: < - K ) = -  $Z a r - L '  

As the unperturbed potential we use the potential of an iso- We carry out the integration over the volume of the cell 

lated atom p ( r ) = ~ L , ( r ) .  ~h~ wavefunctions are normalized in (7 )  approximately, assuming that the main contribution to 

such that the integral comes from the vicinity of the upper limit of 
integration. The second integral in (7 )  is calculated exactly. 

x o ( r ) = r - L ,  i o ( r ) = r - L o ,  r+m,  (6) Solving the equation obtained for L  we find: 

where Lo is the scattering length for an isolated atom and L  
is the required scattering length for the cell pseudopotential. 
The integral on the right-hand side of (4) can be split into L l  - ;A(  1 - Ll  I / )  

L =  
tw-over the interior of the cell ant1 oi~tsitle it: I - A (  I - L A (  11) 

' 
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Here Lo is the scattering length for the polarization potential 
cut off at F, 

where we have used the notation 

The contribution of the averaged potential of the surround- 
ings of the cell is determined by the parameter 

The assumption made in the calculations, that the wavefunc- 
tion ,yo(') is only a little distorted inside the cell by the 
potential u ( r )  of the surroundings, requires that the inequal- 
ity A 9 1  be satisfied. In the triple point of' argon we have 
A=0.114. 

Another important inequality must reflect the assumption 
that the fraction of the cell volume in which the short-range 
component of the potential dominates is small. We note that 
the length a defined in (13) is a measure of the range of that 
component. It is thus necessary to require that 

( a ~ r ) 3 ~  1. (15) 

In argon we have a = 1.68 and at the triple point we have 
(alF)3=0.064. 

The function L(N) calculated using Eqs. (ll) ,  (12), and 
(13) is shown in Fig. 1. The calculated scattering length of an 
electron in a liquid vanishes for a density which is close to 
the density N* corresponding to the maximum of ,u(N). The 
fact that the function L(N) passes through zero was first 
noted in Ref. 12, but subsequent calculationr; carried out in a 
number of papers did not describe this effect although it had 
been confirmed e~per imenta l l~ . '~~ '~  We show in Fig. 1 the 
values of L(N) obtained from the experimental mobility 
, u ( ~ ) . ' ~  The agreement between calculation and experiment 
is good if one takes into account that the quantities Lo and a, 
which are well known for isolated atoms, iue the only pa- 
rameters entering in the calculation of the function L ( N ) .  
One could hardly expect greater accuracy from a theory 
which does not use free parameters. One rnust rather con- 
sider it a success to get an accurate vanishing of the calcu- 
lated function L(N) in the point N* corresponding to the 
maximum value of the mobility. 

The expression for L(N) has the correct limit for low 
densities, L(NtO)+Lo.  To obtain it one must change to 
the gas approximation in (14), replacing the parameter a of 
the interatomic potential by the average interatomic distance 
r .  

3. MAXIMUM OF THE ELECTRON MOBILITY IN A LIQUID 

In a weak electric field excess thermal electrons are in 
partial equilibrium with the medium. Their kinetic energy is 
much smaller than the characteristic scale on which the po- 
tential changes. The interaction of these ek:ctrons with the 
medium is thus determined by the s-wave scattering, the 
phase of which is linear in the wavenumber I : ,  &= -Lk. The 

FIG. 1 .  Scattering length of an electron in liquid argon as function of the 
density. The full drawn curve is the calculated function and the points are 
experimental data from Ref. 16. 

parameter characterizing the interaction of the electron with 
the medium is the scattering length L(N). In kinetic theory 
one can consider the motion of an electron in a liquid as 
consecutive acts of scattering by elementary cells, character- 
ized by the scattering length L(N). If we take the spatial 
correlation of the cell into acc~unt , '~  the mean free path of 
an electron is 

The long-wavelength structure factor of the liquid is small 
near the triple point, S(O)=0.05. When the density decreases 
the increase in S(0) will be compensated by the decrease in 
the scattering length L(N). As a result the mean free path I is 
large for almost the whole range of liquid densities. In order 
that kinetic theory be applicable one must require that the 
Ioffe-Regel parameter which is equal to the ratio of the elec- 
tron wavelength to its mean free path be small: 

We can rewrite this inequality using the gas kinetic expres- 
sion for the mobility ,u in another form, 

For temperatures in the region of 100 K this corresponds to 
,uS-lo2 c m 2 / ~ . s .  Such high values of the mobility have, in- 
deed, been observed (Fig. 2). 

We write the expression for the mobility in a Lorentzian 
form 

where m,,=m is the effective mass of the electron in the 
liquid. In the denominator of expression (19) we have taken 
into account the fluctuations in the scattering length when the 
liquid density  fluctuate^.'^.^^ 

The scattering length depends significantly on the den- 
sity in a medium with a strong interaction. The maximum of 
the electron mobility as function of the liquid density, con- 
nected with the weakening of its scattering, is caused by the 
decrease in the average scattering length up to where it van- 
ishes. Near that density the electrons "do not see" the sepa- 
rate scatterers and the scattering occurs by density fluctua- 
tions which contain many atoms. 

The scattering of electrons by fluctuations determines 
the magnitude of the mobility maximum. We shall calculate 
( 8 ~ ) ~  as follows 
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When the density decreases, N<N", the structure factor 
S(0,N) increases with decreasing density and the calculated 
mobility drops off steeply. For the calculated values the in- 
equalities (17) and (18) are here violated and the kinetic 
theory used by us is inapplicable. However, under the same 
conditions the measured mobility remains rather large. 
Clearly it is here insufficient to take into account the spatial 
correlation of the cells in the simplest form of the long- 
wavelength structure factor. Taking the dependence of 
S(k,N) on small k into account in that region awaits further 
considerations. 

FIG. 2. Mobility of an electron in liquid argon as function of the density. 4. GROUND STATE ENERGY 
The curve is the calculated function and the points are experimental data 
from Ref. 16. The ground state energy ~=f i~q; /2m of the electron is 

an eigenvalue of the solution of the Schrodinger equation in 
the Wigner-Seitz cell, 

(20) 
d 2 X l d r 2 + [ q i - 2 m f i - 2 ~ ( r ) ] X = ~  (22) 

with the boundary condition x(?) = ix' (?) . In the zero- 
where  AN)^ = NS(0)Ia  are the mean square liquid den- radius potential approximation we can use x(L) =O as the 
sity fluctuations occurring in a volume a. Substituting (11) second boundary condition. As a result the wavefunction 
into (20) we get 

$(r) = X ( r ) l r = ~ ( q O r ) - l  sin[qo(r- L)], (23) 

(21) and the eigenvalue of the wavenumber satisfy the following 
condition for L>O: 

Equation (21) contains a free parameter-the fluctuation vol- 
ume a. We use Eq. (19) to derive its value from the experi- 
mental value of pm,. The size turns out to be close to 
6 . 5 ~  for Ar and Xe. It is significantly larger than the size of 
the minimum fluctuation necessary to form the potential of 
the surroundings. Apparently, fluctuations which violate the 
spherical symmetry of the cell are very important. They are 
neglected in Eq. (20). 

The results of calculating the mobility of electrons in 
liquid Ar and the experimental data of Ref. 16 are shown in 
Fig. 2. The theory satisfactorily describes the mobility maxi- 
mum. The large value of the product N*fl which occurs in 
the denominator of (21) makes the scattering by the fluctua- 
tions (SL)' given by (21) larger than the contribution to the 
scattering by separate cells (taking their spatial correlation 
into account) only in a narrow range near the value N*. The 
shape of the extremum of the mobility p(N) is thus deter- 
mined by the functions L(N) and S(0,N) = NTx,, where X ,  
is the isothermal compressibility of the liquid. 

We discuss the mobility on the "wings" of the function 
p(N). The decrease of the mobility with increasing N (for 
N>N*) is determined by the growth of the scattering length 
L ( N ) .  However, later the function S(0,N) becomes the de- 
cisive factor and the measured mobility starts to increase. 
This is the consequence of the density dependence of the 
structure factor S(0) which decreases when the density in- 
creases due to the decrease of the isothermal compressibility. 
In solid argon (N=2.5X10~~ ~ m - ~ )  the measured mobility 
reaches 3800 crn2/v.s. The calculated mobility increases too 
steeply due to an underestimate by a factor two of the calcu- 
lated scattering length which was discussed in the preceding 
section. 

This Wigner-Seitz solution has often been used in the litera- 
ture. 

The solution given here is unsuitable under conditions in 
which the attraction dominates over the repulsion, i.e., for 
L<O. Under those conditions, starting with Ref. 10, the sec- 
ond boundary condition has been written down using some 
scattering length which was estimated for the short-range 
repulsive component, and the polarization component of the 
potential was averaged. This procedure, which admits con- 
siderable latitude, nevertheless gave values for the ground 
state energy in the triple point. However, the fact that the 
ground state energy passes through a minimum was not 
de~cribed.~" We obtain a correct solution of this problem. 

Under conditions when the scattering length is negative 
the ground state energy E= - i i242m is also negative. The 
Schrodinger equation has the form 

It is natural to use for its solution, if L has a small absolute 
magnitude, the same zero-radius potential approximation, 
i.e., the boundary condition flL)=O. The solution has the 
following form, 

@(r) = A ( K ~ ~ ) - '  s i n h [ ~ ~ ( r  - L)]. (26) 

The eigenvalue K~ satisfies the relation 

t a n h [ ~ ~ ( F -  L)] = K ~ F .  (27) 

The obtained solution does not satisfy the condition 
r/d0)=0. However, if the pseudopotential region is small, 
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FIG. 3. Ground state energy of an electron in liquid argon as function of the 
density, V, (N) .  ?he curve is the calculated function, the experimental data 
are from Ref. 21 (a), Ref. 22 (0). and Ref. 23 (A). 

the divergence of @ at the origin is not important. It does not 
prevent normalization, 

~ ~ = ( 4 / 3 ) ( ~ ~ r ) - ~ { s i n h [ 2 ~ ~ ( r -  L ) ]  

It follows from Eq. (27) that 

This means that the electron cannot be localized in the region 
of a single cell. 

For lower densities as in the case L>O there is a transi- 
tion to Fermi's optical approximation,'5 ~ $ 2 =  - ( 3 / 2 ) ~ F ~ .  
The quantity measured is not the energy E but the energy Vo 
of the affinity of the electron to the liquid. It differs from E 

by a shift equal to the energy of the average polarization of 
the substance, 

Vo= uo+ E ,  (3  1) 

where uo is given by Eq. (3) .  
The function Vo(N) calculated for argon is given in Fig. 

3  with the results of the measurements of Refs. 21-23. The 
calculated curve is obtained by using the measured function 
L(N)  for densities where there are such results and the cal- 
culated L(N)  where there are no such results. At low densi- 
ties the values of Vo are matched to the oj~tical approxima- 
tion when we have 

Vo= - 3ae2(2r4) - I  + 3e2Loao(2r3) - ' .  (32) 

There exists a region of intermediate densities in which nei- 
ther the optical nor the cell approximation applies. 

The theory satisfactorily describes the minimum in the 
function V o ( N ) .  However, the calculated values of IvOI are 
larger than the experimental ones. This can possibly be ex- 

plained by the fact that the proposed theory is a mean-field 
theory and does not take into account the effect of density 
fluctuations. A description of a liquid in terms of the pair 
correlation function enables us to consider spherically sym- 
metric fluctuations but not spherically asymmetric fluctua- 
tions, which certainly play an important role, especially in 
the lower density region. Taking these effects into account is, 
apparently, possible in numerical experiments. A numerical 
method of studying the state of a light quantum particle in a 
classical liquid requires giving the electron-atom potential 
explicitly both at large and at small The results 
of such calculations published so far contain adjustable pa- 
rameters and are therefore doubtful. Our work shows that the 
short-range part of this interaction can be given in the sim- 
plest form, for instance, in the form of a hard core at a 
distance a. One should verify that then the phase shift is 
satisfactorily reproduced at low energies. We note that the 
proposed pseudopotential satisfies this condition only for 
s-wave scattering. It is possible that this turns out to be suf- 
ficient. 

In conclusion one should note that the proposed theory 
enables us to describe satisfactorily the two experimentally 
determined functions p ( N )  and Vo(N)  over a relatively 
broad range of liquid densities. Earlier papers described only 
one of these functions. Here we have presented calculations 
referring to argon. The theory describes krypton and xenon 
in a similar way. 

The last section of the paper was completed together 
with V. V. Pogosov and the authors express to him their deep 
gratitude. 
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sian Fund for Fundamental Research. 
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